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STRONG POWER AND SUBEXPONENTIAL LAWS FOR AN

ORDERED LIST OF TRAJECTORIES OF A MARKOV CHAIN∗
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Abstract. Consider a homogeneous Markov chain with discrete time and with a finite set

of states E0, . . . , En such that the state E0 is absorbing and states E1, . . . , En are nonrecurrent.

The frequencies of trajectories in this chain are studied in this paper, i.e., “words” composed of

symbols E1, . . . , En ending with the “space” E0. Order the words according to their probabilities;

denote by p(t) the probability of the tth word in this list. As was proved recently, in the case of

an infinite list of words, in the dependence of the topology of the graph of the Markov chain, there

exists either the limit ln p(t)/ ln t as t → ∞ or that of ln p(t)/t1/D , where D ∈ N (weak power

and subexponential laws). As appeared, in the latter case the decreasing order of the function p(t)

is always subexponential (the strong subexponential law). In the first case, this paper describes

necessary and sufficient conditions of the power order (the strong power law). These conditions are

fulfilled, in particular, if the graph of the Markov chain that corresponds to states E1, . . . , En is

strongly connected.
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1. Introduction. The nature of the power law and the spheres of its applica-

bility has been an interest of mathematicians in recent decades [6, 8, 18]. For real

networks, one has proposed several models describing the occurrence of the power

law; the most known one is the preferential attachment model [1]. In linguistics,

mechanisms of the occurrence of Zipf and Heaps laws were thoroughly studied in the

time of B. Mandelbrot [15, 16]. Papers containing empirical studies and mathemat-

ical models also appear regularly (see, for example, [14] and references therein; for

the mathematical motivation of this paper see [7]). However, there are no commonly

accepted explanations of the fact that in reality with some values of parameters, the

power law does not adequately describe processes under consideration [6]. Here we

try to answer this question, considering probabilities of the occurrence of various

trajectories in a homogeneous Markov chain.
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Our model has occurred when studying a huge data set of the Google Books

repository [17]. Usually one describes frequencies of word occurrences with the help

of power law asymptotics [2]. But note that the power law is irrelevant in hieroglyphic

scripts [14].

As the initial model explaining the power law of the decrease in frequencies of the

occurrences of English words, we consider the model of the word generation process

consisting in the sequential independent random addition of various symbols (letters

and the space), each of which has a fixed probability (the monkey model). This model

has a long history, but only recently, the power character of the asymptotics of the

sorted list of word frequencies has been strictly justified [3, 7].

In this paper, we study one natural generalization of this model, namely, the

model with the Markov connection of neighboring symbols. Such model was studied

by B. Mandelbrot [16]; however, he has mainly considered a particular case of the

occurrence of the power asymptotics. As appeared, in the dependence of the matrix

of transition probabilities, the ordered list of frequencies of all possible trajectories of

a Markov chain can have essentially different asymptotics.

Thus, let us consider a homogeneous Markov chain with discrete time and with

a finite set of states E0, . . . , En such that

(1.1)
the state E0 is absorbing,

states E1, . . . , En are nonrecurrent.

The goal of this work is to study frequencies of trajectories in this chain, i.e., “words”

composed of symbols E1, . . . , En ending with the “space” E0.

Let us order words (trajectories) according to their probabilities; denote by p(t)

the probability of the tth word in this list. In this paper, we prove that in a typical case

the asymptotics of the function p(t) has a power character, and define its exponent

from the matrix of transition probabilities of the chain minus the absorbing state.

If this matrix is reducible, then with some specific values of transition probabilities,

the power asymptotics become logarithmic. But if this matrix is rather sparse, then

probabilities quickly decrease; namely, the rate of the asymptotics has a subexponen-

tial order. One can easily calculate the order of the potentiated power function. The

calculation of the constant in the exponent at the power function is more difficult,

but we have succeeded in obtaining an explicit formula for it.

Having completed the main part of this paper (see [4]), we became aware of the pa-

per [9] , where under the same conditions one proves the existence of limits ln p(t)/ ln t

as t→ ∞ (which coincides with our case of the power order of the asymptotics, as well

as with the case of the power asymptotics, where correction data change is slower)

and the limit ln p(t)/t1/D, where D ∈ N (which coincides with our case of the subex-

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 534-556, August 2014



ELA

536 V.V. Bochkarev and E.Yu. Lerner

ponential order of the asymptotics). Therefore, one can consider results obtained in

this paper as a strengthening of results of [9], where one has proved weak power and

weak subexponential asymptotics. Note that earlier in [4] for the subexponential case,

we considered only necessary and sufficient conditions of the exponential decreasing

order (D = 1). We have proved the subexponential order in a general case only after

getting acquainted with results of [9]. We calculate constants in the subexponent by

explicit formulas, while the corresponding constants in [9] are calculated by recurrent

formulas (which can be easily reduced to explicit ones). In the conclusion of this

paper, we compare results obtained by us and those of [9] in detail.

2. The exact statement of main result.

2.1. Definitions and denotations. Let P0 be a (stochastic) transition prob-

ability matrix of the Markov chain with the state set (1.1), and let P be its (sub-

stochastic) submatrix corresponding to states E1, . . . , En. Denote by G0 the directed

pseudograph with the set of vertices {0, . . . , n}, whose arcs (i, j) are defined by in-

equalities pij > 0. Conditions (1.1) are equivalent to the fact that the graph G0 is

(weakly) connected, and {0} is the only collection of vertices that has no arcs leading

to its complement. Let G be the subgraph of the graph G0 with the set of ver-

tices {1, . . . , n} including all arcs of the initial graph G0 between these vertices (the

subgraph generated by vertices {1, . . . , n}). Let H be a subgraph of the graph G0 gen-

erated by some set of vertices. Then we denote by PH the corresponding submatrix

of the matrix P0:PH = (pij)i,j∈V (H). Thus, for example, PG ≡ P . In addition, we set

PH(β) = (pβij)i,j∈V (H).

Recall that a strongly connected component (SCC) is a maximal complete sub-

graph such that any pair of its vertices is mutually connected. Denote by G′ the

digraph obtained from the graph G0 by identifying vertices and arcs that belong to

the some SCC of the initial graph G0 (in [13] this graph is called the condensation).

In this paper, the graph G′ is connected and 0 is the only vertex having no outgoing

arcs. Recall that [13] the graph G′ is acyclic.

We denote by a = (a0, . . . , an) the initial distribution of probabilities on the state

set. Without loss of generality, we assume that

(2.1) every state is accessible.

Condition (2.1) means that for each state Ei there is a time t such that there is a

positive probability of being at state Ei at time t. In what follows we sometimes deal

with initial distributions, for which Condition (2.1) is not assumed to be fulfilled; we

specify all such cases separately.
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Let us associate an arbitrary path c = (i1, . . . , im) in the graph G0 with the weight

P̃r(c) = pi1i2 · · · pim−1im . Instead of a path in the graph, it is often more convenient

to consider an ordered set of states of the chain w = (Ei1 , . . . , Eim). We call this set

a word, if ai1 > 0, Eim = E0, and Eim−1
6= E0. In other words, we understand a

word as a sequence of states reached by the system from the start of the walk till the

absorption by the state E0. We determine the word probability Pr(w), taking into

account the initial distribution:

(2.2) Pr(w) = ai1pi1i2 · · · pim−1im .

One can easily prove that the set of all words with the measure Pr forms a discrete

probability space (i.e., the sum of probabilities of all words equals one).

We understand the length L of a word w as the number of states in it, excluding

the last absorbing state E0. A simple cycle is a closed path without repeated vertices,

except the vertices which are used to start and end the cycle. We denote by C the set

of all simple cycles in the graph G. Let W ′ be the set of all words with unrepeated

states. For any w′ ∈W ′ we denote by C(w′) the set of all simple cycles that intersects

the path in the graph G corresponding to the word w′.

Let us sort all words in the nonincreasing order of their probabilities. Evidently,

both the value p(t) = Pr(wt) (the probability of the tth word in this ordered list)

and the “inverse” function of p(t), Q(q), q ∈ (0, 1], (that equals the number of words

whose probability is less than q) are defined. We are interested in the asymptotics of

the function p(t) for t→ ∞ (or, equivalently, that of the function Q(q) for q → 0).

We use the standard O-symbolics and we denote by Θ the asymptotic order and

we denote by Ω the lower estimate of the order ([12, Section 9.2]):

f(x) = Ω(g(x)) ⇔ |f(x)| > C|g(x)| for some C > 0,

f(x) = Θ(g(x)) ⇔ f(x) = Ω(g(x)) and f(x) = O(g(x)).

2.2. The statement of the main theorem.

Theorem 2.1. Three cases are possible:

A. If the graph G is acyclic, then the function p(t) is finitary (i.e., the number

of all possible words is finite).

B. If the graph G contains a vertex which is common for two different sim-

ple cycles (if there is at least one SCC on G which is not a cycle), then

p(t) = Ω(t−1/β), where β is a real number, with which the maximal modulo

eigenvalue of the matrix PG(β) equals one. Note that such β exists, is unique,

and belongs to the interval (0, 1). Moreover, p(t) = o(t−1/β′

) for any β′ > β.

In addition, the exact power order (i.e., the equality p(t) = Θ(t−1/β)) is at-

tained if and only if any simple path in the graph G′ contains at most one
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vertex (a SCC H of the graph G) such that the matrix PH(β) has the unit

eigenvalue.

C. If the graph G contains cycles, and each vertex of the graph G belongs to

no more than one simple cycle (every SCC on G is a cycle), then p(t) =

Θ
(
exp(− D

√
νt)

)
; here ν is determined by the formula

1/ν =
∑

w′∈W ′:|C(w′)|=D

1/D!
∏

c∈C(w′)

−1/ ln P̃r(c),

where D = maxw′∈W ′ |C(w′)|.

Remark 2.2. The item A of the Theorem is trivial (we give it here only for the

sake of completeness). It follows from the fact that in an acyclic graph, the length of

any word does not exceed n.

Remark 2.3. The parameter ν of the exponential asymptotics (as distinct from

the order of power case) depends not only on the matrix of transition probabilities,

but also on the set of states v such that av > 0 (for more details see Remark 4.2).

Remark 2.4. As was proved earlier [3, 7], if states are chosen independently

and the probability of each one is pi, i = 0, . . . , n, then for n > 1 the function p(t)

has a power asymptotic; its exponent determined from the equation
∑n

i=1 p
β
i = 1

equals 1/β. This is a particular case of Theorem 2.1.B, where the matrix P consists

of nonzero elements and has equal rows. Raising all elements of the matrix P to the

power β, we obtain a stochastic matrix; it is well known that the maximal eigenvalue

of a stochastic matrix equals one.

2.3. Examples. The graph shown in diagram b) in Fig. 2.1 has only one SCC

with vertices {1, 2} (we do not take into account the trivial cycle from the absorbing

state to itself). This component contains cycles (1, 2, 1) and (1, 1), therefore, the

function p(t) has a power asymptotic. For example, if all probabilities of transitions

from states E1 and E2 equal 1/2, then one can easily calculate that β = log2(1+
√
5)/2.

The graph shown in Fig. 2.2 has two SCCs H1 and H2 (we do not take into account

the trivial cycle from the absorbing state to itself), and both of them belong to one

and the same path in the graph G′. Moreover, the graph H1 contains a vertex which

is common for two different simple cycles. We use Theorem 2.1.B. If probabilities of

all transitions from states E1, E2, E3, E4 equal 1/3, then one can easily calculate that

β = log3 2. With this value of β matrices PH1
(β) and PH2

(β) have the unit eigenvalue

(all their elements equal 1/2). Therefore, the power asymptotics do not take place,

i.e., p(t) = Ω(t− log
2
3) and p(t) = o(t−δ) for any δ < log2 3, but p(t) 6= Θ(t− log

2
3).

The graph shown in diagram c) in Fig. 2.1 contains two simple cycles-loops, and in

the graph G there is a path going through all vertices. Therefore, the decreasing order

of p(t) equals exp(−
√
νt). If probabilities of all transitions from the state E1 are equal
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Fig. 2.1. Examples of graphs G0 of a Markov chain with three states E0, E1, E2 (the vertex

that corresponds to the absorbing state E0 is pictured at the bottom). In case a) the function p(t)

is finitary. In case b) the asymptotics of the function p(t) has a power order. In case c) the

asymptotics of the function p(t) has the order exp(−
√
νt). In cases d) and e) the function p(t) has

an exponential decreasing order. Note that the classification depends only on the graph G (the upper

part of the figure), provided that states E1 and E2 are nonrecurrent.

Fig. 2.2. An example of the graph G0 of a Markov chain with five states E0, E1, E2, E3, E4.

The function p(t) is bounded by two functions having a power asymptotic, however, their degrees

are different (arbitrarily close). The asymptotics of the function p(t) itself does not necessarily have

a power order, if matrices of transition probabilities of graphs H1 and H2 coincide or so do the

corresponding exponents β.

to 1/3, while those from the state E2 are equal to 1/2, then we can easily calculate

that ν = 2 ln 2 ln 3. The graph shown in diagram d) in Fig. 2.1 contains two analogous

cycles, but in the graph G there is no path described in the previous example; this

means that the decrease of the function p(t) has an exponential asymptotic. The graph

shown in diagram e) has one simple cycle, and the asymptotic is also exponential.

Assume that a1 > 0 and a2 > 0; then there are 4 words with nonrepeating states,

namely, (E1, E0), (E2, E0), (E1, E2, E0), (E2, E1, E0). Now assume that for Markov
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chains with graphs shown in diagrams d) and e) all probabilities of transitions from

states E1, E2 equal 1/2; then one can easily calculate that in both cases d) and e)

ν = ln
√
2.

3. Spectral properties of substochastic matrices.

3.1. A spectral substochastic lemma. Prior to proving Theorem 2.1.B, let

us prove the unique existence of the exponent β in this case. Consider an arbitrary

substochastic matrix P = (pij)
n
i,j=1 with the following properties (in conditions given

below, indices i, j belong to {1, . . . , n}):

(3.1)

0 ≤ pij ≤ 1 for all i, j;∑n
j=1 pij ≤ 1 for all i (the substochasticity);

the matrix P is not nilpotent;

for any principal submatrix of the matrix P there exists a row

such that the sum of its elements in this submatrix is strictly less than 1.

Note that with P ≡ PG the latter property is equivalent to the nonrecurrence of all

states (except the absorbing one) [10]; the matrix P is nilpotent if and only if the

graph G is acyclic.

Recall that for matrices with nonnegative elements (nonnegative matrices) the

next theorem [11, Theorem 3, Chapter XIII] is valid. Namely, “A non-negative matrix

A = (aij)
n
i,j=1 always has a non-negative characteristic value r such that moduli of

all characteristic values of A do not exceed r. To this maximal characteristic value r

there corresponds a non-negative characteristic vector Ay = ry (y ≥ 0, y 6= 0).” Note

that both the matrix A and that AT (the symbol T is the transposition sign) may

have no positive eigenvector (a vector all whose components are strictly positive).

Later we discuss existence conditions for such a vector.

Recall that the symbol P (β) denotes the matrix (pβij)
n
i,j=1 (here 0β = 0 for any β),

while G stands for a directed graph with n vertices, whose arcs correspond to nonzero

elements of the matrix P .

Lemma 3.1. For any matrix P in form (3.1) there exists unique β ∈ R such that

the maximal characteristic value of the matrix P (β) equals 1, while 0 ≤ β < 1. The

inequality β > 0 is equivalent to the existence in the graph G of two different simple

cycles that go through one and the same vertex.

Proof. Denote by si the sum
∑n

j=1 pij . Let s = mini si and S = maxi si. It

is known that [11, Remark on p. 68] the maximal characteristic value r of any non-

negative matrix satisfies the inequality s ≤ r ≤ S. Denote by r(ψ) (here ψ ≥ 0)

the maximal eigenvalue of the matrix P (ψ), let s(ψ) = mini
∑n
j=1 p

ψ
ij and S(ψ) =

maxi
∑n

j=1 p
ψ
ij .
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Let us prove the uniqueness of the choice of β from the lemma condition and the

validity of the inequality 0 ≤ β < 1. Recall that the matrix P is called indecomposable

if the oriented graph G is strongly connected. In a general case, the decomposition of

a graph into SCCs corresponds to the normal form of the matrix obtained from the

initial one by renumbering its rows (and, correspondingly, columns). In the normal

form (see [11, p. 75]), the diagonal is occupied by square blocks corresponding to col-

lections of vertices that belong to one and the same SCC; the matrix elements located

above these blocks equal zero. Therefore, sequentially decomposing the determinant

by the group of rows that correspond to SCCs, we obtain that the characteristic poly-

nomial of the matrix P (ψ) equals the product of characteristic polynomials of each

of diagonal blocks. As consequence of this fact, the eigenvalues of the matrix is the

union of the eigenvalues in the individual blocks, so r(ψ) coincides with the maximal

eigenvalue of blocks. However, according to Formula (3.1), for square submatrices

that correspond to each of these blocks, the value s is strictly less than one. In addi-

tion, not all blocks are zero, otherwise the matrix P is nilpotent. For the block H

(3.2) PH(0) is equal to the adjacency matrix of the graph H ,

so s(0) ≥ 1 for at least one of blocks. It is known that [11, p. 63] indecomposable

nonnegative matrices with unequal values of s and S satisfy the strict inequality

s < r < S. Consequently, r(1) < 1 and r(0) ≥ 1.

Evidently, pψij decreases as ψ increases, if pij > 0. It is known that [11, Theorem 6,

Chapter XIII] if some elements of a nonnegative indecomposable matrix decrease, then

its maximal characteristic value strictly decreases. Therefore, r(ψ) is a decreasing

function. We have proved the uniqueness of the choice of β and the validity of the

inequality 0 ≤ β < 1.

Let us prove the last assertion of the lemma. In the normal form of the matrix P ,

we consider the block containing the vertex that belongs to two different cycles. For

this block we introduce analogs of values s(ψ) and S(ψ); we denote them by s′(ψ)

and S′(ψ), correspondingly. The considered block, by definition, is an indecomposable

matrix. Consequently (see (3.2)), s′(0) ≥ 1 and S′(0) ≥ 2. Hence, for the matrix P (0)

we get r(0) > 1, which implies that in this case the desired value of β (by condition

of the lemma) is strictly positive.

It remains to prove that if no vertex in the graph G belongs to two cycles, then the

desired value of β equals zero. Really, the considered diagonal blocks either are trivial

(i.e., consisting of one element) or correspond to nontrivial SCCs of the graph G. A

nontrivial component, by definition, contains a cycle going through all its vertices.

In our case this cycle cannot be self-intersecting, because in this case there would

exist a vertex belonging to two cycles. Therefore, the SCC consists of a single simple
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cycle. But this means that for the corresponding block, S′(0) = s′(0) = 1. Since

the eigenvalues of P (0) are the union of the eigenvalues of diagonal blocks, we obtain

r(0) = 1.

Evidently, Lemma 3.1, taking into account the nonrecurrence of states of the

Markov chain, implies the existence of the exponent β in the interval (0, 1), provided

that assumptions of Theorem 2.1.B are fulfilled.

3.2. A positive eigenvector of the matrix P (β)T and the initial distri-

bution of the Markov chain. Let us mention the following fact.

Corollary 3.2. Assume that under conditions of Lemma 3.1, β > 0 and the

normal form of the matrix P contains several blocks representing SCCs H of the

graph G such that characteristic numbers of matrices PH(β) equal one. Then each

of these graphs H contains a vertex that belongs to two (or more) different simple

cycles.

Let us now consider the case when the matrix P (β)T has a positive eigenvec-

tor corresponding to the unit eigenvalue. Redefining the standard necessary and

sufficient conditions for the existence of a positive eigenvector (see [11, Theorem 7,

Chapter XIII]), we obtain the following assertion.

Proposition 3.3. Let assumptions of Lemma 3.1 be fulfilled and β > 0. The

matrix P (β)T has a positive eigenvector corresponding to the unit eigenvalue if and

only if in the graph G′ vertices without incoming arcs, and only they, correspond to

SCCs H, for which matrices PH(β) have the unit characteristic value.

Corollary 3.4. Assume that under conditions of Theorem 2.1.B (there is at

least one SCC on G which is not a cycle) the matrix P (β)T has a positive eigenvector

corresponding to the unit eigenvalue. Then we can choose a vector a = (a1, . . . , an)

such that ak = 0 for all vertices with less than two incoming arcs, and the probability

of reaching any vertex is greater than zero.

Proof of Corollary 3.4. Consider graphs H mentioned in Proposition 3.3. Ac-

cording to Corollary 3.2, in each of them there exists a vertex which belongs to two

cycles. Assume that av > 0 for all such vertices v, and av = 0 otherwise. Then the

probability to reach any vertex of graphs H is greater than zero, because all these

vertices are located in one and the same SCC. Proposition 3.3 implies that all the

rest SCCs are also reachable with nonzero probabilities. But then we can get, with

nonzero probabilities, to all vertices of the graph G.
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4. The power law in the case of the existence of a positive eigenvector.

4.1. The choice of the initial distribution. We need some more auxiliary

assertions about power inequalities for the function p(t). Note that Lemma 4.1 is

valid even without assumptions on the existence and positiveness of the eigenvector

of the matrix P (β)T . We use it for proving both the main result of this section (in

the framework of the mentioned assumption), and its corollaries (in a more general

case).

Lemma 4.1. A. Let δ > 0. With some initial distribution a (not necessarily sat-

isfying Condition (2.1)) we obtain pa(t) = Ω(t−δ) (hereinafter the subscript indicates

the initial distribution under consideration). Then with any initial distribution a′

satisfying Condition (2.1), we have pa′(t) = Ω(t−δ).

B. Let δ > 0. Assume that with some initial distribution a, a = (a1, . . . , an), sat-

isfying Condition (2.1) it holds pa(t) = O(t−δ). Then with any initial distribution a′

we have pa′(t) = O(t−δ).

As a corollary, we obtain that if pa(t) = Θ(t−δ) with some initial distribution a

satisfying (2.1), then it is also valid for all initial distributions satisfying (2.1).

Remark 4.2. If the order of the asymptotics is not power, then the asser-

tion analogous to Lemma 4.1, generally speaking, is not true. Namely, the order of

the asymptotics of the function p(t), possibly, depends on the initial distribution.

Thus, when calculating the Markov chain that corresponds to the (last) diagram e) in

Fig. 2.1, we obtain the exponential order of the asymptotics of the function p(t) with

the exponent ν = ln
√
2. Here we assume that a1 > 0, a2 > 0. But if a = (1, 0) in this

chain, then, as one can easily prove, the asymptotic is exponential with ν = ln 2.

We denote a Markov chain with an initial distribution a as MCha, we denote

probabilities of words w in this Markov chain by Pra(w). By definition, all words in

MCha begin in the set E(a) = {Ei : ai > 0}, and we denote the corresponding set of

vertices by I(a) = {i : ai > 0}. The idea of the proof consists in associating words in

MCha with those in MCha′ , and then in estimating the function p.

Proof of Lemma 4.1.A. Evidently, we can select particular path (i′, i1, . . . , j) for

each j, j ∈ I(a) such as i′ ∈ I(a′); we denote this path by π(j). We associate each

word w in MCha, beginning with Ej , with a word w′ in MCha′ by adding the prefix

(Ei′ , Ei1 , . . . , Ej). Evidently, Pra′(w
′) = Pra(w)c(j), where c(j) = P̃r(π(j))a′i′/aj .

It is possible that several words in MCha correspond to one and the same word in

MCha′ . However, in the associated list, this word may appear no more than n times

because there exists only n prefixes (consequently there exists no more than n variants

of prefixes that begin with Ei′).
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Consider the sorted list of first t words (w1, w2, . . . , wt) in MCha and associate

them with words (w′
1, . . . , w

′
t) in MCha′ (some of them, possibly, coincide). It is

obvious that for any list of different words (w′
1, . . . , w

′
t) in MCha′ occurs pa′(t) ≥

min1≤i≤t Pra′(w
′
i). We get pa′(t) ≥ min1≤i≤nt Pra′(w

′
i) ≥ pa(nt)minj∈I(a) c(j) >

const t−δ.

Proof of Lemma 4.1.B is quite similar (it uses the inequality pa′(t) ≤ c pa(⌈t/n⌉)).

4.2. The key Lemma.

In Lemma 4.1, the “inversed” function Q can be considered instead of the function

p, where Q(q) equals the number of words whose probability is less than q. The

assertion of Lemma 4.1 is equivalent to an analogous one for Q(q) with 1/δ in place of

δ. Really, the graph of the function p(t) demonstrates that the inequality p(t) < c t−δ

(p(t) > c t−δ) with all t ≥ 1 is equivalent to Q(q) < (q/c)−1/δ = const q−1/δ (or,

respectively, Q(q) > const q−1/δ) with all (sufficiently small) values of q.

Lemma 4.3. Assume that a graph G has a vertex that belongs to two different

simple cycles, β is chosen in accordance with Lemma 3.1, and the matrix P (β)T has

a positive eigenvector e corresponding to the unit eigenvalue. Then p(t) = Θ(t−1/β).

Proof (cf. the proof in [3]). As noted above, the assertion about the power asymp-

totics of the function p(t) is equivalent to an analogous assertion for the function Q.

Let us prove it now.

We understand an incomplete word as the initial part of a path (i1, . . . , im) such

that ai1 > 0; we define the “probability” of an incomplete word by the same for-

mula (2.2). For positive x, we introduce functions Qk(x), k = 1, . . . , n, which equal

the number of incomplete words ending with the symbol Ek whose “probabilities” are

not less than x. Evidently, Qk(x) = 0 with x > 1. We also need functions Q̃k(x):

Q̃k(x) = Qk(x) + 1, k = 1, . . . , n.

Let us prove that Qk(x) = Θ(x−β) as x → 0. Evidently, such power estimate

from above (from below) for the function Qk(x) is equivalent to an analogous estimate

for Q̃k(x).

Put

χ0(x) =

{
1 for x ≤ 1,

0 for x > 1.

The definition implies the following important recurrent correlation:
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Qk(x) =
∑

m:pmk>0

Qm(x/pmk) + χk(x),(4.1)

where χk(x) =

{
χ0(x/ak), ak > 0,

0, otherwise.

In particular, the following inequality is valid:

(4.2) Qk(x) ≥
∑

m:pmk>0

Qm(x/pmk), k = 1, . . . , n.

Let us now use Lemma 4.1, which gives some freedom of the choice of the initial

distribution. Choosing ak as is described in Corollary 3.4, for all vertices k with one

incoming arc (m, k) we get Qk(x) = Qm(x/pmk).

In Relation (4.1), we can put a sign “≤”, replacing χk by one. Consequently for

vertices with at least two incoming arcs, Qk(x) ≤
∑

m:pmk>0Qm(x/pmk) + (l − 1),

where l is the number of terms in the sum. Therefore,

(4.3) Q̃k(x) ≤
∑

m:pmk>0

Q̃m(x/pmk), k = 1, . . . , n.

Let the eigenvector e mentioned in the condition of the lemma have components

(e1, . . . , en). One can easily verify that functions fk(x) = ekx
−β , k = 1, . . . , n, satisfy

the following set of functional equations:

(4.4) fk(x) =
∑

m:pmk>0

fm(x/pmk), k = 1, . . . , n.

Now let M be the minimum of positive elements of the matrix P , and let M ′

be the maximum of its non-unit elements. Fix y such that Qk(y) > 0 for all k.

Evidently that on the segment [My, y] the function Qk(y) is monotone and positive

(more exactly, on this segment it takes on a finite number of natural values). This

means that one can find positive constants c1 and c2 independent of k such that

inequalities Qk(x) ≥ c1fk(x) and Q̃k(x) ≤ c2fk(x), k = 1, . . . , n, are valid with

My ≤ x ≤ y. But then Formulas (4.2, 4.3, 4.4) imply that the same inequalities

(with the same constants c1 and c2) are valid with x ∈ [M ′My, y] and, consequently,

with all x ≤ y. The estimate Qk(x) = Θ(x−β) for x ≤ y is proved.

Since Q(x) =
∑

m:pm0>0Qm(x/pm0), we obtain that Q(x) = Θ(x−β) for suffi-

ciently small x.
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4.3. The proof of assertions about Ω and the o-asymptotics.

Hereinafter, “Let assumptions of Theorem 2.1.B be fulfilled” will be understood

as “the graph G contains a vertex which is common for two different simple cycles”

(or “there is at least one SCC on G which is not a cycle”).

Corollary 4.4. Let assumptions of Theorem 2.1.B be fulfilled. Then p(t) =

Ω(t−1/β), where β is a real number such that the maximal modulo eigenvalue of the

matrix PG(β) equals one.

Proof. The idea of the proof consists in the application of Lemma 4.1.A. But first

we need to find at least one initial distribution for which our power estimate from

below is valid.

Consider β defined in the condition of Corollary 4.4 (recall that in view of

Lemma 3.1, it exists and is positive and unique). In the normal form, the matrix

PG(β) has blocks that represent SCCs H such that the maximal modulo eigenvalue of

the matrix PH(β) equals one. Assume that conditions of Proposition 3.3 are violated.

Then in some path in the graph G′, one such block does not correspond to the first

vertex in the path. Without loss of generality, we can assume that no arc enters the ini-

tial vertex of the path under consideration. We delete this vertex from the graph G′

and the corresponding SCC from the graph G. Consider the “truncated” Markov

chain with the obtained graph. Evidently, as above, it satisfies Conditions (1.1) and

assumptions of Theorem 2.1.B; moreover, for the matrix of transition probabilities,

the value of β remains the same.

Repeating this operation several times, we can make the matrix of the obtained

graph G̃ satisfy conditions of Proposition 3.3. Fixing the initial distribution a for

the Markov chain with the graph G̃, we fix the corresponding distribution a for the

Markov chain with the graph G; however, in this case, we never reach deleted vertices.

By applying Lemma 4.3 (which is proved above) and using Lemma 4.1.A, we obtain

the assertion of Corollary 4.4.

Corollary 4.5. Let assumptions of Theorem 2.1.B be fulfilled. Then p(t) =

o(t−1/β′

) for any β′ > β.

Proof. The idea of the proof consists in the application of Lemma 4.1.B. But

first we perform the operation opposite to that in the proof of the previous lemma.

Namely, we add to the graph G additional SCCs so as to make the obtained Markov

chain satisfy the condition of Lemma 4.3 with some exponent β′′ lesser than β′.

Let k be the number of vertices in the graph G′ which have no incoming arcs,

let v be one such vertex, and let Hv be the SCC of the graph G corresponding to it.

Let us add to G some subgraphs H̃v which have the form shown in the upper part
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of diagram b) in Fig. 2.1, then an arc from the added subgraph will lead to one of

vertices in Hv. As a result, we will obtain a graph with n+ 2k vertices.

Consider a Markov chain with n + 2k non-absorbing states, whose matrix of

transition probabilities P̃ is obtained from the matrix P by adding k pairs of rows

that correspond to subgraphs H̃v. Each pair corresponds to a diagonal 2× 2 block in

the form P2 =

(
r s

t 0

)
, where 0 < r, s, t < 1, r+s = 1, numbers r, s, t are the same

for all blocks. Let us choose numbers r, s, t so as to make the maximal eigenvalue of

the matrix P2(β
′′) equal one (for some β′′: β < β′′ < β′). To this end, it suffices to

choose x such that rβ
′′

x+ sβ
′′

= 1 (since rβ
′′

+ sβ
′′

> 1, the desired value of x is less

than one), and then set t = x1/β
′′

.

Let us now consider the Markov chain with the transition probability matrix

(between non-absorbing states) P̃ . Evidently, the matrix P̃ (β′′) satisfies conditions

of Proposition 3.3, whence by Lemma 4.3 and Lemma 4.1.B we get pa(t) = O(t−β
′′

)

for any initial distribution a of this Markov chain. In particular, this is also valid for

I(a) ∈ V (G), and in this case, we never reach vertices of added graphs H̃(v). Thus,

for the initial Markov chain we have p(t) = O(t−β
′′

) = o(t−β
′

).

5. Completion of the proof of Theorem 2.1.B.

5.1. Sequential and parallel connections of graphs of Markov chains.

It remains to establish necessary and sufficient conditions for the power asymptotics.

Sufficient but not necessary conditions are given by assumptions of Lemma 4.3. In

order to complete the proof of Theorem 2.1.B with the help of Lemma 4.3, we need

two more auxiliary assertions.

Let us first consider the case of a “parallel” connection of graphs G1 and G2 of

Markov chains (we denote the Markov chains themselves by MChG1
and MChG2

); we

identify the absorbing states of these graphs.

Fig. 5.1. The construction of MChG by the “parallel” connection of graphs of MChG1
and

MChG2
. Arcs that earlier led from G1 and G2 to their “own” absorbing states, now lead to the

common absorbing state E0.

Lemma 5.1. Assume that Markov chains with graphs G1 and G2 with some
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initial distributions (satisfying Condition (2.1)) for p1(t) and p2(t) (probabilities of

the tth word in the corresponding sorted list) satisfy correlations p1(t) = O(t−δ1 )

and p2(t) = O(t−δ2 ), where δ1, δ2 > 0. Assume that for the Markov chain with the

function p(t), any word represents either a word from the first Markov chain or that

of the second one; its graph G represents a non-connected union of graphs G1 and G2,

while the corresponding transition probabilities remain the same (see Fig. 5.1). Then

with any initial distribution the following correlation is valid:

(5.1) p(t) = O(t−δ), where δ = min{δ1, δ2}.

Proof. By Lemma 4.1.B it suffices to prove Inequality (5.1) with some concrete

initial distribution a satisfying Condition (2.1). Let us choose it as (a′+a′′)/2, where

a′ and a′′ are initial probability distributions in the first and second Markov chains,

correspondingly. Then probabilities of all words in the aggregated Markov chain are

2 times less than probabilities of the same words in calculations of p1(t) and p2(t).

The list of the first t words of our Markov chain, sorted in the non-increasing order

of their probabilities, consists of the initial part of the analogous list of the first MCh

alternated with the initial part of the second MCh; consequently, this list contains a

word of either first or second MCh with the index ⌈t/2⌉. We have

(5.2) p(t) ≤ max{p1(⌈t/2⌉), p2(⌈t/2⌉)}

(we could have again divide the right-hand side by 2, but even the weakened variant

of the inequality suits us).

By assumption there exist positive constants c1 and c2 such that

(5.3) p1(t) < c1 t
−δ1 , p2(t) < c2 t

−δ2 for all t.

Let us choose a constant c such that c t−δ > max{2δ1c1t−δ1 , 2δ2c2t−δ2} for all positive

integers t. Using (5.2) and (5.3), we obtain p(t) < c t−δ.

Remark 5.2. Evidently, Lemma 5.1 can be extended by induction to the case

of the “parallel” connection of MChG1
,MChG2

, . . . ,MChGm
.

Let us now consider the case when graphs of Markov chains are connected “se-

quentially”. Consider the graph G obtained from the union of graphs G1 and G2

of Markov chains by redirecting at least some arcs that earlier led from G1 to the

absorbing state, and now do to the graph G2. Denote the set of these arcs by E12.

Assume that one can reach any vertex of the graph G2 along the path that goes

through the proper arc from E12, and transition probabilities in MChG are equal to

the corresponding probabilities in MChG1
and MChG2

(see Fig. 5.2).
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Fig. 5.2. The construction of MChG by a “sequential” connection of graphs of MChG1
and

MChG2
. Arcs that earlier led from G1 to their “own” absorbing states form two groups; arcs of

the first group lead to the common absorbing state E0, those of the second one do to the graph G2.

All arcs that earlier led from G2 to their “own” absorbing states now lead to the common absorbing

state E0.

Lemma 5.3. Assume that Markov chains with graphs G1 and G2 with some

initial distributions (satisfying Condition (2.1)) for p1(t) and p2(t) (probabilities of

the tth word in the corresponding sorted list) fulfill correlations p1(t) = O(t−δ1 ) and

p2(t) = O(t−δ2), where δ1, δ2 > 0. Let the Markov chain with the function p(t)

correspond to the graph G representing the union of graphs G1 and G2 with additional

arcs going from the graph G1 to that G2 so that any vertex of the graph G2 is attainable

through the path consisting of these arcs. Then Formula (5.1) is valid with δ1 6= δ2.

Correlation (5.1) is false if the initial distribution satisfies Condition (2.1), while

δ1 = δ2 and p1(t) = Ω(t−δ1), p2(t) = Ω(t−δ2).

Proof. As the initial distribution in MChG, we consider a distribution a concen-

trated at vertices of the graph G1 and satisfying Condition (2.1) for it. Evidently,

for MChG, Condition (2.1) is also valid; further considerations are related to the

corresponding function p(t).

Note that the assertion of Lemma 4.1 remains valid, even if the probability a0
that the initial state is absorbing differs from zero. Moreover, in this case, in order

to make the sum of probabilities of all words equal one, it is convenient to add to

the sorted list of all possible words one more word, the empty one, whose probability

equals a0 (this, naturally, does not affect the asymptotic properties of considered

functions).

Assume that the constant c1 in Inequality (5.3) is defined for the initial distri-

bution a′ in MChG1
coinciding with the distribution a. We assume that the initial

distribution a′′ in MChG2
is concentrated at end vertices E12 and at the absorbing

state. Moreover, values a′′i equal probabilities of reaching the corresponding states in

MChG with the initial distribution a. Taking into account the remark in the previous

paragraph, we assume that the constant c2 in Inequality (5.3) is defined just for the

initial distribution a′′. In addition, if earlier pi(t) = Ω(t−δi), i = 1, 2, then we denote

by c′1, c
′
2 > 0 constants such that p1(t) > c′1t

−δ1 and p2(t) > c′2t
−δ2 .
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As was noted earlier (before the proof of Lemma 4.3), the assertion about the

power estimates of the function p(t) is equivalent to an analogous assertion for the

function Q(q). Let us first consider the case δ1 6= δ2.

First of all, note that any word w in the initial Markov chain is representable in

the form (w1, w2), where wi, i = 1, 2, are words of the Markov chain with the graph

Gi. Here, as one can easily see, PrG(w) = PrG1
(w1) PrG2

(w2) (the subscript at the

symbol Pr indicates the graph of the Markov chain, where we consider the word).

Evidently, PrGi
(wi) = pi(ti), where ti is the number of the word wi in the cor-

responding list. Assuming that δ1 > δ2, we get (below t1, t2 run over all possible

positive integer values):

Q(q) = |{(t1, t2) : p1(t1)p2(t2) ≥ q}| ≤
∣∣∣{(t1, t2) : c1t−δ11 c2t

−δ2
2 ≥ q}

∣∣∣ =

=
∣∣∣{(t1, t2) : tδ11 tδ22 ≤ (c1c2)/q}

∣∣∣ ≤
∞∑

t1=1

(q/(c1c2))
−1/δ2t

−δ1/δ2
1 = const q−1/δ2 .

In the case δ1 = δ2 = δ, analogous considerations lead to the inequality

Q(q) ≥
∣∣∣{(t1, t2) : t1t2 ≤ ((c′1c

′
2)/q)

1/δ}
∣∣∣ .

According to the Dirichlet formula for the divisor function [19, Chapter XII], the

number of points with positive integer coordinates, whose product does not exceed

N , equals N lnN+(2γ−1)N+O(
√
N), where γ is the Euler constant. Therefore, the

inequality Q(q) ≤ const q−1/δ can be fulfilled with small q with no positive constant,

which was to be proved.

5.2. Completion of the proof of Theorem 2.1.B. We prove that p(t) =

Θ(t−1/β) under conditions of Theorem 2.1.B by induction with respect to the length

of the maximal path in the graph G′. If the graph G′ consists of unconnected vertices,

then the assertion of the Theorem follows from Remark 5.2 and Lemma 4.3. Other-

wise, we represent the graphG as a “sequential” connection of the graphG1 consisting

of SCCs corresponding to initial vertices of the graph G′ (vertices without incoming

arcs), and the graph G2 consisting of the part of the graph G. Applying Lemma 5.3

(and the induction hypothesis for the graph G2), we obtain p(t) = O(t−1/β). Conse-

quently (see Corollary 4.4), p(t) = Θ(t−1/β).

Let us prove the necessity of conditions for the power asymptotics in Theo-

rem 2.1.B. Assume the contrary. Consider a path in the graph G′ with exactly two

vertices corresponding to graphs H1 and H2 for which PH1
(β) and PH2

(β) have unit

characteristic values. We can choose H1 such that any path in the graph G′ beginning

at H1 contains no more than one such vertex of H2. Really, otherwise there exists
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a path G′ beginning at H2 that contains a vertex of H3, where PH3
(β) has the unit

characteristic value. Then we can choose for H1 the former graph H2 (and do H3 for

H2), and so on till the desired condition is fulfilled.

Consider an initial distribution a (not necessarily satisfying Condition (2.1)) con-

centrated at vertices of the graph H1. Let G̃ be the part of the graph G reachable

from these vertices. According to Lemma 4.1, the necessity of conditions of the power

order for MChG̃ automatically implies its necessity for MChG.

The graph G̃ is representable as a “sequential” connection of the graph G1 ≡ H1

and the graph G2 consisting of the rest of the graph G̃. As was proved above, for

the graph G2 it holds p2(t) = Θ(t−1/β). Analogous inequalities p1(t) = Θ(t−1/β) for

the graph G1 ≡ H1 are proved in Lemma 4.3. Applying the final part of Lemma 5.3,

we conclude that conditions of the power order with the exponent −1/β cannot be

fulfilled for MChG̃ and, consequently, for MChG.

6. Proof of Theorem 2.1.C. Evidently, one can associate any word w with

a word w′ obtained from w by deleting cycles, and a collection of nonnegative num-

bers (k1, . . . , k|C(w′)|), where ki is the number of bypasses of the ith cycle in the path

corresponding to the word w. Thus, for example, the word for the MCh shown in

Fig. 2.1 c) (E1, E1, E1, E2, E2, E0) which corresponds to the word w′ = (E1, E2, E0)

and the vector (2, 1); the word (E1, E1, E1, E0) for the MCh in Fig. 2.1 d) corresponds

to the word w′ = (E1, E0) and the vector (2) (here |C(w′)| = 1); the word for the

MCh in Fig. 2.1 e) (E1, E2, E1, E2, E0) corresponds to the word w′ = (E1, E2, E0)

and the vector (1) (here we also have |C(w′)| = 1).

Proposition 6.1. Under assumptions of Theorem 2.1.C the correspondence

between all words w and pairs w′ (w′ ∈ W ′), together with the vector (k1, . . . , k|C(w′)|),

is biunique.

Proof. According to conditions of Theorem 2.1.C, the case, when going along

the path that corresponds to some word w we first encounter a cycle c, then c′,

and then again to c is impossible; otherwise it would mean that c contains a vertex

belonging to two cycles. Therefore, both the word w′, and the order of cycles are

defined uniquely. Note that one can define the letter followed by a cycle in various

ways. Thus, one can insert a cycle in the word w′ = (E1, E2, E3) for the MCh shown

in diagram e) in Fig. 2.1 both after E1 and after E2. Moreover, since the cycle is

bypassed uniquely, we obtain one and the same word w (in our example, this word is

w = (E1, E2, E1, E2, E0)).

Let C(w′) = {c1, . . . , cm}, m = |C(w′)|. Proposition 6.1 implies that one can

find lnPr(w) as lnPr(w′) +
∑m

i=1 ki ln Pr(ci). The number of distinct words w of the

mentioned type, whose probability is not less than x, (x ∈ (0, 1)), equals the number
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non-negative integer vectors k solving the inequality

(6.1) lnPr(w) − lnx ≥
m∑

i=1

ki ln Pr(ci).

Evidently, each ki can be bounded by the range from 0 to ⌊(lnPr(w′)−lnx)/ ln P̃r(c)⌋.
However, the inequality is not necessarily fulfilled for all values that belong to the

obtained integer rectangular parallelepiped, but only for their part of 1/m! that lies

inside the simplex. To put it more precisely, the number of such words w which are

obtained from w′ differs from

(6.2) 1/m!
∏

c∈C(w′)

(
lnx/ln P̃r(c)

)

at most by the value of the order O((− ln x)m−1). Here O((− lnx)m−1) is the number

of points on the simplex boundary which is defined either by the equality to zero of

one of values ki or by the replacement of the inequality sign in (6.1) by the equality

sign. The sum of (6.2) over all w′ ∈W ′ is

Q(x) =
∑

w′∈W ′:|C(w′)|=D

1/D!
∏

c∈C(w′)

− lnx

− ln P̃r(c)
+O((− ln x)D−1).

Let y = (− lnx)D/ν. We have

(6.3) Q(exp (− D
√
νy)) = y +O(y(D−1)/D).

The right-hand side of the equality (6.3) is some positive integer number t. Ex-

pressing y in terms of t and applying the function p(·) to both sides of (6.3), we

get p(t) = exp
(
− D

√
νt+O(t(D−1)/D)

)
. We have obtained the latter identity for

“thinned” positive integers t, i.e., all possible values of the function Q. However, in

view of (6.3) the difference of distinct neighboring values of the function Q does not

exceed O
(
t(D−1)/D

)
. This means that the obtained bound for p(t) is valid for all

positive integers t.

One can easily make sure that D

√
νt+O(t(D−1)/D) − D

√
νt = O(1) (here by re-

placing O(t(D−1)/D) with const t(D−1)/D we show that the limit of the difference is

finite). Consequently, p(t) = exp(− D
√
νt+O(1)) = Θ

(
exp(− D

√
νt)

)
.

7. Conclusion. We have proved a subexponential order of the asymptotics

for p(t) in the case when all SCCs of the graph of an MCh are cycles. For the

case when the graph of an MCh contains more nontrivial SCCs, we have established

necessary and sufficient conditions for a power order of the asymptotics. These condi-

tions are fulfilled, in particular, if the eigenvector corresponding to the unit eigenvalue
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of the matrix P (β)T is positive. In the latter case the proof is based on the recurrent

Correlation (4.1) and the inequality for its solution. An analogous technique was used

in [3] for the case of independent random variables, i.e., the case when rows of the

matrix P coincide.

The problem considered in the paper [9] formally is different. Let G be a directed

graph, and let each its arc have a positive weight, Consider all possible paths that

begin at the vertex v1 and end at v2. Let us sort their list in the increasing order

of their weights. Denote the weight of the path number r by pr. Without loss of

generality we assume that

(7.1)
for each vertex v of the graph G there exists

a path from v1 to v2 going through v.

Let G contains nontrivial SCCs. In [9] one has proved the existence of limits

lim
r→∞

pDr
r
, if all nontrivial SCCs in G are cycles;(7.2)

lim
r→∞

pr
ln r

, else.(7.3)

In the formula (7.2), D is the maximal number of cycles which can belong to a path

from v1 to v2.

The main idea of the proof in [9] differs from that proposed by us, namely, it

consists in studying the basic case of unit weights of all arcs, where the result follows

from properties of the adjacency matrix of the graph G. By dividing an arc into N

parts one can reduce the case of rational weights of arcs to the case of unit arcs, where

N is the least common multiple of all denominators. The case of irrational weights

of arcs is obtained by the estimation of the accuracy of the rational approximation.

One can easily apply results obtained in [9] to the sorted list of trajectories of

an MCh. Assume that the weight of the arc (i, j) of the graph of an MCh equals

− ln pij , i, j = 1, . . . , n. Without loss of generality, we can also reduce the case,

when some vertices are origins of arcs with zero weights, to the case considered in

the paper [9]. Really, no other arcs originate from such vertices and we can subtend

such arcs by identifying their endpoints (see Fig. 7.1). Let us now assume that the

initial distribution of the MCh is concentrated at a vertex v1, and we can reach the

absorbing state only from a vertex v2. Then, evidently, the weight of the rth path in

the list sorted in increasing order coincides with − ln p(r) and we can apply for the

function results obtained in [9].

Moreover, results of the paper [9] are also applicable in a general case, when the

initial distribution is concentrated at several states (vertices), and one can reach the

absorbing state from several vertices. In this case, the total list of all words is the
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Fig. 7.1. Transformation of a graph with zero weight arcs to a standard case.

union of lists of words which begin with certain initial letters (states) Ev1 and end

with letters Ev2 . The fact that multipliers av1 and pv20 are used for determining

probabilities of words does not affect the asymptotics of their logarithms. By using

the asymptotics of sublists of words one can find the asymptotics of the function

ln p(t) with the help of Lemma 4.2 in [9]. Therefore, in the paper [9] one has actually

proved that

under conditions of Theorem 2.1.B the limit limt→∞ − ln t/ ln p(t) = β exists;

under conditions of Theorem 2.1.C the limit limt→∞(− ln p(t))D/t = ν exists.

In other words, one has proved the existence of weak power and weak subexponen-

tial asymptotics. Note that formulas for constants β and ν obtained in [9] are less

convenient than our ones given in Theorem 2.1 (in particular, in [9] the constant ν is

calculated by a recurrent correlation rather than by an explicit formula). However,

by easy transformations, we can reduce formulas [9] to our ones.

Let us now discuss the applicability of results obtained in Theorem 2.1 to studying

the asymptotics of the sorted list of all paths in the graph that begin at the vertex v1
and end at v2. Without loss of generality, we can assume that there are no multiple

edges, because otherwise one can divide them into several parts (see [9]). Note that we

impose certain conditions on the matrix P (see (3.1)), while in the paper [9] weights

of arcs are arbitrary positive values. However, the multiplication of these weights by

a fixed constant trivially affects the asymptotics of pr. In addition, as was noted,

without loss of generality, we can assume that Condition (7.1) is fulfilled. Therefore,

it suffices to consider only the case when the matrix PG of inverse potentiated

arc weights satisfies Condition (3.1).

Note that if in (3.1) instead of the substochasticity condition, we bound the sum

of elements of rows from above with some constant (assuming that pij < 1), then (in

accordance with a lemma analogous to Lemma 3.1) only the upper boundary of the

range of β will change. Namely, it will take on the minimal value of ψ ensuring the

substochasticity of the matrix PG(ψ).
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Within the comparison of our results with those obtained in [9], instead of the

asymptotics of the function p(t) constructed from the list of all words, we are in-

terested in the asymptotics of an analogous function constructed from the sublist of

words that begin at v1 and end at v2, independently of the initial distribution a (nei-

ther the notion of the initial distribution, nor that of the absorbing state is defined in

terms of the paper [9]). We considered such sublists in Lemma 4.3; in fact, we have

proved the power asymptotics for these sublists. Evidently, the obtained results will

remain valid even if we neglect av1 when calculating word probabilities. Therefore,

the case when the matrix PG(β)
T has a positive eigenvector (in particular, the case

when the graph G is strongly connected) is, in fact, already considered by us.

In a general case, for studying the asymptotics of p(t) we used Lemmas 5.1 and 5.3

on the parallel and sequential connection of graphs of MCh. However, in fact, these

lemmas can be formulated as assertions on the union and composition of lists stated

in terms of [9]. Here we do not redefine auxiliary results, but give only the statement

of the final Theorem.

Theorem 7.1. Let G be an arbitrary directed graph, possibly, having loops, but

having no multiple arcs. We assume that each edge has a positive weight, Condi-

tion (7.1) is fulfilled, and pr is the weight of the rth path from v1 to v2 in their list

sorted in the increasing order of their weights.

A. If the graph G is acyclic, then the list is finite.

B. If the graph G contains nontrivial SCCs different from a cycle, then we have

exp(−pr) = Ω(r−1/β), where β is a real number, with which the maximal

modulo eigenvalue of the matrix PG(β) equals one. Note that such β exists,

is unique and positive. Moreover, exp(−pr) = o(r−1/β′

) for any β′ > β.

Finally, exp(−pr) = Θ(r−1/β) is attained if and only if any simple path

from v1 to v2 goes through at most one SCC H such that the matrix PH(β)

has the unit eigenvalue.

C. If the graph G contains no SCCs different from a cycle, then exp(−pr) =

Θ (exp(− D
√
νr)); here ν is determined by the formula

1/ν =
∑

w∈W :|C(w)|=D

1/D!
∏

c∈C(w)

1/p̃(c),

where W is the set of all simple paths from v1 to v2, C(w) are cycles, whose

vertices are encountered in such a path w, p̃(c) is the weight of the cycle c,

and D = maxw∈W |C(w)|.

One can easily see that this theorem implies results of [9], i.e., the existence of

limits (7.2) and (7.3). Evidently, the converse assertion is not true.
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At the end part of the paper [9], one discusses areas of further research. Let us

mention one more area, namely, the generalization of the obtained results for the case

of hidden Markov models. We have succeeded in studying various particular cases [5],

but establishing general formulas has appeared to be a rather complicated problem.
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