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INTERVAL SYSTEM OF MATRIX EQUATIONS

WITH TWO UNKNOWN MATRICES∗

A. RIVAZ† , M. MOHSENI MOGHADAM‡, AND S. ZANGOEI ZADEH§

Abstract. In this paper, we consider an interval system of matrix equations contained two

equations with two unknown matrices as
{

A11X + YA12 = C1,

A21X + YA22 = C2.

We define a solution set for this system and then we study some conditions that the solution set

is bounded. Finally, we present a direct method and an iterative method for solving this interval

system.
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1. Introduction. Matrix equations and systems of matrix equations have many

applications in sciences and engineering, such as electromagnetic scattering, structural

mechanics and computation of the frequency response matrix in control theory. A

sample of these systems of matrix equations is as the following:

{

A11X + Y A12 = C1,

A21X + Y A22 = C2,
(1.1)

where Ai1, Ai2 and Ci, for i = 1, 2, are the known real matrices of dimensions m×m,

n× n and m× n, respectively, while the unknown matrices X and Y are m× n real

matrices. The general state of this problem can be seen in [1].

The elements of Aij , for i, j = 1, 2, occurring in practice are usually obtained from

experiments, hence they may appear with uncertainties. We represent the uncertain

elements in interval forms. Therefore, with the existence of uncertainties in data, the

system of matrix equations (1.1) is transformed to the following interval system of
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matrix equations

{

A11X + YA12 = C1,

A21X + YA22 = C2,
(1.2)

where Aij and Ci, for i, j = 1, 2, are interval matrices. Note that bold-face letters are

used to show intervals. Some samples of interval matrix equations such as AX = B

and the interval Sylvester equation AX +XB = C, have been considered previously;

see [3, 16]

In this paper, we use notations R and Rm×n as the field of real numbers and the

vector space of m × n real matrices, respectively. We denote the set of all m × n

interval matrices by IR
m×n.

For the interval matrix A = [A,A], the center matrix denoted by Ǎ and the

radius matrix denoted by rad(A) are respectively defined as

Ǎ =
1

2
(A+A) and rad(A) =

1

2
(A−A).

It is clear that A = [Ǎ− rad(A), Ǎ+ rad(A)].

We assume that the reader is familiar with a basic interval arithmetic and interval

operators on the interval matrices. For more details, we refer to [7, 8]. An n×n interval

matrix A = [A,A] is said to be regular if each A ∈ A is nonsingular. For two interval

matrices A ∈ IR
m×n and B ∈ IR

k×t, the Kronecker product denoted by ⊗ is defined

by the mk × nt block interval matrix

A⊗B =







a11B · · · a1nB
...

. . .
...

am1B · · · amnB






,

and vec(A) is defined as an mn-interval vector and obtained by stacking the columns

of A, i.e.,

vec(A) = (A.1,A.2, . . . ,A.n)
T ,

where A.j is the jth column of A. Note that these definitions are similar to those of

real matrices.

Theorem 1.1. If A,C ∈ Rm×m, B,D ∈ Rn×n and X ∈ Rm×n, then we have

1. (A+ C)⊗B = (A⊗B) + (C ⊗B),

2. B ⊗ (A+ C) = (B ⊗A) + (B ⊗ C),

3. (A⊗B)(C ⊗D) = AC ⊗ BD,

4. vec(AX) = (In ⊗A)vec(X),
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5. vec(XB) = (BT ⊗ Im)vec(X),

6. λ(A⊗B) = λ(A)λ(B),

7. λ((In ⊗A) + (B ⊗ Im)) = λ(A) + λ(B),

where λ(A) is an eigenvalue of A.

For discussion of convergence in the context of interval analysis, the distance

between two intervals x = [x, x] and y = [y, y] is denoted by d(x,y) and is defined as

the following:

d(x,y) = max{|x− y|, |x− y|}.

For more information, see in [7]. Let {xk} be a sequence of intervals. We say that

{xk} is convergent if there exists an interval x∗ such that for every ǫ > 0, there is a

natural number N = N(ǫ) such that d(xk,x
∗) < ǫ whenever k > N . A necessary and

sufficient condition for convergence of sequence {xk} is stated in the next theorem.

Theorem 1.2. The interval sequence {xk} is convergent to x∗ = [x∗, x∗] if and

only if xk → x∗ and xk → x∗ in the sense of real sequences.

2. Main results. Consider the interval system of matrix equations (1.2). We

define the solution set for the system (1.2) by

Σ(X,Y ) =

{

(X,Y ) :
X,Y ∈ Rm×n, Ai1X + Y Ai2 = Ci

for some Ai1 ∈ Ai1, Ai2 ∈ Ai2, Ci ∈ Ci

; i = 1, 2

}

. (2.1)

Similar to solving of interval linear systems [8, 13], the solution set of an interval

system is generally of a complicated structure. But if Σ(X,Y ) is bounded, we look

for an enclosure of this set, i.e., for a pair of interval matrices (X,Y) satisfying

Σ(X,Y ) ⊆ (X,Y).

In the following two subsections, we will present a direct method to obtain an

enclosure of Σ(X,Y ) and conditions under which Σ(X,Y ) is bounded. Also we will

present an iterative algorithm to solve this important problem.

The description of a superset of Σ(X,Y ) given in the next theorem is similar

to that which appeared in the pioneering works of Oettli and Prager [9] for interval

linear systems.

Theorem 2.1. The solution set Σ(X,Y ) defined by (2.1) satisfies

Σ(X,Y ) ⊆

{

(X,Y ) :
|Ǎi1X + Y Ǎi2 − Či| ≤

rad(Ai1)|X |+ |Y |rad(Ai2) + rad(Ci)
; i = 1, 2

}

. (2.2)
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Proof. Let (X,Y ) ∈ Σ(X,Y ), then for some Aij ∈ Aij and Ci ∈ Ci for i, j = 1, 2,

we have

Ai1X + Y Ai2 − Ci = 0.

Therefore, we have:

|Ǎi1X + Y Ǎi2 − Či| = |Ǎi1 + Y Ǎi2 − Či −Ai1X − Y Ai2 + Ci|

≤ |Ǎi1 −Ai1||X |+ |Y ||Ǎi2 −Ai2|+ |Či − Ci|

≤ rad(Ai1)|X |+ |Y |rad(Ai2) + rad(Ci).

So the proof is completed.

2.1. Direct method. For obtaining an enclosure (X,Y) of Σ(X,Y ), suppose

that (X,Y ) ∈ Σ(X,Y ). Then by using Theorem 2.1, we have















(Ǎ11)X − rad(A11)|X |+ Y (Ǎ12)− |Y |rad(A12) ≤ C1,

(Ǎ11)X + rad(A11)|X |+ Y (Ǎ12) + |Y |rad(A12) ≥ C1,

(Ǎ21)X − rad(A21)|X |+ Y (Ǎ22)− |Y |rad(A22) ≤ C2,

(Ǎ21)X + rad(A21)|X |+ Y (Ǎ22) + |Y |rad(A22) ≥ C2.

For given matrices X and Y , we write

|X | = T ◦X and |Y | = S ◦ Y,

where ◦ denotes the so-called Hadamard product and the matrices T and S are sign

matrices of X and Y , respectively. In order to find an element xij for fixed i and j

of the interval matrix X = (xij), we have to solve 22mn linear programming problems

as the following: minxij

subject to:














(Ǎ11)X − rad(A11)(T ◦X) + Y (Ǎ12)− (S ◦ Y )rad(A12) ≤ C1,

(Ǎ11)X + rad(A11)(T ◦X) + Y (Ǎ12) + (S ◦ Y )rad(A12) ≥ C1,

(Ǎ21)X − rad(A21)(T ◦X) + Y (Ǎ22)− (S ◦ Y )rad(A22) ≤ C2,

(Ǎ21)X + rad(A21)(T ◦X) + Y (Ǎ22) + (S ◦ Y )rad(A22) ≥ C2,

and for all possible sign matrices T and matrices S. Hence, we need 4mn × 22mn

linear programming problems for finding the interval matrices X and Y , which makes

the problem very troublesome even with small values of m and n.

Accordingly, we try to find an enclosure (X,Y) of Σ(X,Y ) by an easier technique.

It can be shown that for any Aij ∈ Aij and Ci ∈ Ci, the system of matrix equations
{

A11X + Y A12 = C1,

A21X + Y A22 = C2
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can be transformed to the following form

Gz = d,

where

G =

[

In ⊗A11 AT
12 ⊗ Im

In ⊗A21 AT
22 ⊗ Im

]

, d =

[

vec(C1)

vec(C2)

]

, z =

[

vec(X)

vec(Y )

]

.

Now, we consider interval linear system of equations

Gz = d, (2.3)

where G ∈ IR
2mn×2mn and d ∈ IR

2mn are as the following:

G =

[

In ⊗A11 A12
T ⊗ Im

In ⊗A21 A22
T ⊗ Im

]

, d =

[

vec(C1)

vec(C2)

]

.

We assume that Γ is the solution set of (2.3). We define

Θ =

{[

vec(X)

vec(Y )

]

: (X,Y ) ∈ Σ(X,Y )

}

. (2.4)

It is clear that Θ ⊆ Γ.

Therefore, by solving interval linear system (2.3) and finding interval vector z as

an enclosure of its solution set, we can specify the columns of the interval matrices X

and Y which (X,Y) is an enclosure of Σ(X,Y ). To solve the interval linear system

(2.3), see [2, 4, 7, 8, 11, 13, 14, 15].

As was mentioned before, the enclosure of Σ(X,Y ) is achievable if Σ(X,Y ) is a

bounded set. The following theorem represent a condition in order that the solution

set of the interval system (1.2) to be bounded.

Theorem 2.2. For all interval m×n matrices C1 and C2 the solution set defined

by (2.1) is bounded if the system of inequalities

|Ǎ11X + Y ǍT
12| ≤ rad(A11)|X |+ |Y |rad(AT

12), (2.5)

|Ǎ21X + Y ǍT
22| ≤ rad(A21)|X |+ |Y |rad(AT

22), (2.6)

have only the trivial solution (X,Y ) = (0, 0).

Proof. It is clear that Σ(X,Y ) is bounded if and only if the set Θ defined by (2.4)

is bounded. Since we have Θ ⊆ Γ, So it is sufficient to prove that Γ is bounded for
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each 2mn-vector d. The inequalities (2.5) and (2.6) are equivalent to the following

inequalities

|vec(Ǎ11X) + vec(Y ǍT
12)| ≤ vec(rad(A11)|X |) + vec(|Y |rad(AT

12)),

|vec(Ǎ21X) + vec(Y ǍT
22)| ≤ vec(rad(A21)|X |) + vec(|Y |rad(AT

22)).

Based on Theorem 1.1, we can rewrite the above inequalities as

|(In ⊗ Ǎ11)vec(X) + (ǍT
12 ⊗ Im)vec(Y )| ≤ (In ⊗ rad(A11))|vec(X)|

+ (rad(AT
12)⊗ Im)(|vec(Y )|), (2.7)

|(In ⊗ Ǎ21)vec(X) + (ǍT
22 ⊗ Im)vec(Y )| ≤ (In ⊗ rad(A21))|vec(X)|

+ (rad(AT
22)⊗ Im)(|vec(Y )|). (2.8)

So, if the inequalities (2.5) and (2.6) have trivial solution then the inequalities (2.7)

and (2.8) also have the trivial solution. As for the interval system (2.3), and the

inequalities (2.7) and (2.8), the inequality

|Ǧz| ≤ rad(G)|z|

has only the trivial solution z = 0. Thus, from the result of [12], the solution set Γ is

bounded for each 2mn-vector d.

In the next theorem, we give a necessary and sufficient condition for boundedness

of Σ(X,Y ).

Theorem 2.3. Suppose that A11 in the interval system of matrix equations is

regular. Then for all interval matrices C1 and C2, the solution set of (1.2) is bounded

if and only if (AT
22⊗A11)− (AT

12⊗A21) is nonsingular for each Aij ∈ Aij, i, j = 1, 2.

Proof. The solution set of interval system of matrix equations (1.2) is bounded if

and only if for all fixed Aij ∈ Aij, i, j = 1, 2, the matrix G defined by

G =

[

In ⊗A11 AT
12 ⊗ Im

In ⊗A21 AT
22 ⊗ Im

]

,

is nonsingular, or equivalently det(G) 6= 0. Since A11 is a nonsingular matrix and A22

is a square matrix, from [6, p. 46], it follows that

det(G) = det(In ⊗A11) det
(

(AT
22 ⊗ Im)− (In ⊗A21)(In ⊗A−1

11 )(A
T
12 ⊗ Im)

)

= det(In ⊗A11) det
(

(AT
22 ⊗ Im)− (AT

12 ⊗A21A
−1
11 )

)

.

Hence, det(G) 6= 0 if and only if

det
(

(AT
22 ⊗ Im)− (AT

12 ⊗A21A
−1
11 )

)

6= 0,
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which is equivalent to

det
(

(AT
22 ⊗A11)− (AT

12 ⊗A21)
)

6= 0. (2.9)

Therefore, the solution set of the interval system of matrix equations (1.2) is bounded

if and only if for all fixed Aij ∈ Aij, i, j = 1, 2,

det
(

(AT
22 ⊗A11)− (AT

12 ⊗A21)
)

6= 0.

The following corollary is an immediate consequence of the theorem.

Corollary 2.4. Suppose that A11 in the interval system of matrix equations is

regular. Then for all interval matrices C1 and C2, the solution set of (1.2) is bounded

if
(

(AT
22 ⊗A11)− (AT

12 ⊗A21)
)

is regular.

For checking the regularity of interval matrices, see [5, 10]. If we choose A11 =

A12 = I, then we can state the following result.

Corollary 2.5. In the interval system of matrix equations (1.2), assume that

A11 = A12 = I. Then the corresponding solution set is bounded if and only if

σ(A21) ∩ σ(A21) = ∅,

where

σ(A) = {λ ∈ C : ∃x 6= 0 , Ax = λx for some A ∈ A} .

Proof. Consider A11 = Im and A12 = In. Similar to the proof of previous

theorem, the solution set is bounded if and only if

det
(

(AT
22 ⊗ Im)− (In ⊗A21)

)

6= 0, (2.10)

for each A21 ∈ A21 and A22 ∈ A22.

The relation (2.10) is equivalent to that λi − µj 6= 0 for every eigenvalue λi, for

i = 1, . . . , n, of A22 and every eigenvalue µj , for j = 1, . . . ,m of A21. This implies

that the solution set is bounded if and only if

σ(A21) ∩ σ(A21) = ∅.

Example 2.6. Consider the interval system of matrix equations

{

A11X + YA12 = C1,

A21X + YA22 = C2,
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in which

A11 =
[

[1,2] [2,2.5]
[−2,−1] [5,6]

]

, A12 =
[

[0.1,0.3] [2,2.5]
[−0.5,0.2] [0.1,0.3]

]

, C1 =
[

[3,4] [−1,0]
[1,1] [6,8]

]

,

A21 =
[

[0.1,0.3] [0,0.5]
[−0.4,−0.3] [0.2,0.2]

]

, A22 =
[

[3,4] [−4,−3]
[1,2] [6,7]

]

, C2 =
[

[6,7] [1,3]
[8,9] [6,8]

]

.

Here,
(

(AT
22 ⊗A11)− (AT

12 ⊗A21)
)

is regular. The proposed direct method shows

that the enclosure of the solution set is a pair of interval matrices of (XDi,YDi) where

XDi =
[

[0.1211,4.1360] [−7.9006,0.9944]
[0.0360,1.4322] [−2.3282,2.1786]

]

, YDi =
[

[0.4094,2.3682] [0.2358,2.2193]
[0.8141,3.1215] [0.9311,3.2972]

]

.

2.2. Iterative method. In this subsection, we present an iterative method for

solving the interval system of matrix equations (1.2). Moreover, we discuss the con-

dition of convergence for this method.

Let us rewrite (1.2) as the following:

{

A11X = C1 − YA12,

YA22 = C2 −A21X.

Assume that an initial guess Y0 is given. Now we define the following iteration

equations:

{

A11Xk+1 = C1 − YkA12,

Yk+1A22 = C2 −A21Xk+1,
k ≥ 0. (2.11)

To find the interval matricesXk+1 andYk+1 in (2.11), we need to solve an interval

matrix equation such as AX = B. To this end, we consider an interval linear system

of the form

AX.j = B.j,

where X.j and B.j are jth columns of X and B, respectively.

Having considered them, we introduce the following algorithm.

Algorithm 2.7.

Step 1. Choose Y0 and set k = 0.

Step 2. Solve the interval matrix equations

A11Xk+1 = C1 −YkA12 , AT
22Y

T
k+1 = C2

T −XT
k+1A

T
21

and find the interval matrices Xk+1 and Yk+1.
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Step 3. If

max{||Xk+1−Xk||, ||Xk+1−Xk||, ||Y k+1−Y k||, ||Y k+1−Y k||} < ǫ,

stop.

Otherwise, set

Xk = Xk+1 , Yk = Yk+1 if k = 0, (2.12)

Xk = Xk+1 ∩Xk , Yk = Yk+1 ∩Yk if k ≥ 1. (2.13)

Set k = k + 1, and go to the Step 2.

As discussed in [7], The relation (2.13) implies that the algorithm converges in a

finite number of iterations. By considering a particular condition, the next theorem

expresses that the above algorithm converges in the absence of the relation (2.13).

Theorem 2.8. In the interval system (1.2), suppose A11 and A22 are regu-

lar matrices. If ||A21A
−1
11 ||||A12A

−1
22 || < 1 for each Aij ∈ Aij, i, j = 1, 2, then the

algorithm described above converges.

Proof. From (2.11), we write

{

A11Xk+1 = C1 − YkA12,

Yk+1A22 = C2 −A21Xk+1
(2.14)

for each Aij ∈ Aij and Ci ∈ Ci, i, j = 1, 2. Using the relations (2.14) together with

the regularity of A11 and A22 yields

Yk+1 = C2A
−1
22 −A21A

−1
11 C1A

−1
22 +A21A

−1
11 YkA12A

−1
22 . (2.15)

Suppose (X∗, Y ∗) is the exact solution of (2.14). So, Y ∗ satisfies

Y ∗ = C2A
−1
22 −A21A

−1
11 C1A

−1
22 +A21A

−1
11 Y

∗A12A
−1
22 . (2.16)

If we apply (2.15) and (2.16), then we conclude that

Yk+1 − Y ∗ = A21A
−1
11 (Yk − Y ∗)A12A

−1
22

= (A21A
−1
11 )

2(Yk−1 − Y ∗)(A12A
−1
22 )

2

...
...

= (A21A
−1
11 )

k+1(Y0 − Y ∗)(A12A
−1
22 )

k+1.

Hence,

||Yk+1 − Y ∗|| ≤ ||A21A
−1
11 ||

k+1||Y0 − Y ∗||||A12A
−1
22 ||

k+1.
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This shows that if ||A21A
−1
11 ||||A12A

−1
22 || < 1, then each sequence of the real matrices

{Yk} constructed by our algorithm converges, which implies the convergence of {Yk}.

Again, from (2.14), we have

Xk+1 = A−1
11 (C1 − YKA12).

It follows that

Xk+1 −X∗ = −A−1
11 (Yk − Y ∗)A12.

So, convergence of {Yk} implies convergence of {Xk} and we can conclude that {Xk}

converges.

Example 2.9. Consider the interval system of matrix equations in Example

(2.6). With Y0 =
[

[−1,1] [−1,1]
[−1,1] [−1,1]

]

, by performing 4 iterations of the above algorithm

we have:

XIt =
[

[0.4333,3.5501] [−6.1334,0.0252]
[0.1793,1.2667] [−0.4889,0.9067]

]

, YIt =
[

[0.4887,2.0066] [0.4429,1.9582]
[0.9701,2.8885] [1.0909,2.9937]

]

.

With ignoring (2.13) we obtain the following wider interval matrices

X̃It =
[

[0.2549,3.8652] [−6.4952,0.1732]
[0.0686,1.3795] [−1.7301,0.9307]

]

, ỸIt =
[

[0.4149,2.0142] [0.4230,2.0609]
[0.9366,2.9380] [1.0666,3.0626]

]

.

From the result of examples (2.6) and (2.9), we conclude that:

(XIt,YIt) ⊆ (X̃It, ỸIt) ⊆ (XDi.YDi).

Remark 2.10. If the condition of the above theorem is not established, we may

use the intersection of (XDi,YDi) and (XIt,YIt) for obtaining a sharper solution.

Acknowledgement. The authors wish to thank the referee for comments that
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