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THE MAXIMUM NULLITY OF A COMPLETE SUBDIVISION

GRAPH IS EQUAL TO ITS ZERO FORCING NUMBER∗

WAYNE BARRETT† , STEVE BUTLER‡ , MINERVA CATRAL§ , SHAUN M. FALLAT¶,

H. TRACY HALL‖, LESLIE HOGBEN∗∗, AND MICHAEL YOUNG††

Abstract. Barrett et al. asked in [W. Barrett et al. Minimum rank of edge subdivisions of

graphs. Electronic Journal of Linear Algebra, 18:530–563, 2009.], whether the maximum nullity is

equal to the zero forcing number for all complete subdivision graphs. We prove that this equality

holds. Furthermore, we compute the value of M(F, G̊) = Z(G̊) by introducing the bridge tree of a

connected graph. Since this equality is valid for all fields, G̊ has field independent minimum rank,

and we also show that G̊ has a universally optimal matrix.

Key words. Zero forcing number, Maximum nullity, Minimum rank, Complete subdivision,

Bridge tree, Universally optimal, Matrix, Graph.
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1. Introduction. A complete subdivision graph G̊ is obtained from a graph G

by subdividing every edge of G once; M(F,G) denotes the maximum nullity of G

over a field F and Z(G) denotes the zero forcing number of G (definitions are given

below). The paper [5] concludes with a list of open questions, including the following

interesting problem.

Question 1.1. Is M(F, G̊) = Z(G̊) for every field F and graph G?

The main result of this paper is an affirmative answer to this question (see The-

orem 1.3 below), which is proved by giving an easily computable formula for this
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common value and giving constructive methods for producing a zero forcing set of

the required cardinality (Section 2) and a matrix in S(F, G̊) of the required nullity

over all fields (Section 3). The proofs also produce information about minimum zero

forcing sets and optimal matrices of complete subdivision graphs.

The problem of determining maximum nullity of the family of symmetric matrices

whose off-diagonal nonzero pattern is described by the edges of a graph G is equiva-

lent to determining the minimum rank over the same set of matrices. This problem

and variants have a substantial history in discrete mathematics, and have generated

interest among linear algebraists recently, partly based on the connection to certain

inverse eigenvalue problems, but also because there are many interesting applications,

such as to communication complexity in computer science [12].

The zero forcing number was introduced independently by groups studying min-

imum rank/maximum nullity [2] and groups studying control of quantum systems in

mathematical physics [8]. For a summary of the current state of research on maxi-

mum nullity and zero forcing number, see [15] and the references therein. For more

information on the use of zero forcing in control of quantum systems, see, for example,

[6, 7, 9]. Zero forcing, also called propagation, has additional applications to power

dominating sets, which arose in the study of electrical networks, and to the study of

influence in social networks [1]. Since the introduction of zero forcing number as an

upper bound for maximum nullity, the question of characterizing graphs for which

maximum nullity (over some field) is equal to zero forcing number has been of in-

terest (see, for example, [2, Question 1]). It is known that maximum nullity equals

zero forcing number for all graphs of order at most seven [13], some large families

including trees [2], block clique graphs and unit interval graphs [17], and many spe-

cific structured families [2, 17], but these parameters diverge for large random graphs

[16, 19].

The equality M(F, G̊) = Z(G̊) was established for graphs that have a Hamilton

path in [5] (with an easy formula for the value) and for graphs that do not have

a bridge in [10] (without a formula for the value). Our main result, Theorem 1.3,

extends this identity to all graphs G and gives an easily computed formula for Z(G̊).

Combining this identity with Theorem 2.5 in [5] and Proposition 5.5 in [20], which

state, respectively, that maximum nullity and zero forcing number are unchanged

when subdividing an edge adjacent to a degree two vertex, we see that M(H) = Z(H)

for any graph H obtained from G̊ by subdividing edges. Another result in [5], Lemma

2.1, states that under an edge subdivision, maximum nullity either does not change

or increases by one. Therefore, given a subset S of the edges of a graph G, if GS is

the graph obtained by subdividing each edge in S once, then M(F,G) ≤ M(F,GS) ≤

M(F, G̊), and these bounds can be sharpened by taking |S| into account. Thus,

the problem of determining the maximum nullity of any subdivision of a graph G
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is reduced to calculating it for a finite number of subdivisions of G, and, provided

M(F,G) is known, each of these lies in a known interval.

The question of determining graphs that have field independent minimum rank

has also been of interest and the question of whether a graph has a universally optimal

matrix for minimum rank/maximum nullity has been studied [11, 18]. Our results

also provide answers to these questions for complete subdivision graphs.

We now define our terminology, including terms basic to the problem and ter-

minology for a new construction (bridge tree) needed to state the common value of

maximum nullity and zero forcing number. For a (simple, undirected) graph G, n(G)

denotes the number of vertices (order) of G and m(G) denotes the number of edges

(size) of G (we use m and n when G is clear from context). Let F be any field. For a

graph G that has vertex set V (G) = {v1, . . . , vn} and edge set E(G), S(F,G) is the set

of all symmetric n×nmatrices A with entries from F such that for any i 6= j, aij 6= 0 if

and only if {vi, vj} ∈ E(G). The minimum rank of G is mr(F,G) = min{rankA : A ∈

S(F,G)}, and the maximum nullity of G is M(F,G) = max{nullA : A ∈ S(F,G)}.

Note that for any field F , mr(F,G)+M(F,G) = n(G), so the problem of determining

the minimum rank of a given graph is equivalent to the problem of determining its

maximum nullity. If the field F is omitted, it is assumed to be the real numbers:

mr(G) = mr(R, G) and M(G) = M(R, G). A graph G has field independent minimum

rank if mr(F,G) = mr(R, G) for all fields F . For a symmetric matrix A ∈ Fn×n, the

graph of A is G(A) = (V,E) where V = {1, . . . , n} and E = {ij | aij 6= 0 and i 6= j}.

Note that a matrix A ∈ Zn×n ⊂ Qn×n ⊂ Rn×n can also be interpreted as living in

Zp
n×n for a prime p, and we denote the graph when viewing A this way by GZp(A)

(for F a field of characteristic p, GF (A) = GZp(A)). A symmetric integer matrix A has

GF (A) = G(A) for all fields F if and only if all off-diagonal entries of A are in {0,±1}.

A universally optimal matrix is an integer matrix A such that every off-diagonal entry

of A is 0, 1, or −1, and for all fields F , rankF (A) = mr(F,G(A)).

The zero forcing number of a graph is the minimum number of blue vertices

initially needed to color all vertices blue according to the color-change rule, defined

as follows: If G is a graph with each vertex colored either white or blue, b is a blue

vertex of G and exactly one neighbor w of b is white, then change the color of w to

blue. In this case we say b forces w and write b → w. Let S be a subset of V . The final

coloring of S is the result of initially coloring every vertex in S blue and every vertex

in V (G) \S white, and then applying the color-change rule until no more changes are

possible; the order of the forces does not affect the final coloring [2]. A zero forcing

set of G is a set Z ⊆ V (G) such that every vertex in the final coloring of Z is blue.

The zero forcing number of G is Z(G) = min{|Z| : Z is a zero forcing set of G} and

mz(G) = n(G) − Z(G). A zero forcing set Z is called a minimum zero forcing set

of G if |Z| = Z(G). The terminology ‘zero forcing’ refers to the fact that using zero
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forcing on G(A) corresponds to forcing certain entries in a null vector of A to be zero,

and it was established in [2] that for any field F and graph G, M(F,G) ≤ Z(G),

or equivalently, mz(G) ≤ mr(F,G). Given a zero forcing set Z of G, a zero forcing

process for Z is some set of forces that can be used to color all the vertices blue.

The forces in a zero forcing process can be grouped into induced paths, called forcing

paths, each beginning with a vertex in Z. Note that the forcing paths are not uniquely

determined by Z. A vertex w is Z-terminal (for a particular zero forcing process of Z)

if w is the last vertex in a zero forcing path of the zero forcing process (it is possible

that v ∈ Z is also Z-terminal, if the path is a single vertex).

The vertices of the complete subdivision G̊ of G are of two types: the original

vertices V (G) and the edge-vertices, which are the new vertices created by edge sub-

division. Each edge-vertex of G̊ corresponds to an edge of G, and we sometimes use

the same symbol for both the edge of G and the edge-vertex of G̊.

A bridge or cut-edge of a connected graph is an edge whose deletion disconnects

the graph. A bridgeless graph is a connected graph with no bridge; necessarily such a

graph does not have order 2 (becauseK2 has a bridge). An island of a connected graph

is a maximal bridgeless subgraph, necessarily induced. A cut-vertex of a connected

graph is a vertex whose deletion disconnects the graph. A block is a maximal connected

subgraph that has no cut-vertex, necessarily induced. Every block except K2 is an

island, but there are many examples of islands that are not blocks, such as two cycles

that intersect in a vertex. A 2-edge connected graph is a connected graph of order

greater than one from which at least two edges must be deleted to disconnect the

graph. A single vertex is bridgeless but not 2-edge connected. A graph is minimally 2-

edge connected if it is 2-edge connected and the deletion of any edge leaves a connected

graph that is not 2-edge connected, i.e., has a bridge.

Definition 1.2. Given a graph G, define the bridge forest of G to be the forest

BF (G) obtained by contracting every island with more than one vertex to a single

vertex. When G is connected the bridge forest is a tree, and we often refer to it as

the bridge tree.

Our main result is the following:

Theorem 1.3. For any graph G with c(G) connected components and any field F ,

M(F, G̊) = Z(G̊) = m(G)− n(G) + c(G) + Z( ˚BF (G)).

In the absence of a method applicable to a particular graph, determination of

minimum rank/maximum nullity in theory involves consideration of an infinite fam-

ily of matrices and in practice is frequently determined by finding a matrix realizing

a known upper bound for maximum nullity, such as zero forcing number (if the two

parameters are equal). Although computation of the zero forcing number involves op-
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timizing over a finite rather than an infinite set, from a graph theoretical perspective

it is regarded as difficult to compute (NP-hard even for planar graphs) [1]. Fortu-

nately, the zero forcing number of a forest, and hence of a subdivision of a forest,

is readily computed by a variety of fast algorithms that compute maximum nullity

of a forest (e.g., see [14]). Thus, Theorem 1.3 renders the computation of maximum

nullity and zero forcing number of a complete subdivision graph straightforward and

fast.

Theorem 1.3 implies field independence of minimum rank for a complete sub-

division graph, and we also give a construction of a universally optimal matrix for

G̊ . Theorem 1.3 is proved in the case that G is connected by giving constructions

of a zero forcing set of cardinality m(G) − n(G) + 1 + Z( ˚BF (G)) (Section 2) and a

matrix in S(G̊) of nullity m(G)−n(G)+1+Z( ˚BF (G)) (Section 3). Additivity of the

parameters used completes the proof for all graphs.

We will use results from [5] and [10]. Since the proof of the next result uses a key

idea and is very brief, it is included. For a graph G, an orientation ~G of G is obtained

by assigning a direction to each edge. The oriented vertex-edge incidence matrix of
~G is the matrix Q = [qve] where for directed edge e = (u, v), que = −1, qve = 1, and

qwe = 0 for w 6= u, v.

Theorem 1.4. [5, Corollary 3.13] For any connected graph G and field F ,

mr(F, G̊) ≤ 2n(G)− 2, or equivalently, M(F, G̊) ≥ m(G)− n(G) + 2.

Proof. If B is an oriented vertex-edge incidence matrix of G, then rankB = n−1.

and the matrix

[
O B

BT O

]
∈ S(G̊) has rank 2n− 2.

Let K be the family of bipartite graphs G = (V (G), E(G)) such that there is a

bipartition of the vertices V (G) = X ∪̇Y with deg x ≤ 2 for all x ∈ X [10]. Clearly

every complete edge subdivision graph is in K. A graph G ∈ K is special if for every

field F there exists a matrix A ∈ S(F,G) such that:

1. nullA = M(F,G), and

2. if x ∈ X(G), then axx = 0.

Theorem 1.5. [10, Theorem 2.16] If G is a bridgeless graph in K, then G is

special and M(F,G) = Z(G) for every field F .

Remark 1.6. The following technique was used extensively in [11]: If A is

a symmetric integer matrix with all off-diagonal entries in {0,±1} with rankR A =

mz(G(A)), then G(A) has field independent minimum rank and A is a universally

optimal matrix for G(A) because mz(G(A)) ≤ rankF A ≤ rankR A = mz(G(A)).
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Proposition 1.7. If G is connected and M(G̊) = m(G)−n(G)+2 = Z(G̊), then

the minimum rank of G̊ is field independent and G̊ has a universally optimal matrix

with all diagonal entries equal to zero.

Proof. Observe that M(G̊) = m(G)−n(G)+2 is equivalent to mr(G̊) = 2n(G)−2.

Let B be an oriented vertex-edge incidence matrix of ~G (for some orientation of G),

so rankB = n(G) − 1. Then for A =

[
O B

BT O

]
, A ∈ S(G̊), rankA = 2(n(G) − 1) =

mr(G̊), and by Remark 1.6, the minimum rank of G̊ is field independent and A is a

universally optimal matrix.

2. Bounding the zero forcing number from above. In this section, we

establish the common value of maximum nullity and zero forcing number of G̊ of a

bridgeless graph G and establish the upper bound for Z(G̊) for every connected graph

G by producing a zero forcing set of the required cardinality.

Theorem 2.1. Suppose G is connected and there exists a real matrix A ∈ S(G̊)

such that rankA = mr(G̊) and all diagonal entries of A associated with edge-vertices

of G̊ are zero. Then mr(G̊) = 2n(G)− 2 and M(G̊) = m(G)− n(G) + 2.

Proof. Let n = n(G). The matrix A has the form A =

[
D B

BT O

]
where B has

the vertex-edge incidence pattern of G and D is a diagonal matrix. The rank of B

is at least n − 1 because the submatrix of B associated with a spanning tree of G

has rank n − 1. Choose α ⊂ {1, . . . , n} and β ⊂ {1, . . . ,m} with |α| = |β| = n − 1

such that B[α, β] is invertible. Then A[α ∪ β]) =

[
D[α] B[α, β]

B[α, β]T O

]
is invertible,

so rankA ≥ 2(n − 1). Since rankA = mr(G̊), mr(G̊) ≥ 2n − 2; equality follows by

Theorem 1.4.

Theorems 1.5 and 2.1 establish (2.1) in the next corollary, and Proposition 1.7

establishes the existence of a universally optimal matrix with zero diagonal.

Corollary 2.2. If G is bridgeless, then for every field F ,

Z(G̊) = M(F, G̊) = m(G)− n(G) + 2, mz(G̊) = mr(F, G̊) = 2n(G)− 2, (2.1)

and G has a universally optimal matrix with all diagonal entries equal to zero.

Theorem 2.3. Given any bridgeless graph G, and any vertices u, v of G (not

necessarily distinct), there exists a zero forcing set Z of G̊ of order m(G)− n(G) + 2

(necessarily minimum) such that u ∈ Z and v is Z-terminal.

Proof. The proof is by induction on the number of vertices n(G). The result is

clear for a single vertex. Assume that for any bridgeless graph G′ with n(G′) < n and
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any vertices u, v of G′, there exists a zero forcing set Z of G̊′ of orderm(G′)−n(G′)+2

such that u ∈ Z and v is Z-terminal.

Let G be a bridgeless graph with n(G) = n > 1 (so G is 2-edge connected).

Remove edges f1, . . . , fℓ from G to obtain a minimally 2-edge connected graph H ;

note that n(H) = n(G) and m(H) = m(G)− ℓ. Choose any edge e of H . Then H − e

necessarily has a bridge (or H would not have been minimally 2-edge connected).

The bridge forest of H − e is necessarily a path (or H would not have been 2-edge

connected). The graph H consists of the k ≥ 2 islands of H − e, connected cyclically

with a single edge between each consecutive pair in the cycle (see Figure 2.1).

H
1

u

H
t

v

x
1

y
1

H
2

x
2

y
2

y
t

y k

x
t

x k

H
k

e
1 e

2

Fig. 2.1. Notation for Theorem 2.3; arrows indicate the direction of zero forcing.

Since we are working over a cycle of order k, subscript arithmetic will be taken

modulo k. Let H1 be the island of BF (H−e) containing u, and number the remaining

islands of BF (H) as H2, . . . , Hk in cycle order. Number the edges having endpoints in

two different islands in cycle order as ei = {xi−1, yi} with xi, yi ∈ V (Hi) (it is possible

xi = yi). Let t denote the index of the island containing vertex v (the argument below

assumes t 6= 1 but a minor modification handles the case t = 1). The notation used

is illustrated in Figure 2.1.

Since n(Hi) < n(H) = n for i = 1, . . . , k, the induction hypothesis applies to the

islandsHi. We wish to construct a zero forcing set for H̊ of cardinalitym(H)−n(H)+

2, using certain zero forcing sets for the subdivided islands H̊i. For 1 < i < t, choose

a zero forcing set Zi for H̊i with yi ∈ Zi and xi being Zi-terminal. For t < i ≤ k,

choose a zero forcing set Zi for H̊i with xi ∈ Zi and yi being Zi-terminal. For H̊t

choose a minimum zero forcing set Zt with yt ∈ Zt and v being Zt-terminal. For H̊1
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choose a minimum zero forcing set Z1 with u ∈ Z1 and x1 being Z1-terminal.

Define

Z :=

t−1⋃

i=2

(Zi \ {yi}) ∪
k⋃

i=t+1

(Zi \ {xi}) ∪ (Zt \ {yt}) ∪ Z1 ∪ {e1}.

Observe that |Z| =
k∑

i=2

(|Zi| − 1) + |Z1|+ 1. By the induction hypothesis, |Zi| =

m(Hi)− n(Hi) + 2, and therefore,

|Z| =
k∑

i=1

(m(Hi)−n(Hi)+1)+2 =

k∑

i=1

m(Hi)+k−
k∑

i=1

n(Hi)+2 = m(H)−n(H)+2.

Start the zero forcing process that produces x1 as Z1-terminal on H̊1. Because

e1 ∈ Z, the zero forcing process within H̊1 runs to completion. For i < t, when the

zero forcing process on ˚Hi−1 is complete (so xi−1 is blue), force the vertices ei and yi.

Then completely perform forcing on H̊i to obtain that xi is Zi-terminal (in H̊i). For

i > t, when the zero forcing process on ˚Hi+1 is complete (so yi+1 is blue), force the

vertices ei+1 and xi. Then perform forcing on H̊i to obtain that yi is Zi-terminal (in

H̊i). Finally, yt+1 → et+1 and xt−1 → et → yt, and perform forcing in H̊t to obtain

that v is Zt-terminal in H̊t and hence in H̊ .

Finally, let Ẑ be the union of Z and the set of the edge-vertices f1, . . . , fℓ of G̊

associated with the deleted edges of G. Then Ẑ is a zero forcing set for G̊, |Ẑ| =

|Z|+ ℓ = m(G) − n(G) + 2, u ∈ Ẑ and v is Ẑ-terminal (using the same zero forcing

process as in H̊).

Theorem 2.4. For any connected graph G,

Z(G̊) ≤ m(G)− n(G) + 1 + Z( ˚BF (G)).

Proof. Construct the bridge tree of G and subdivide it to obtain ˚BF (G). Choose

a zero forcing set B = {b1, . . . , bz} for ˚BF (G) (where z = Z( ˚BF (G))) and choose a

set of forcing paths P (i) with bi ∈ V (P (i)). Number the vertices in ˚BF (G) so that

the jth vertex in path P (i) (in forcing order) is numbered w
(i)
j (so bi = w

(i)
1 ). The

islands of G and edge-vertices of ˚BF (G) will collectively be named H
(i)
j in such a

way that
˚

H
(i)
j is always the island corresponding to vertex w

(i)
j of the tree ˚BF (G).

Depending on j, H
(i)
j is an island vertex of G, a multiple-vertex island of G, or a

single edge-vertex of ˚BF (G).
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Within
˚

H
(i)
j , let x

(i)
j be the vertex that is the endpoint of the bridge from

˚
H

(i)
j to

˚
H

(i)
j+1 (if there is such), and let y

(i)
j be the vertex that is the endpoint of the bridge

from
˚

H
(i)
j to

˚
H

(i)
j−1 (if there is such); it is possible x

(i)
j = y

(i)
j . Figure 2.2 illustrates

this nomenclature.

G GBF(G)

w
(3)

w
2

(1)

w
3

(1)

w
4

(1)

w
5

(1)

w
1

(1)
b
1
= w

1

(3)
b
3
=

w
1

(2)
b =
2

w
2

(3)

w
(3)

w
(3)

5

4

3

(3)

H
1

H
(1)

1

(3)

H

(3)

H

(3)

H

H

H
(1)

H
(1)

H
(1)

2 2

3 3

(2)

1

(1)
x
1

(1)
x

(1)
x

5

2=

3

(1)
x
4

=
(1)

y
4

(1)
y

(2)
x
1

=
(2)

y
1

2

(3)
x
4=

(3)
y
4

(3)
x
2=

(3)
y
2

(3)
x 1

(3)
x3

(1)
y

(3)
y

(3)
y
5

(1)
y

5

3 3

H
(1)

H
(3)

4 4

5

Fig. 2.2. Example for Theorem 2.4; arrows indicate the direction of zero forcing.

Then construct a zero forcing set as follows: For each island
˚

H
(i)
j corresponding to

an original islandH
(i)
j ofG, choose a zero forcing set Z

(i)
j of orderm(H

(i)
j )−n(H

(i)
j )+2

with y
(i)
j ∈ Z

(i)
j and x

(i)
j being Z

(i)
j -terminal (if one or the other of x

(i)
j , y

(i)
j does not

exist, ignore that instruction). For an edge-vertex island, the zero forcing set is the

single vertex x
(i)
j = y

(i)
j . Then for all i, j define

Ẑ
(i)
j :=

{
Z

(i)
j if j = 1;

Z
(i)
j \ {y

(i)
j } if j > 1.

Then

Z :=
⋃

i,j

Ẑ
(i)
j

is a zero forcing set with the following zero forcing process: For each i, force in
˚

H
(i)
1

with x1 being Z
(i)
1 -terminal. Then proceed through the paths as the forcing is done

in the tree, with x
(i)
j → y

(i)
j+1.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 444-457, June 2014



ELA

Maximum Nullity of a Complete Subdivision Graph is Equal to its Zero Forcing Number 453

Let h be the number of islands of G (so BF (G) has h− 1 edges). Observe that

|Z| =
∑

i,j

|Ẑ
(i)
j | =

∑

i,j

(|Z
(i)
j | − 1) + Z( ˚BF (G)).

If
˚

H
(i)
j is an edge-vertex of G̊ then Ẑ

(i)
j = ∅, or equivalently, |Z

(i)
j |−1 = 0. So the sum

can be taken only over the subdivisions
˚

H
(i)
j of the islandsH

(i)
j of G, and for each such

subdivided island, |Z
(i)
j | = m(H

(i)
j )−n(H

(i)
j )+2. Since n(G) =

∑

islands of G

n(H
(i)
j ) and

m(G) =

(
∑

islands of G

m(H
(i)
j )

)
+ h− 1, it follows that

|Z| =
∑

islands of G

(m(H
(i)
j )− n(H

(i)
j ) + 1) + Z( ˚BF (G))

=
∑

islands of G

m(H
(i)
j )−

∑

islands of G

n(H
(i)
j ) + h+ Z( ˚BF (G))

= m(G)− n(G) + 1 + Z( ˚BF (G)).

3. Bounding maximum nullity. In this section, we determine M(G̊) by pro-

ducing a matrix of the desired nullity that is also a universally optimal matrix.

Theorem 3.1. Let G be a graph constructed by appending ℓ ≥ 0 leaves to an

island H. Then for any field F ,

M(F, G̊) = Z(G̊) = m(G)− n(G) + 1 + Z( ˚BF (G)). (3.1)

If ℓ ≥ 2, this formula is equivalent to

M(F, G̊) = m(H)− n(H) + ℓ or mr(F, G̊) = 2n(H) + ℓ. (3.2)

Finally, G̊ has a universally optimal matrix and field independent minimum rank.

Proof. If ℓ = 0, 1 or 2, then ˚BF (G) is P1, P2 or P3, so Z( ˚BF (G)) = 1, and thus

m(G) − n(G) + 2 ≤ M(F, G̊) ≤ Z(G̊) ≤ m(G) − n(G) + 2, where the first inequality

is by Theorem 1.4 and the last by Theorem 2.4. Furthermore, G has a universally

optimal matrix and field independent minimum rank by Proposition 1.7.

Suppose ℓ ≥ 2. Then BF (G) = K1,ℓ, so Z( ˚BF (G)) = ℓ − 1. Since m(G) −

n(G) = m(H) − n(H), in this case the equivalence of (3.1) and (3.2) is clear. By

Theorem 2.4 and Remark 1.6, it suffices to exhibit a {0, 1}matrix A ∈ S(F, G̊) having

nullA ≥ m(H) − n(H) + ℓ. Because n(G̊) = n(G) + m(G) = n(H) + m(H) + 2ℓ,

nullA ≥ m(H)− n(H) + ℓ is equivalent to rankA ≤ 2n(H) + ℓ.

For each original vertex u of H̊, let Au be the adjacency matrix of rank 2 of

the star formed by u and its neighbors in G̊. Embed Au appropriately into a matrix
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of order n(G̊) to obtain a matrix Ãu of rank 2. Similarly, for each leaf vertex vi,

i = 1, . . . , ℓ, let Jvi be the 2 × 2 matrix

[
1 1

1 1

]
of rank 1 corresponding to vi, its

neighbor in G̊, and their common edge. Embed Jvi appropriately into a matrix of

order n(G̊) to obtain a matrix J̃vi of rank 1. Let

A =
∑

u∈V (H)

Ãu +
ℓ∑

i=1

J̃vi .

Then A is a {0, 1} matrix in S(F, G̊) and has rank no more than 2n(H) + ℓ.

Before giving the proof of our main result on the maximum nullity, we will need

a basic formula to allow us to look at the nullity when splitting along an edge in a

subdivided graph. In the following we will let G +
e
H denote the graph formed by

taking the disjoint union of G and H and adding the edge e = {x, y} which connects

vertex x ∈ G to y ∈ H . This graph was called an edge sum in [4] and the range of the

minimum rank of the edge sum was determined. Similarly, identifying x and y to a

common vertex v gives the graph we denote by G⊕
v
H , which has v as a cut-vertex.

Lemma 3.2. Let G = G1 +
e
G2 be a graph with bridge e = {x, y}. Then

M(G̊) = M(G̊1 ⊕
x
K2) +M(G̊2 ⊕

y
K2)− 1.

Proof. By the cut-vertex reduction formula (see, e.g., [14])

mr(G̊) = min
{
mr(G̊1 ⊕

x
K2) + mr(G̊2 ⊕

y
K2),mr(G̊1) + mr(G̊2) + 2

}
.

But for any graph H , we have mr(H ⊕K2) ≤ mr(H) + 1, so

mr(G̊) = mr(G̊1 ⊕
x
K2) + mr(G̊2 ⊕

y
K2).

Since n(G̊) = n(G̊1) + n(G̊2) + 1 = n(G̊1 ⊕
x
K2)− 1 + n(G̊2 ⊕

y
K2)− 1 + 1, then

n(G̊)−mr(G̊) = n(G̊1 ⊕
x
K2)−mr(G̊1 ⊕

x
K2) + n(G̊2 ⊕

y
K2)−mr(G̊2 ⊕

y
K2)− 1,

which is equivalent to the desired equation.

In the above lemma, we have used the cut-vertex reduction formula. The proof

of this result is constructive and preserves universal optimality for the matrices that

we consider (see [11, Theorem 2.19]). The next theorem is the final step in the proof

of our main result (Theorem 1.3).

Theorem 3.3. For every connected graph G and field F ,

M(F, G̊) = Z(G̊) = m(G)− n(G) + 1 + Z( ˚BF (G))
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and G̊ has a universally optimal matrix.

Proof. We proceed by induction on the number of vertices. If G is the graph on

a single vertex, then the formula gives 1 establishing the base case.

Now suppose that the result holds for all connected graphs on fewer than n

vertices, and consider a connected graph on n vertices. If each bridge in the graph is

incident to a leaf, then G is a single island with some pendent vertices and this result

was handled in Theorem 3.1. So we may assume that there is a bridge that is not

incident to a leaf.

Let e = {x, y} denote this bridge, so that the graph consists of component G1

with vertex x, component G2 with vertex y, and e joining x and y. Now consider the

graphs H1 = G1 ⊕
x
K2 and H2 = G2 ⊕

y
K2. We note that m(G) = m(H1)+m(H2)− 1

and n(G) = n(H1) + n(H2) − 2. Also by assumption neither G1 nor G2 is a single

vertex, and so both H1 and H2 are connected graphs with fewer than n vertices.

We now have

M(G̊) = M(G̊1 ⊕
x
K2) +M(G̊2 ⊕

y
K2)− 1

= M( ˚G1 ⊕
x
K2) +M( ˚G2 ⊕

y
K2)− 1

= M(H̊1) +M(H̊2)− 1

=
(
m(H1)− n(H1) + 1 + Z

(
˚BF (H1)

))

+
(
m(H2)− n(H2) + 1 + Z

(
˚BF (H2)

))
− 1

=
(
m(G) + 1

)
−
(
n(G) + 2) + 2 + Z

(
˚BF (H1)

)
+ Z

(
˚BF (H2)

)
− 1

= m(G)− n(G) + Z
(

˚BF (H1)
)
+ Z

(
˚BF (H2)

)
.

The first line is an application of Lemma 3.2, while the second line follows by noting

that adding a pendent vertex to a pendent vertex does not change the maximum

nullity of a graph, nor the property of having a universally optimal matrix. The

remainder reduces to substituting in the above information, using the induction hy-

pothesis on H1 and H2, and simplifying the result.

To conclude it suffices to show that

Z
(

˚BF (H1)
)
+ Z

(
˚BF (H2)

)
= 1 + Z

(
˚BF (G)

)
.

If we take an optimal set of zero forcing paths for Z
(

˚BF (G)
)
, then the vertex

corresponding to e will only be involved in a single zero forcing path. So we can use

the same zero forcing paths on H1 and H2 that we used for G where we might need

to break up one path (i.e., increase the total by one), thus the left hand side is at

most the right hand side.
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On the other hand, we can take an optimal set of zero forcing paths for

Z
(

˚BF (H1)
)
and Z

(
˚BF (H2)

)
where we insist that one of the zero forcing paths

must end at the pendent vertex we have added to G1 and that one of the zero forcing

paths must start at the pendent vertex we have added to G2 (note for a zero forcing

set Z, a pendent vertex must be in Z or Z-terminal, and these two properties can

be interchanged by reversing the zero forcing process [3, Theorem 2.6]). We can now

combine the two sets of forcing paths and glue two forcing paths together (reducing

the total by one). Thus, we can conclude that the right hand side is at most the left

hand side.

This establishes the equality and concludes the proof.

Remark 3.4. By Theorem 3.3, Z(G̊) = m(G) − n(G) + 1 + Z( ˚BF (G)), and

so the construction in Theorem 2.4 gives a minimum zero forcing set. In fact, if G

is 2-edge connected, every minimum zero forcing set of G̊ must contain exactly one

original vertex, which can be chosen arbitrarily, the remainder being edge-vertices.

To see this, if G̊ had a zero forcing set of size m(G) − n(G) + 2 with two or more

original vertices, say u and v, then there is a zero forcing process so that some original

vertex w is never used to force (i.e., either the last vertex forced is an original vertex

and this is w or the last vertex forced is an edge vertex and the neighbor of the

edge vertex that did not force it is w). Now construct a new graph G′ by adding

pendent vertices to u, v, and w, so that BF (G′) = K1,3. Then there is a zero

forcing set for G̊′ of size m(G′) − n(G′) + 2, i.e., use the zero forcing set of G̊ given

above and replace the vertices u and v by the pendent vertices we added adjacent

to them. Now forcing as before we will end at w, which can force out its pendent

vertex. But this is impossible since Theorem 3.3 shows that the minimum zero forcing

set of G′ has size m(G′) − n(G′) + 1 + Z( ˚BF (G′)) > m(G′) − n(G′) + 2 because

Z( ˚BF (G′)) = Z(BF (G′)) = 2.
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