
ELA

HERMITIAN OCTONION MATRICES AND NUMERICAL RANGES∗

LEIBA RODMAN†

Abstract. Notions of numerical ranges and joint numerical ranges of octonion matrices are

introduced. Various properties of hermitian octonion matrices related to eigenvalues and convex

cones, such as the convex cone of positive semidefinite matrices, are described. As an application,

convexity of joint numerical ranges of 2×2 hermitian matrices is characterized. Another application

involves existence of a matrix with a high eigenvalue multiplicity in a given real vector subspace of

hermitian matrices.
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1. Introduction. Denote by R, C, H, O the reals, complexes, real quaternions,

and real octonions, respectively. Thus, O is spanned as a real vector space by elements

c0, . . . , c7, with multiplication given by c0 = 1 (the multiplicative unity) and by the

following multiplication table:

cicj c1 c2 c3 c4 c5 c6 c7
c1 −1 c4 c7 −c2 c6 −c5 −c3
c2 −c4 −1 c5 c1 −c3 c7 −c6
c3 −c7 −c5 −1 c6 c2 −c4 c1
c4 c2 −c1 −c6 −1 c7 c3 −c5
c5 −c6 c3 −c2 −c7 −1 c1 c4
c6 c5 −c7 c4 −c3 −c1 −1 c2
c7 c3 c6 −c1 c5 −c4 −c2 −1

See, for example, [3] for more information on octonions. It is easily seen from the

table that

cicj = ck =⇒ ci+1cj+1 = ck+1, ∀ i, j, k ∈ {1, . . . , 7},(1.1)

where the indices are understood modulo 7. We identify xc0, x ∈ R, with x. The

real part of x =
∑7

j=0 xjcj ∈ O, where xj ∈ R, is R(x) := x0, and the vector part
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is V(x) :=
∑7

j=1 xjcj . The norm of x ∈ O is defined by |x| =
√
x2
0 + · · ·+ x2

7.

Note that |xy| = |x| · |y| for all x, y ∈ O. The conjugation map in O is defined by

x∗ = R(x)−V(x); it has the standard properties of a conjugation: the map x 7→ x∗

is real linear, involutory, antimultiplicative, and |x|2 := x∗x = xx∗ is real nonnegative

and equal zero only if x = 0.

It is well known that O is an alternative algebra (every two elements generate an

associative subalgebra) but it is not associative. In fact, the subalgebra of O generated

by any two elements (not both zero) is ∗- isomorphic to either R, C, or H, and the

subalgebra of O generated by one nonzero element is ∗-isomorphic to R or to C.

Octonions of the form

(x, y, z) := (xy)z − x(yz), x, y, z ∈ O,

are associators, and those of the form [x, y] := xy − yx, x, y ∈ O, are commutators.

The following fact will be used repeatedly:

Proposition 1.1. The following three sets of octonions coincide: (1) the set of

associators; (2) the set of commutators; (3) the set

{x ∈ O : R(x) = 0}.(1.2)

Proof. It is easy to see that the commutators have zero real parts, and the identity

6(x, y, z) = [[x, y], z] + [[y, z], x] + [[z, x]y], ∀ x, y, z ∈ O,

shows that associators have zero real parts as well. Conversely, we have

(c1c2)c3 = −c6, c1(c2c3) = c6,(1.3)

so c6 is an associator, and using the property (1.1) it follows from (1.3) that every

cj , j = 1, . . . , 7, is an associator. The linearity (over the reals) of the associator as

function of each of the variables x, y, z shows that (1.2) consists of associators. The

proof for commutators is analogous.

Conjugation extends to m × n matrices A = [ai,j ]
m,n
i,j=1 ∈ Om×n with entries on

O: A∗ = [a∗j,i]
n,m
j,i=1 ∈ On×m. A matrix A ∈ On×n is hermitian if A = A∗ and

skewhermitian if A = −A∗. The norm of a vector x ∈ On×1 is defined by

‖x‖ =
√
x∗x =

√
x∗
1x1 + · · ·+ x∗

nxn,

where x1, . . . , xn are the components of x.
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To avoid trivialities, we assume everywhere in the paper that n is an integer

greater than or equal to 2. We define the numerical rangeW (A) of a matrix A ∈ On×n,

as follows. Let

K = {(i, j) : 1 ≤ i < j ≤ n, i, j integers},

L = {(i, j) : 1 ≤ j < i ≤ n, i, j integers}.

Fix a subset K0 ⊆ K, and let

L0 = {(i, j) : (j, i) ∈ K \K0} ⊆ L.

(K may be empty.) Then for A = [ai,j ]
n
i,j=1 ∈ On×n and x = [x1 x2 · · · xn]

T ∈
On×1, we let

x∗Ax :=
∑

(i,j)∈K0

x∗
i (ai,jxj) +

n∑

i=1

x∗
i ai,ixi +

∑

(i,j)∈K\K0

(x∗
i ai,j)xj

+
∑

(i,j)∈L0

x∗
i (ai,jxj) +

∑

(i,j)∈L\L0

(x∗
i ai,j)xj ∈ O.

Note that
∑n

i=1 x
∗
i ai,ixi is defined unambiguously, because the factors in each term

x∗
i ai,ixi belong to the subalgebra generated by xi and ai,i, and therefore this subal-

gebra is associative. Define

W (A) := {x∗Ax : x∗
1x1 + · · ·+ x∗

nxn = 1}.

Generally, W (A) depends on the choice of K0, but we suppress this dependence in

the notation.

Clearly, W (A) is compact and (pathwise) connected.

It is well known that the numerical ranges in the context of quaternion matrices

are generally not convex; essentially the same example (taken from [1]) shows non-

convexity of octonion numerical ranges. Indeed,

W (c1 ⊕ In−1) = {cos θ + (sin θ)x : 0 ≤ θ ≤ π/2, x ∈ S} ,

where S is the set of octonions with zero real parts and norm 1. Clearly, W (c1⊕In−1)

is not convex.

Some elementary properties of numerical ranges are listed next:

Proposition 1.2. Let A ∈ On×n. Then:

(a) W (A) ⊆ R if and only if A is hermitian.
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(b) W (A) is contained in {x ∈ O : R(x) = 0} if and only if A is skewhermitian.

(c) W (A) = {0} if and only if A = 0.

(d) W (aA+ αI) = aW (A) + α for every a, α ∈ R.

(e) W (A∗) = {λ∗ : λ ∈ W (A)}.
(f) W (A) is a singleton if and only if A = aI, where a is real.

Proof. (c) follows from (a) and (b), and parts (d) and (e) are evident from the

definition. The “if” parts of (a), (b), and (f) follow easily from the definition, and

for the proof of the “only if” parts of (a), (b), and (f), it suffices to consider the case

n = 2. Thus, let A =

[
a1,1 a1,2
a2,1 a2,2

]
, where ai,j ∈ O.

Assume that W (A) is real. Then, examining x∗Ax for

x =

[
1

0

]
, x =

[
0

1

]
, x =

1√
2

[
1

1

]
,(1.4)

we see that a1,1, a2,2, and a1,2 + a2,1 are real. Thus, a1,2 = R(a1,2) + q, a2,1 =

R(a2,1)−q for some q ∈ O with real part zero. Note that q2 is real and negative (unless

q = 0). Since [1 q∗]A

[
1

q

]
is real, a basic algebra shows that q(R(a1,2) −R(a2,1))

is real. So, unless q = 0, we have a2,1 = a∗1,2. If q = 0, then a1,2 and a2,1 are real,

and for any v ∈ O \ {0} with R(v) = 0 we have that −va2,1 + va1,2 = 0, and hence,

a1,2 = a2,1.

Next, assume that every element in W (A) has zero real part. Examining x∗Ax

for x given by (1.4), we find that a1,1, a2,2, and a1,2+a2,1 have zero real parts. Thus,

a1,2 = s+ w2, a2,1 = −s+ w1,

where s is real and R(w1) = R(w2) = 0. For every v ∈ O with R(v) = 0 we have

R(v∗a2,2v) = 0 and

0 = R

(
[1 v∗]

[
a1,1 s+ w2

−s+ w1 a2,2

] [
1

v

])

= R (a1,1 + 2sv − vw1 + w2v + v∗a2,2v) ,

and it follows that

R(−vw1 + w2v) = 0.(1.5)

Taking v = cj , j = 1, 2, . . . , 7 in (1.5), we conclude that w1 = w2.

Finally, assume that W (A) = {λ}, λ ∈ O. Then, by taking x ∈ O with |x| = 1

we have x−1a1,1x = x∗a1,1x = λ, so the similarity orbit of a1,1 is a singleton. This
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happens if and only if a1,1 is real, as the similarity orbit of a ∈ O consists of all

octonions b such that R(a) = R(b) and |V(a)| = |V(b)| (see, e.g. [13, Theorem 3.1]).

Thus, λ is real. Subtracting λI from A we may assume without loss of generality that

λ = 0. But then A = 0 by (c), and we are done.

Note that for hermitian A, the real number x∗Ax is independent of the choice

of K0. Indeed, temporarily label x∗Ax with respect to K0 and K ′
0 (another choice

for K0) as x∗AxK0
and x∗AxK′

0
, respectively. Then x∗AxK0

− x∗AxK′

0
is a sum of

associators. It follows that x∗AxK0
− x∗AxK′

0
has zero real part. On the other hand,

x∗AxK0
− x∗AxK′

0
is real by Proposition 1.2. Thus, x∗AxK0

− x∗AxK′

0
= 0.

In view of this observation, we assume K0 = K when dealing with the function

x∗Ax, for an hermitian matrix A.

In the next section, we present preliminaries on hermitian octonion matrices,

with special emphasis on 2× 2 and 3× 3 matrices, and on convex cones of hermitian

matrices related to the convex cone of positive semidefinite matrices. Our main results

Theorems 3.3 and 4.1 are stated and proved in Sections 3 and 4, respectively.

We say that a (necessarily hermitian) matrix A ∈ On×n is positive definite if

x∗Ax > 0 for every nonzero x ∈ On×n, and positive semidefinite if x∗Ax ≥ 0 for

every x ∈ O
n×n. Negative definite and negative semidefinite matrices are defined

analogously. We denote by Wn×n the real vector space of n× n octonion hermitian

matrices.

2. Preliminaries on octonion hermitian matrices.

2.1. Numerical ranges and eigenvalues. We begin with a general result re-

lating the form x∗Ax and eigenvalues. All eigenvalues of octonion hermitian matrices

in this paper are understood as right eigenvalues.

Theorem 2.1. Let A = [ap,q]
n
p,q=1 ∈ Wn×n. If

µ := max
x∈On×1 :x∗x=1

x∗Ax and µ = y∗Ay for y ∈ O
n×1, y∗y = 1,

then y is an eigenvector of A with eigenvalue µ.

Proof. Write

x = [x1 x2 · · · xn]
T ∈ O

n×1, where xj =

7∑

k=0

xj,kck, xi,k ∈ R;

analogously,

y = [y1 y2 · · · yn]
T ∈ O

n×1, where yj =

7∑

k=0

yj,kck, yi,k ∈ R.
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Consider the real valued function

F (xj,k, λ) = x∗Ax+ λ(x∗x− 1),

where xj,k are real variables and λ is a real parameter (the Lagrange multiplier). We

then have

∂F

∂xj,k

|x=y = 0, ∀ j = 1, 2, . . . , n and ∀ k = 0, . . . , 7.

A computation shows that

∂F

∂xj,k

= − ckaj,jxj + x∗
jaj,jck +

j−1∑

i=1

(x∗
i (ai,jck)) +

n∑

i=j+1

(−ck)(aj,ixi)

+

j−1∑

i=1

((−ck)aj,i)xi +

n∑

i=j+1

(x∗
i ai,j)ck + 2λxj,k(2.1)

for k = 1, 2, . . . , 7, and

∂F

∂xj,0
= c0aj,jxj + x∗

jaj,jc0 +

j−1∑

i=1

(x∗
i (ai,jc0)) +

n∑

i=j+1

c0(aj,ixi)

+

j−1∑

i=1

(c0aj,i)xi +

n∑

i=j+1

(x∗
i ai,j)c0 + 2λxj,0(2.2)

for k = 0. The left hand side of (2.1) is equal to twice the real part of

− ckaj,jxj +

j−1∑

i=1

((−ck)aj,i)xi +

n∑

i=j+1

(−ck)(aj,ixi) + λxj,k,(2.3)

or, what is the same, twice the real part of

− ck

n∑

i=1

aj,ixi + λxj,k.(2.4)

Letting

n∑

i=1

aj,iyi =

7∑

k=0

β
(j)
k ck, β

(j)
k ∈ R,

it follows that

β
(j)
k + λyj,k = 0, k = 1, 2, . . . , 7.
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Similarly, (2.2) leads to β
(j)
0 + λyj,0 = 0. Thus,

n∑

i=1

aj,iyi = −λ

7∑

k=0

yj,kck = −λyj .

Since this equality holds for j = 1, 2, . . . , n, Ay = λy. Now y∗(Ay) = −λ, and since

the difference y∗Ay − y∗(Ay) is a sum of associators, hence it must have zero part,

we find that

µ = y∗Ay = y∗(Ay) = −λ,

and the theorem is proved.

A analogous result holds with maximum replaced by minimum, with the same

proof.

Proposition 2.2. If A ∈ W
n×n and if y ∈ O

n×1, is an eigenvector of A corre-

sponding to a real eigenvalue λ, and y∗y = 1, then y∗Ay = λ.

Indeed, y∗(Ay) = λ, and since the difference y∗Ay−y∗(Ay) is a sum of associators,

hence it must have zero part, we find that y∗Ay = y∗(Ay).

Corollary 2.3. A ∈ Wn×n is positive semidefinite, resp., positive definite, if and

only if all real eigenvalues of A are nonnegative, resp., positive.

Indeed, if A is positive semidefinite, then clearly all real eigenvalues of A are

nonnegative. Conversely, if all real eigenvalues of A are nonnegative, then by (the

analog of) Theorem 2.1,

min
x∈On×1 :x∗x=1

x∗Ax ≥ 0.

Thus, A is positive semidefinite. The proof for positive definiteness is analogous.

Note that hermitian octonion matrices may have nonreal eigenvalues, for example

(taken from [6])

[
1 −c1
c1 1

] [
c2
c6

]
=

[
c2
c6

]
(1 + c4c6).

2.2. Real matrix representation. We introduce a real matrix representation

of octonions. Note that such representation cannot faithfully represent multiplication,

because multiplication of octonions is non-associative. However, as it turns out it can

represent matrix-vector multiplication. Such representations have been developed in

the literature, see [13].
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Define the real linear isomorphism ν : O → R8×1 by

ν




7∑

j=0

xkck



 = [x0 x1 · · · x7]
T
,

and extend it to vectors (using the same notation):

ν : On×1 → R
8n×1, ν







y1
...

yn





 =




ν(y1)
...

ν(yn)


 , where y1, . . . , yn ∈ O.

Note that ‖ν(x)‖ = ‖x‖ for all x ∈ On×1. Also, let the matrices Cj ∈ R8×8 for

j = 1, 2, . . . , 7 be defined by the property that

Cjν(ck) = ν(cjck), k = 0, 1, . . . , 7.

The multiplication table for octonions shows that Cj ’s are skewsymmetric and invert-

ible, in fact C2
j = −I. We now define the map χ : O → R8×8 by

χ

(
7∑

k=1

xkck

)
= x0I +

7∑

k=1

xkCk,

and extend (using the same notation) to the map on matrices

χ : Om×n → R
8m×8n, χ([ai,j ]

m,n
i,j=1) = [χ(ai,j)]

m,n
i,j=1, where ai,j ∈ O.

Proposition 2.4. The map χ is real linear, injective, and χ(A∗) = (χ(A))T for

every A ∈ Om×n.

The maps ν and χ have the following properties with respect to matrix-vector

multiplication:

Lemma 2.5. We have ν(Ax) = χ(A)ν(x) for every A ∈ Om×n and every
x ∈ On×1, and

R(y∗(Ax)) = R((y∗
A)x) = (ν(y))Tχ(A)ν(x), ∀ x ∈ O

n×1
, y ∈ O

m×1
, A ∈ O

m×n
.(2.5)

Proof. It suffices to consider the case m = n = 1. Using the definition of the Cj ’s,

we have by linearity

ν(Ax) = χ(A)ν(x)(2.6)

for every A ∈ O and every x ∈ O.
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Because of linearity, it suffices to prove (2.5) for the case when x = ci, y = cj ,

A = ck for i, j, k = 0, 1, . . . , 7. In view of (2.6), equality (2.5) reads

R(y∗(Ax)) = (ν(y))T ν(Ax),(2.7)

and it remains to prove

R(c∗jcℓ) = (ν(cj))
T ν(cℓ), ∀ j, ℓ = 0, 1, . . . , 7.(2.8)

Clearly, both sides of (2.8) are zero if j 6= ℓ. And for j = ℓ both sides are equal to 1.

Thus, (2.5) is proved.

In particular (taking m = n and x = y in (2.5)):

Lemma 2.6. If A ∈ O
n×n is hermitian, then

x∗Ax = (ν(x))Tχ(A)ν(x), ∀ x ∈ O
n×1.

In particular, A is positive, resp., negative, definite or positive, resp., negative, semi-

definite if and only if χ(A) is such.

2.3. Cones of hermitian matrices. Let Kn×n be the convex cone of posi-

tive semidefinite n × n octonion matrices. Clearly Kn×n is closed and pointed (by

Proposition 1.2(c)). Introduce the real valued inner product on W
n×n by the formula

〈A,B〉 := R(Trace (AB)) = R

n∑

i,j=1

ai,jb
∗
i,j = R

n∑

i,j=1

ai,jbj,i,

where A = [ai,j ]
n
i,j=1 , B = [bi,j]

n
i,j=1 ∈ Wn×n. It has all the usual properties of the

inner product; in particular 〈A,B〉 = 〈B,A〉, and 〈A,A〉 ≥ 0 with equality 〈A,A〉 = 0

only if A = 0. Let Kn×n
∗ be the dual cone of Kn×n with respect to 〈·, ·〉. In other

words,

K
n×n
∗ = {A ∈ W

n×n : 〈A,B〉 ≥ 0 for all B ∈ K
n×n}.

Clearly, Kn×n
∗ is closed and convex.

Note that matrices of the form uu∗, u ∈ O
n×1, belong to K

n×n
∗ . Indeed, letting

u1, . . . , un be the components of u, for every A = [ai,j ]
n
i,j=1 ∈ Kn×n we have

〈A, uu∗〉 =
n∑

i,j=1

R(ai,j(uju
∗
i )) =

n∑

i,j=1

R((ai,juj)u
∗
i )

=

n∑

i,j=1

R(u∗
i (ai,juj)) = R(u∗(Au)) = u∗Au ≥ 0.
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Note also that

(uu∗)u = u(u∗u), u ∈ O
n×1,

which implies that u∗u is a eigenvalue of uu∗, with the eigenvector u (if u 6= 0).

Let Ln×n be the closed cone generated by all matrices of the form uu∗, u ∈ On×1,

i.e.,

L
n×n := closure of {λ1u1u

∗
1 + · · ·+ λsusu

∗
s : λ1, . . . , λs > 0, u1, . . . , us ∈ O

n×1}.

Clearly, Ln×n is convex. Also, it follows from the equality 〈A, uu∗〉 = u∗Au, where

A ∈ Wn×n, that Kn×n = Ln×n
∗ , the dual cone of Ln×n. Also, we have

L
n×n = L

n×n
∗∗ = K

n×n
∗ ,(2.9)

where the first equality follows from the general properties of cones (see, e.g., [4]).

Lemma 2.7. We have

K
2×2 = K

2×2
∗ .(2.10)

Moreover, the matrices uu∗, where u ∈ O2×1 \ {0}, constitute the set of nonzero

extremal points in the convex cone (2.10). Also, K3×3
∗ ⊇ K

3×3, K3×3
∗ 6= K

3×3.

Proof. If n ≤ 3, then there is a spectral decomposition for A ∈ Wn×n:

A =

n∑

k=1

λk(vkv
∗
k),(2.11)

where λk are real eigenvalues of A and vk are normalized (quaternion) eigenvectors

of A such that (vkv
∗
k)vj = 0 for j 6= k ([7, Theorems 1O2, 1O3]). If in addition A is

positive semidefinite, then we must have λk ≥ 0 (Corollary 2.3). Since vkv
∗
k ∈ Kn×n

∗ ,

it follows that

K
n×n ⊆ K

n×n
∗ .(2.12)

The following example shows that K
3×3
∗ 6= K

3×3. Let u = [−c1 − c2 − c3]
T ,

and let

A :=




1 −c4 −c7
c4 1 −c5
c7 c5 1


 = uu∗.

Then

R


[−c5 c7 − c4]


A




c5
−c7
c4






 = R


[−c5 c7 − c4]




−c5
c7
−c4




 = −3,
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thus A is not positive semidefinite.

Now assume n = 2. Then the real eigenvalues of any matrix of the form uu∗,

u ∈ O2×1, are zero and u∗u [7, Lemma 1O2]. Thus, uu∗ is positive semidefinite by

Corollary 2.3, and K2×2
∗ ⊆ K2×2. Together with (2.12), this shows equality

K
2×2
∗ = K

2×2.(2.13)

Next, we show that every matrix uu∗ is extremal in (2.10). Suppose u ∈ O
2×1\{0}

and

uu∗ =

m∑

j=1

λjuju
∗
j , λj > 0, uj ∈ O

2×1.(2.14)

Replacing uj with uj

√
λj , we may assume without loss of generality that λj = 1,

j = 1, . . . , n. Then, for any fixed j, uu∗ − uju
∗
j is positive semidefinite. We may

consider uu∗ and uju
∗
j as matrices over a subalgebra of O which is isomorphic to

H and contains the (1, 2) entries of uu∗ and uju
∗
j . Now use the fact that over the

quaternions, the positive semidefiniteness of uu∗ − uju
∗
j implies that uju

∗
j = µjuu

∗

for some µj ∈ [0, 1]. Therefore uu∗ is extremal in (2.10).

Conversely, let A ∈ K2×2 \ {0} be extremal in (2.10). Write a spectral decom-

position (2.11) for A, and we may assume without loss of generality that λ1 and λ2

are both nonzero. Since A is extremal, we must have A = µ1v1v
∗
1 = µ2v2v

∗
2 for some

positive µ1, µ2, and so A has the required form.

In connection with the proof of Lemma 2.7, note that at present it is unknown

whether or not every A ∈ Wn×n admits a spectral decomposition (2.11) if n ≥ 4.

More information about eigenvalues of octonion hermitian matrices can be found in

[6], [7], [11], [13], and [8].

We conclude this section with a characterization of interior points in Kn×n
∗ .

Proposition 2.8. The following statements are equivalent for A ∈ Wn×n:

(1) A belongs to the interior of Kn×n
∗ ;

(2) R〈A,B〉 > 0, ∀ B ∈ K
n×n \ {0};

(3) R〈A,B〉 > 0, ∀ B ∈ K
n×n
1 := {X ∈ Kn×n : Trace (X) = 1}.

Proof. Note that the trace of any positive semidefinite matrix is nonnegative, and

it is equal to zero only when the matrix is zero. Therefore, by scaling B we see that

(2) and (3) are equivalent. If (3) holds then (1) holds as well because of compactness

of Kn×n
1 , which can be easily verified. Assume now (1) holds, but R〈A,B〉 = 0 for

some B ∈ K
n×n
1 . Then for ǫ > 0 we have R〈A − ǫB,B〉 < 0. Thus, A − ǫB 6∈ Kn×n

∗ ,

a contradiction to (1).
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3. Joint numerical ranges. For a p-tuple of hermitian matrices A1, . . . , Ap ∈
On×n, define the joint numerical range by

WJ(A1, . . . , Ap) = {(x∗A1x, . . . , x
∗Apx) ∈ R

p : x = [x1 . . . xn]
T ∈ O

n×1

is such that x∗x := x∗
1x1 + · · ·+ x∗

nxn = 1}.

Joint numerical ranges and their generalizations for tuples of hermitian matrices have

been extensively studied in the context of real, complex, and quaternion matrices,

see. e.g., [2], [10] and [12].

The following easily verified property of joint numerical ranges will be used:

Proposition 3.1. Let A1, . . . , Ap, B1, . . . , Br ∈ Wn×n. Assume that for some

r × p real matrix S we have

S




A1

A2

...

Ap


 =




B1

B2

...

Br


 .

Then

W (B1, . . . , Br) = SW (A1, . . . , Ap) := {Sz : z ∈ W (A1, . . . , Ap)},

where the elements of W (A1, . . . , Ap) and W (B1, . . . , Br) are understood as real col-

umn vectors.

Lemma 2.6 allows us to obtain easily a convexity result for joint numerical ranges

of two hermitian matrices:

Theorem 3.2. Let A1, A2 ∈ Wn×n. Then WJ(A1, A2) is convex.

For the proof just observe that by Lemma 2.6, WJ(A1, A2) is the real joint

numerical range of two real symmetric 8n × 8n matrices χ(A1) and χ(A2), and the

convexity of the latter is well known.

As far as we are aware, the joint numerical range of more than 2 octonion her-

mitian matrices in n ≥ 3 dimensions is not well understood. On the other hand,

the convexity properties of joint numerical ranges of 2× 2 hermitian matrices can be

completely sorted out:

Theorem 3.3. LetA1, . . . , A9 ∈ O2×2 hermitian matrices.Then WJ(A1, . . . , A9)

is convex if and only if the 10-tuple of hermitian matrices {A1, . . . , A9, I} is linearly

dependent (over the reals). In particular, if p ≤ 8, then WJ(A1, . . . , Ap) is convex

for every p-tuple of 2× 2 hermitian octonion matrices A1, . . . , Ap.
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Note that the statement of Theorem 3.3 is analogous to the well known results

of convexity of joint numerical ranges of complex and quaternion 2 × 2 hermitian

matrices. Namely, Theorem 3.3 holds true for C and H, with numbers 10, 9, 8 replaced

by 4, 3, 2 and 6, 5, 4, respectively. Observe that in all three cases C, H, and O, the

numbers 10, 6, and 4, respectively, are the real dimensions of the set of 2×2 hermitian

matrices.

Note also that by Lemma 2.7, the interior of K2×2
∗ consists of exactly the 2 × 2

positive definite matrices.

For the proof of Theorem 3.3 we need the following, perhaps independently in-

teresting result.

Proposition 3.4. Let V be a real subspace of real dimension k in W2×2. Assume

that V has the following property: x∗Ax = 0 , where x ∈ O2×1, for every A ∈ V

implies that x = 0. If k ≤ 8, then V contains a matrix in the interior of K2×2
∗ .

Proof. By the duality theory for pointed convex cones (see [4] for example) we

need to show that

V ⊥ ∩ K
n×n = {0}.(3.1)

The hypotheses of the theorem imply that the only positive semidefinite matrix A in

V ⊥ of the form xx∗, x ∈ O2×1, is the zero matrix. Arguing by contradiction, assume

(3.1) does not hold. Then V ⊥ contains a nonzero positive semidefinite matrixQ, which

cannot be a real multiple of xx∗, for any x ∈ O2×1. The spectral decomposition for Q

(see [7], also (2.11)) now implies that Q is positive definite. Since the real dimension

of V ⊥ is at least 2, there exists X ∈ W
2×2 such that Q and X are linearly independent

(over R). We claim that there is a linear combination aQ+ bX , where a, b ∈ R, of the

form xx∗, x 6= 0, thereby obtaining a contradiction to the property of V hypothesized

in Theorem 3.4.

To this end observe that the entries of Q and X are contained in the subalgebra

of O generated by the two entries of Q and X in the (1, 2)-position. We may therefore

assume that Q and X are matrices over H. Applying a simultaneous congruence to Q

and X , we may further assume that Q = I. Now clearly λI−X , where λ is one of the

(real) eigenvalues of X has the desired form (note that X cannot be a real multiple

of I because of the assumption that Q and X are linearly independent).

Proof of Theorem 3.3. The “only if” part.

Let A1, . . . , A9 ∈ W2×2 be such that the 10-tuple A1, . . . , A9, I2 is linearly inde-

pendent (over R). We are going to prove WJ(A1, . . . , A9) is not convex.
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Consider a particular situation:

A0,j =

[
0 cj

−cj 0

]
, j = 1, 2, . . . , 7, A0,8 =

[
0 1

1 0

]
, A0,9 =

[
1 0

0 −1

]
.

Then clearly

(±1, 0, 0, 0, 0, 0, 0, 0, 0) ∈ WJ(A0,1, . . . , A0,9).

We prove the non-convexity of WJ(A0,1, . . . , A0,9) by showing that 0 does not belong

to WJ(A0,1, . . . , A0,9).

Indeed, suppose

R

(
[x∗ y∗]

(
A0,j

[
x

y

]))
= 0, j = 1, 2, . . . , 9,(3.2)

for some x, y ∈ O. We are going to prove that x = y = 0. The equality (3.2) amounts

to the following system of equations:

R(x∗cjy) = 0, for j = 1, . . . , 7, xx∗ = yy∗, R(x∗y) = 0.(3.3)

Write

x =

7∑

k=0

xkck, y =

7∑

k=0

ykck, xk, yk ∈ R.

Then equations (3.3) take the form

R((x0c0 +

7∑

k=1

xkck)cj(

7∑

ℓ=0

yℓcℓ)) = 0 j = 1, 2, . . . , 7,(3.4)

x0y0 + x1y1 + · · ·+ x7y7 = 0, ‖x‖ = ‖y‖.(3.5)

Equations (3.4) in turn can be rewritten as

− x0yj +

7∑

k=1, k 6=j

xkyℓ(j,k)(−1)p(j,k) + xjy0 = 0, j = 1, . . . , 7,(3.6)

where p(j, k) ∈ {0, 1} and ℓ(j, k) are found from the equation cjcℓ(j,k) = (−1)p(j,k)ck.

Using the multiplication table, (3.6) and the first equation in (3.5) boil down to



y0 y1 y2 y3 y4 y5 y6 y7
−y1 y0 −y4 −y7 y2 −y6 y5 y3
−y2 y4 y0 −y5 −y1 y3 −y7 y6
−y3 y7 y5 y0 −y6 −y2 y4 −y1
−y4 −y2 y1 y6 y0 −y7 −y3 y5
−y5 y6 −y3 y2 y7 y0 −y1 −y4
−y6 −y5 y7 −y4 y3 y1 y0 −y2
−y7 −y3 −y6 y1 −y5 y4 y2 y0




·




x0

x1

x2

x3

x4

x5

x6

x7




= 0.(3.7)
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Observe that (3.7) has the form

(y0I + S(y)) · [x0 x1 . . . x7]
T
= 0,(3.8)

where S(y) is an 8 × 8 skewsymmetric real matrix such that S(y)2 = (−∑7
j=1 y

2
j )I.

It is easy to see that y0I + S(y) is invertible unless y = 0. (Indeed, the complex

eigenvalues of y0I + S(y) are y0 ± i
√
y21 + · · ·+ y27 .) Now equation (3.8) shows that

at least one of x or y must be zero. But then the second equation in (3.5) yields that

both x and y are zeros.

It follows from the non-convexity of WJ(A0,1, . . . , A0,9) that

WJ(A0,1, . . . , A0,9, I) is also non-convex. Since W2×2 is 10-dimensional, we see that




A1

A2

...

A9

I



= T ·




A0,1

A0,2

...

A0,9

I




for some invertible real 10× 10 matrix T . Now clearly

WJ(A1, . . . , A9, I) = T ·WJ(A0,1, . . . , A0,9, I).

Therefore, WJ(A1, . . . , A9, I) is non-convex, and the non-convexity of

WJ(A1, . . . , A9, I) follows.

The “if” part. Let A1, . . . , A9 ∈ W2×2 be such {A1, . . . , A9, I} are linearly de-

pendent. Arguing by contradiction, suppose that WJ(A1, . . . , A9) is not convex, so

there exist vectors q, p ∈ R9×1 such that

q 6∈ WJ(A1, . . . , A9) but q ± p ∈ WJ(A1, . . . , A9).

(The vector p is necessarily nonzero.) Replacing A1, . . . , A9 with A1 + α1I, . . . , A9 +

α9I for suitable real numbers α1, . . . , α9, we may assume that q = 0. Two cases may

occur: (1) A1, . . . , A9 are linearly dependent. Then by Proposition 3.4, for some real

numbers β1, . . . , β9 the matrix Q := β1A1 + · · · + β9A9 is positive definite. Letting

x, y ∈ O2×2, ‖x‖ = ‖y‖ = 1, be such that

(x∗A1x, . . . , x
∗A9x) = p, (y∗A1y, . . . , y

∗A9y) = −p,

we obtain

x∗Qx = [β1 β2 · · · β9] p, y∗Qy = − [β1 β2 · · · β9] p,

a contradiction to positive definiteness of Q. The second case: (2) A1, . . . , A9 are

linearly independent. Then I = γ1A1 + · · ·+ γ9A9 for some real numbers γ1, . . . , γ9.
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Not all the γj ’s are zero; say γ1 6= 0. Consider W (I, A2, . . . , A9). All three numerical

ranges WJ(A1, . . . , A9), W (I, A2, . . . , A9), and W (A2, . . . , A9) are convex only simul-

taneously, so by Proposition 3.1 it suffices to prove the convexity of W (A2, . . . , A9).

Now we repeat the proof of the “if” part of Theorem 3.3, replacing A1, . . . , A9 with

A2, . . . , A9, and note that in this situation Theorem 3.4 is applicable regardless if

A2, . . . , A9 are linearly independent or not; thus, there is no need to consider case

(2).

4. Hermitian matrices with large eigenvalue multiplicity in a subspace.

As another application of the properties of hermitian matrices in Section 2, we prove

a result - Theorem 4.1 below - that asserts existence of a hermitian matrix with

high eigenvalue multiplicity in a real subspace of hermitian matrices, provided the

dimension of the subspace is sufficiently large. The proof of the theorem follows the

approach of [9].

We say that a hermitian matrix A ∈ On×n has the greatest multiplicity r (r ≥ 1)

if there exists (necessarily unique) α ∈ R such that A − αI is negative semidefinite

and x∗(A − αI)x = 0 for all x in a real subspace of On×1 of real dimension r. In

this case, we say that A has the greatest multiplicity r at α. Note that the set

{x ∈ On×1 : x∗Ax = 0} is closed under multiplication on the right by reals, but

not necessarily by octonions, therefore we cannot talk about octonion subspaces of

such vectors x. Note also that every hermitian matrix A ∈ On×n has the greatest

multiplicity one. Indeed, take

α = min {q ∈ R : A− qI is negative semidefinite} .

Theorem 4.1. Assume n ≥ 2. Let V be a real subspace of real dimension k in

Wn×n, and let 1 ≤ r ≤ n − 1. If k ≥ 1 + 8n(r − 1) − (r−1)(r−2)
2 , then V contains a

matrix with the greatest multiplicity r at α = 1.

Proof. The case r = 1 is trivial: Take any matrix A ∈ V which is not negative

semidefinite, and let

µ := max
y∈On×1 : y∗y=1

y∗Ay > 0.

Then B := µ−1A satisfies the required properties.

We proceed by induction on r. So assume there is B ∈ V such that B has the

greatest multiplicity p at α = 1. Let x1, . . . , xp ∈ On×1 be a linearly independent

(over the reals) set such that B − I is negative semidefinite and x∗(B − I)x = 0 for

every unit vector x ∈ On×1 which is a real linear combination of x1, . . . , xp. We will

produce a matrix A ∈ V that has the greatest multiplicity p+ 1 at 1, assuming k ≥
1+8np−p(p−1)/2. Note that by Theorem 2.1 we have Bxj = xj , for j = 1, 2, . . . , p.
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Suppose A1, . . . , Ak form a basis in V . Consider the following system of linear

equations:

k∑

i=1

αi(Aixj) = 0, j = 1, 2, . . . , p,(4.1)

where the αi’s are real variables. Applying the maps χ and ν we obtain an equivalent

system

k∑

i=1

αiχ(Ai)ν(xj) = 0, j = 1, 2, . . . , p.(4.2)

Passing to an orthonormal basis {b1, . . . , b8n} in R8n×1 of which {b1, . . . , bp} form a

basis in Span {ν(x1), . . . , ν(xp)}, the system (4.2) can in turn be rewritten in the form

k∑

i=1

αiχ(Ai)bj = 0, j = 1, 2, . . . , p,(4.3)

which amounts to having first p columns of
∑k

i=1 αiχ(Ai) equal to zero. Taking into

account that each χ(Ai) are real symmetric, the system (4.3) boils down to at most

(8n− p)p+ p(p+ 1)/2 = 8np− p(p− 1)

2

independent equations. Since

k ≥ 1 + 8np− p(p− 1)

2
,

the system (4.3), and therefore also (4.1), has a nontrivial solution (α
(0)
1 , . . . , α

(0)
k ).

Let

C =

k∑

i=1

α
(0)
i Ai.

Then C 6= 0, and Cxj = 0 for j = 1, 2, . . . , p (these equalities follows from (4.1) upon

using the associative law which is legitimate since the α
(0)
i ’s are real). We assume C

is not negative semidefinite (otherwise take −C in place of C).

Consider the matrix B + αC where α ≥ 0. We claim that there is a value of α

such that B + αC has the greatest multiplicity p+ 1 at 1. Let

α0 := argmax
α∈R

{B + αC − I is negative semidefinite}.

This is well defined, because, C being not negative semidefinite, for large α > 0 the

matrix B+αC−I is not negative semidefinite. Also, α0 ≥ 0 because B−I is negative
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semidefinite. Clearly (B − αC − I)xj = 0 for j = 1, 2, . . . , p and all α ≥ 0. Then we

have

(B̃ + αC̃ − I)x̃j = 0, j = 1, 2, . . . , p,

where B̃ = χ(B), C̃ = χ(C), and x̃j = ν(xj). We will prove that

dimKer (B̃ + α0C̃ − I) > p.

Suppose not. Then by well known property of semicontinuity of the dimension of the

kernel of real matrices, there exists ǫ > 0 such that

dimKer (B̃ + α0C̃ − I) ≤ p, ∀ |α− α0| < ǫ.

It follows that

Ker (B̃ + αC̃ − I) = SpanR{x̃1, . . . , x̃p}, ∀ |α− α0| < ǫ.

Thus, with respect to the orthogonal decomposition

R
8n×1 = SpanR{x̃1, . . . , x̃p} ⊕ (SpanR{x̃1, . . . , x̃p})⊥ ,

we have

B̃ + αC̃ − I =

[
0 0

0 Q(α)

]
, ∀ |α− α0| < ǫ,

where Q(α) is invertible for |α − α0| < ǫ and negative semidefinite for α ≤ α0 by

definition of α0 and in view of Lemma 2.6. But then, since Q(α) is a continuous

function of α, there exists 0 < ǫ′ < ǫ such that Q(α) is negative definite for all

|α−α0| < ǫ′. In particular, B̃+αC̃ − I is negative semidefinite for α0 < α < α0 + ǫ′,

a contradiction to the definition of α0.

Note that the real dimension of the set of n × n hermitian octonion matrices is

4n2 − 3n. Therefore, the hypotheses of Theorem 4.1 cannot be satisfied if

8n(r − 1)− (r − 1)(r − 2)

2
≥ 4n2 − 3n,

which implies

2r ≥ 16n+ 3−
√
224n2 + 56n+ 1.

Thus, the inequality r ≤ n− 1 in Theorem 4.1 can be replaced by

r <
1

2

(
16n+ 3−

√
224n2 + 56n+ 1

)
.
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5. Concluding remark. In the case of hermitian matrices over the real, com-

plexes, or quaternions, there are strong connections between convexity of joint nu-

merical ranges, Bohnenblust’s theorem [5] (which asserts existence of positive definite

matrices in a real subspace of hermitian matrices under certain hypotheses), and

existence of hermitian matrices with eigenvalues of high multiplicity in a given real

subspace of hermitian matrices. In the real and complex cases these connections were

explored and made precise in [2], [9], [12], and in [2], [12] for the quaternion case

as well. However, much of this approach breaks down over octonions because of the

general lack of spectral decomposition for hermitian matrices.

Acknowledgment. The author thanks T. Dray for a useful consultation con-

cerning hermitian octonion matrices.
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