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TPK COMPLETION OF PARTIAL MATRICES

WITH ONE UNSPECIFIED ENTRY∗

V. AKIN† , C.R. JOHNSON‡ , AND S. NASSERASR§

Abstract. Every partial TP2 (TP1) matrix with one unspecified entry has a TP2 (TP1) com-

pletion. For a given m-by-n pattern with one unspecified entry, the minimum set of conditions

characterizing TP3 completability is given. These conditions are at most eight polynomial inequali-

ties on the specified entries of the pattern. For k ≥ 3, patterns with one unspecified entry that are

TPk completable are also characterized, and conditions are described for completability otherwise.
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1. Introduction. An m-by-n matrix A is said to be TPk (totally positive-k)

if all its ℓ-by-ℓ minors are positive, for ℓ = 1, . . . , k. If k = min{m,n}, so that all

minors are positive, then A is called totally positive. A partial matrix is one in which

some entries are specified, while the remaining, unspecified, entries are free to be

chosen. A partial TPk matrix is a partial matrix all of whose fully specified minors

of order at most k are positive. A completion of a partial matrix is a particular

choice of values for the unspecified entries, resulting in a conventional matrix. The

pattern (which we may think of as an array) of a partial matrix is an inventory of

which entries are specified (and which are unspecified). A pattern P of specified

entries is called TPk completable if every partial TPk matrix with pattern P has a

TPk completion. A matrix completion problem asks which partial matrices have a

completion enjoying an identified property. In studying the completion problem for

TP matrices, understanding the completion problem for TPk matrices for k = 1, . . . , n

has proven to be helpful. It is obvious that a partial TP1 matrix is always TP1

completable. The problem of TP2 completion has been completely solved in [6].

In particular, it is known that any pattern with only one unspecified entry is TP2

completable. As a next step in this process, we consider the TPk completion of

patterns with one unspecified entry. It turns out that depending on the location of
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the unspecified entry and the value of k, the conditions for TPk completability vary.

Our objective is to describe such conditions.

In Section 2, some preliminary results are presented. Section 3 provides a family

of pairs of minors that do not produce extra conditions for TPk completability. In Sec-

tion 4, an explicit description of the minimum set of conditions for TP3 completability

of patterns with one unspecified entry is given. In Section 5, a combinatorial char-

acterization of TPk completable patterns, k ≥ 4, with one unspecified entry is given.

Finally, in the Appendix, a list of conditions for TP4 completability of a pattern is

given.

2. Background. Using Tarski-Seidenberg principle [1] and the fact that the set

of m-by-n TPk matrices form a semialgebraic set, we know that, for any pattern of

specified entries, there is a finite number of polynomial inequalities on the specified

entries that characterize the TPk completability of the pattern. However, for a given

pattern, neither the polynomial inequalities nor the number of these can be obtained

from Tarski-Seidenberg principle. Here, our purpose is to better understand efficient

lists of such inequalities for TPk completion of patterns with just one unspecified

entry.

For γ ⊆ {1, . . . , n}, the notation γc is used to denote the set {1, . . . , n}\γ. The set

of realm-by-nmatrices is denoted byMm,n, when m = n, we useMn instead ofMm,n.

For α ⊆ {1, . . . ,m} and β ⊆ {1, . . . , n}, the submatrix of A lying in the rows indexed

by α (αc) and the columns indexed by β (βc) is denoted by A[α, β] (A(α, β)). If α

and β are sets of consecutive numbers, then A[α, β] is called a contiguous submatrix

of A. A contiguous minor is defined similarly. A matrix A is called TPk-contiguous

if every contiguous minor of A of order ℓ = 1, . . . , k is positive.

The following known result is a useful tool throughout this work, see [2, 3] for a

proof.

Lemma 2.1. An m-by-n matrix A is TPk if and only if it is TPk-contiguous.

Suppose A is an m-by-n partial TPk matrix with one unspecified entry x in the

position (i, j). Let Cx be the set of all contiguous square submatrices of A of order

1, . . . , k that contain the unspecified entry x. The submatrix Sij of A that contains

all of the submatrices in Cx and has the minimum order is called the kth surrounding

submatrix of A with respect to (i, j). Thus, the order of Sij is at most (2k − 1)-by-

(2k − 1). Using Lemma 2.1, we have the following result that we use frequently.

Lemma 2.2. Let A be an m-by-n partial TPk matrix with one unspecified en-

try x in the position (i, j). Then A is TPk completable if and only if Sij is TPk

completable.
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Note that, Sij is TPk completable if and only if there is a value aij such that

replacing x by aij , implies positivity of every minor in Cx. Consider B = [buv] ∈ Cx,

and suppose x is in the (r, s) position of B. Then, by expanding the determinant of

B along its rth row, we have

(2.1) det(B) > 0 ⇐⇒ (−1)r+sxdet(Brs) +

ℓ
∑

p=1
p6=s

(−1)r+pbrpdet(Brp) > 0

in which Brp is the submatrix of B obtained by deleting the rth row and pth column.

Since B is partial TPk, det(Brs) > 0. Therefore, if r + s is odd, then (2.1) gives an

upper bound for x and if r + s is even, then (2.1) gives a lower bound for x. Let Lij

be the set of all lower bounds for x obtained from the inequalities in (2.1) and Uij

be the set of all upper bounds for x obtained from the inequalities in (2.1), for each

B ∈ Cx. In order to have a TPk completion, for every ℓ ∈ Lij and every u ∈ Uij , the

inequality ℓ < u should hold. This implies the following result.

Theorem 2.3. Consider the partial TPk matrix A with one unspecified entry in

the position (i, j). Then, A is TPk completable if and only if

max{ℓ}ℓ∈Lij
< min{u}u∈Uij

.

We note that because TPk contiguous is sufficient for TPk, Lemma 2.2 and The-

orem 2.3 can be applied to patterns with more than one unspecified entry as long as

they are far enough apart. For instance, suppose the pattern P has only two unspeci-

fied entries (p, q) and (r, s), where Spq and Srs do not share any entry (Spq ∩Srs = ∅),

then using Lemma 2.1, P is TPk completable if and only if each of Spq and Srs is

TPk completable. This can be generalized as the following.

Lemma 2.4. Suppose P is an m-by-n pattern with t unspecified entries in the

positions (iu, ju), u = 1, . . . , t. If for all u, v ∈ {1, . . . , t}, with u 6= v, we have

Siuju ∩ Sivjv = ∅, then P is TPk completable if and only if each Siuju , u ∈ {1, . . . , t}

is TPk completable.

Some of the inequalities in Theorem 2.3 are redundant, a family of such inequal-

ities is described in the next section.

3. Unconditional pairs of minors. In the previous section, we presented the

general conditions for TPk completability of patterns, when the unspecified entries

are far apart. However, computing all these conditions can be a tedious work. Prov-

identially, in a partial TPk matrix some of these lower bounds are always less than

some of the upper bounds. A family of such pairs of bounds are described in this

section.
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Consider a pattern P with exactly one unspecified entry x in the position (i, j).

Let P1 and P2 be two subpatterns of P containing x where the sum of the indices of

x in P1 is even and the sum of the indices of x in P2 is odd. Suppose A is a partial

TPk matrix with pattern P . Then, for the submatrix A1 corresponding to P1, the

inequality detA1 > 0 implies a lower bound for x, say LA1
, and for the submatrix

A2 corresponding to P2, the inequality detA2 > 0 implies an upper bound for x, say

UA2
. If for any partial TPk matrix A with pattern P , LA1

< UA2
, then the pair

of subpatterns P1 and P2 is called an unconditional pair of subpatterns. Otherwise,

such a pair is called a conditional pair of subpatterns. We use the term conditional

(unconditional) minors (or submatrices) when it refers to minors (or submatrices). A

trivial example for an unconditional pair of minors is a pair of 2-by-2 minors, since any

partial TP2 pattern with one unspecified entry is TP2 completable. In this section,

for a given pattern with one unspecified entry, a family of pairs of unconditional

subpatterns is determined.

The following lemma is proved in [3].

Lemma 3.1. Let T̃ℓ = [tij ] ∈ Mℓ be a permutation matrix with ti,ℓ−i+1 = 1, for

i = 1, . . . , ℓ. If A ∈ Mm,n is TPk, then both AT and T̃mAT̃n are TPk.

If a pair of minors is conditional (unconditional), then depending on their situa-

tion and using Lemma 3.1, there can be three more pairs of conditional (unconditional)

minors. This is useful in this work.

The following lemma can be obtained by the short-term Plüker identity; see [3].

We present a different proof using Sylvester’s identity.

Lemma 3.2. Let A ∈ Mn,n+2, and k, j ∈ {2, . . . , n+1}. Suppose α = {1, . . . , n},

β = {1, . . . , n+ 2}\{j, k}. If j < k, then

detA[α, {1, k}c] detA[α, {j, n+ 2}c]− detA[α, {1, j}c] detA[α, {k, n+ 2}c]

= detA[α, {j, k}c] detA[α, {1, n+ 2}c].

Proof. Let rj and rk be row vectors in R
n+2 where rj [1] = (−1)1+j , rk[n + 2] =

(−1)n+k, and all other entries of both vectors are zero. Insert row rj between rows

j − 1 and j of A and rk between rows k − 2 and k − 1 of A to obtain the matrix

A′. Rename the rows of A′ from 1, . . . , j − 1, rj , j, j + 1, . . . , k − 2, rk, k − 1, . . . , n

to 1, 2, . . . , n + 2, with the same order. Then, A′ is of the following form, where

A′[β, {1, . . . , n+ 2}] = A.
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A′ =

1 . . . j . . . k . . . n+ 2

1
...

j − 1

rj (−1)1+j 0 0 . . . 0 . . . 0

j
...

k − 2

rk 0 . . . 0 . . . 0 0 (−1)n+k

k − 1
...

n

Now, the matrix B ∈ M2 with

B =

[

detA′[β ∪ {j}, β ∪ {j}] detA′[β ∪ {j}, β ∪ {k}]

detA′[β ∪ {k}, β ∪ {j}] detA′[β ∪ {k}, β ∪ {k}]

]

satisfies the Sylvester’s identity (see [5]):

detB = (detA′[β])(n+2)−n−1 detA′ = detA[α, {j, k}c] detA[α, {1, n+ 2}c].

So, detA[α, {1, k}c] detA[α, {j, n+ 2}c] − detA[α, {1, j}c] detA[α, {k, n+ 2}c]

= detA[α, {j, k}c] detA[α, {1, n+ 2}c].

Using the above lemma, a family of unconditional pairs of minors is given as

follows.

Lemma 3.3. Consider a partial TPk matrix A with only one unspecified entry x in

the position (i, j). Suppose two ℓ-by-ℓ, ℓ ≤ k, contiguous submatrices of A lie in rows

r1, r1+1, . . . , r1+ℓ−1 and columns c1, c1+1, . . . , c1+ℓ. If j ∈ {c1+1, . . . , c1+ℓ−1},

then the lower bound obtained from one of the minors is less than the upper bound

obtained from the other minor.

Proof. Without loss of generality suppose A is an ℓ-by-(ℓ + 1) matrix, {r1, r1 +

1, . . . , r1 + ℓ − 1} = {1, 2, . . . , ℓ}, {c1, c1 + 1, . . . , c1 + ℓ} = {1, 2, . . . , ℓ + 1}, and let

i + j be even. The proof for i + j odd is similar. By expanding the determinant of
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each of the submatrices along the ith row, we have

xdetA({i}, {j, ℓ+ 1}) +
ℓ

∑

t=1
t6=j

(−1)i+tait detA({i}, {t, ℓ+ 1}) > 0, and

− xdetA({i}, {1, j}) +
ℓ+1
∑

t=2
t6=j

(−1)i+t−1ait detA({(i}, {1, t}) > 0.

Therefore, there exists x such that

ℓ+1
∑

t=2
t6=j

(−1)i+t−1ait detA({i}, {1, t})

detA({i}, {1, j})
> x >

ℓ
∑

t=1
t6=j

(−1)i+t−1ait detA({i}, {t, ℓ+ 1})

detA({i}, {j, ℓ+ 1})

if and only if

ℓ
∑

t=2
t 6=j

(−1)i+t−1
ait [detA({i},{1, t}) detA({i},{j, ℓ+ 1})−detA({i},{t, ℓ+ 1}) detA({i},{1, j})]

+
[

(−1)i+ℓ
ai(ℓ+1)detA({i},{j, ℓ+ 1})+ (−1)i+1

ai1detA({i},{1, j})
]

detA({i}, {1, ℓ+ 1})> 0.

Using Lemma 3.2, this is equivalent to

detA({i},{1, ℓ+ 1})

[

j−1
∑

t=2

(−1)i+t−1
ait (−detA({i}, {t, j}))

ℓ
∑

t=j+1

(−1)i+t−1
aitdetA({i},{t, j})

]

+

+
[

(−1)i+ℓ
ai(ℓ+1) detA({i},{j, ℓ+ 1}) + (−1)i+1

ai1 detA({i},{1, j})
]

detA({i},{1, ℓ+ 1}) > 0

⇐⇒
[

j−1
∑

t=2

(−1)i+t
aitdetA({i},{t, j})+

ℓ
∑

t=j+1

(−1)i+t−1
aitdetA({i},{t, j})

]

detA({i},{1, ℓ+ 1})

+
[

(−1)i+ℓ
ai(ℓ+1)detA({i},{j, ℓ+ 1}) + (−1)i+1

ai1 detA({i},{1, j})
]

detA({i}, {1,ℓ + 1}) > 0

⇐⇒
[

j−1
∑

t=1

(−1)i+t
aitdetA({i},{t, j})+

ℓ+1
∑

t=j+1

(−1)i+t−1
ait detA({i},{t, j})

]

detA({i},{1, ℓ+ 1}) > 0

⇐⇒ detA({i}, {j})detA({i}, {1, ℓ+ 1})>0.

The last inequality holds since the matrix is partial TPk.

Therefore, in studying the TPk completability of a given pattern, comparison of

lower and upper bounds coming from subpatterns satisfying the assumption of Lemma
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3.3 need not be made. It is not known whether the remaining pairs of subpatterns

are all conditional pairs. However, in the next section, we show that the inequalities

obtained from some of the remaining pairs may be implied by the inequalities obtained

from others (see the proof of Lemma 4.3 for example). Therefore, the set of inequalities

obtained from all of the conditional pairs of subpatterns may not be the minimal set

of polynomial inequalities on the specified entries (in addition to being partial TPk)

for a pattern to be TPk completable. We call two conditional pairs of subpatterns

independent if the conditions obtained from one pair cannot be implied from those of

the other pair. The minimum set of independent pairs of conditional subpatterns, for

k = 3, is described next.

4. TP3 completion. In this section, necessary and sufficient conditions for TP3

completability of a pattern with one unspecified entry, in the form of minimal poly-

nomial inequalities in the specified entries, are given.

In studying the TP3 completion problem, the smallest order to consider is a

pattern of order 3-by-n, n ≥ 3. Note that, a 3-by-n TP3 matrix is also TP, so using

Theorem 2.8 of [4], we have the following lemma. We also prove it directly by checking

all possible conditional minors.

Lemma 4.1. Every partial TP3 matrix of order 3-by-n, n ≥ 3, with exactly one

unspecified entry is TP3 completable.

Proof. Using Lemma 2.2, it is enough to consider a 3-by-5 partial TP3 matrix

A where the unspecified entry lies in the (2, 3) position. Using Lemma 3.3, the pairs

of minors of order 3 are unconditional. Since A is TP2 completable, the only minors

that may produce conditions are A[{1, 2, 3}, {1, 2, 3}] and A[{2, 3}, {3, 4}]. The upper

bound/ lower bound condition formed by these minors is

a24a33

a34
<

a13(a21a32 − a22a31) + a33(a11a22 − a12a21)

a11a32 − a12a31
.(4.1)

Since a33 detA[{1, 2, 3}, {1, 2, 4}]> 0, we have

a33 [a14(a21a32 − a22a31) + a34(a11a22 − a12a21)− a24(a11a32 − a12a31)] > 0.(4.2)

On the other hand, a13a34 > a14a33 and a21a32−a22a31 > 0, thus, using the inequality

(4.2), we have

a13a34(a21a32 − a22a31) + a34a33(a11a22 − a12a21)− a24a33(a11a32 − a12a31) > 0

which is exactly the inequality (4.1).

Let A be an m-by-n matrix, and suppose α ⊆ {1, . . . ,m} and β ⊆ {1, . . . , n}

with |α| = |β|. If x is an unspecified entry in the position (i, j) ∈ α × β, then the
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determinant of the submatrix A[α, β] is a function of x. The value of this function at

x = 0 is denoted by detA[α, β](0).

Lemma 4.2. Let P be a 4-by-4 partial TP3 pattern with exactly one unspecified

entry x lying in the position (i, j). Then P is TP3 completable if and only if (i, j) 6=

(2, 3), (3, 2). Moreover, for a partial TP3 matrix A with pattern P , if (i, j) = (2, 3),

then A has a TP3 completion if and only if

−detA[{2, 3, 4}, {1, 2, 3}](0)

detA[{3, 4}, {1, 2}]
<

detA[{1, 2}, {3, 4}](0)

detA[{1}, {4}]
,

and if (i, j) = (3, 2), then A has a TP3 completion if and only if

−detA[{1, 2, 3}, {2, 3, 4}](0)

detA[{1, 2}, {3, 4}]
<

detA[{3, 4}, {1, 2}](0)

detA[{4}, {1}]
.

Proof. If x lies in any of the first or last columns (or rows), then using Lemma

2.2, and Lemma 4.1, the pattern is TP3 completable. If x lies in the (2, 2) posi-

tion, the only pairs of submatrices that contain x and do not lie in a 3-by-k subma-

trix, k = 3, 4, are the pairs of submatrices A[{1, 2}, {1, 2}], A[{2, 3, 4}, {2, 3, 4}] and

A[{1, 2, 3}, {1, 2, 3}], A[{2, 3, 4}, {2, 3, 4}]. Since the sums of the indices of x have the

same parity in both submatrices in each pair, both of these pairs are unconditional.

The case (i, j) = (3, 3) is similar.

If x lies in the position (2, 3), then the only pair of submatrices that contains x

but do not lie in a 3-by-k submatrix, k = 3, 4, is A[{2, 3, 4}, {1, 2, 3}], A[{1, 2}, {3, 4}].

Therefore, the following inequality is a sufficient condition for a partial TP3 matrix

A to have a TP3 completion

−detA[{2, 3, 4}, {1, 2, 3}](0)

detA[{3, 4}, {1, 2}]
<

detA[{1, 2}, {3, 4}](0)

detA[{1}, {4}]
.(4.3)

The following example shows that the above inequality is also a necessary condition

for a TP3 completion. Consider the partial TP3 matrix

A =









1 1 1 1

1 4.9 x 8

1 6 10.9 16

1 8 15 31









,

where the inequality (4.3) does not hold. The inequality detA[{2, 3, 4}, {1, 2, 3}] > 0

implies x > 8.645, while detA[{1, 2}, {3, 4}]> 0 implies x < 8. Thus, there is no value

for x that forms a TP3 completion for A. The proof for the case of (i, j) = (3, 2) is

similar.
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The following lemma explicitly describes the conditions for TP3 completability of

a 5-by-5 partial TP3 matrix with one unspecified entry. If the sums of the indices of

x in a submatrix B is odd (even), then the positivity of detB will result in an upper

bound (lower bound) for x, we use the notation ↓ (↑)B to emphasize this.

Theorem 4.3. Let A be a 5-by-5 partial TP3 matrix with one unspecified entry

in the position (i, j). Then

i. if i ∈ {1, 5} or j ∈ {1, 5} or (i, j) = (2, 2) or (i, j) = (4, 4), then A has a TP3

completion without any extra condition,

ii. if (i, j) = (2, 4), then A has a TP3 completion if and only if

−detA[{2, 3, 4}, {2, 3, 4}](0)

detA[{3, 4}, {2, 3}]
<

detA[{1, 2}, {4, 5}](0)

detA[{1}, {5}]
,

if (i, j) = (4, 2), then A has a TP3 completion if and only if

−detA[{2, 3, 4}, {2, 3, 4}](0)

detA[{2, 3}, {3, 4}]
<

detA[{4, 5}, {1, 2}](0)

detA[{5}, {1}]
,

iii. if (i, j) = (2, 3), then A has a TP3 completion if and only if

−detA[{2, 3, 4}, {3, 4, 5}](0)

detA[{3, 4}, {4, 5}]
<

detA[{1, 2, 3}, {1, 2, 3}](0)

detA[{1, 3}, {1, 2}]
,

and

−detA[{2, 3, 4}, {1, 2, 3}](0)

detA[{3, 4}, {1, 2}]
<

detA[{1, 2, 3}, {3, 4, 5}](0)

detA[{1, 3}, {4, 5}]
,

the cases (i, j) = (3, 2), (3, 4), or (4, 3) are similar.

iv. if (i, j) = (3, 3), then there are eight polynomial inequalities on the specified en-

tries of A that need to hold in order for A to have a TP3 completion.

Proof.

i. If i ∈ {1, 5} or j ∈ {1, 5}, using Lemma 2.2, it is enough to consider a 3-by-5

(or 5-by-3) contiguous submatrix containing x, using Lemma 4.1, A has a TP3

completion. If (i, j) = (2, 2) or (4, 4), it is enough to consider a 4-by-4 contiguous

submatrix B of A such that x lies in the (2, 2) or (3, 3) position of B, respectively,

using Lemma 4.2, A has a TP3 completion.

ii. If (i, j) = (2, 4) or (4, 2), again it is enough to consider a 4-by-4 contiguous

submatrix B of A containing x such that x lies in the (2, 3) or (3, 2) position

of B, respectively. By Lemma 4.2, conditions for TP3 completability of A are

inequalities given in the statement.

iii. Suppose x is in the (2, 3) position. Using Lemma 2.2, the conditional pairs of

submatrices lie in A[{1, 2, 3, 4}, {1, 2, 3, 4, 5}]. The only possible conditional cases
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that we need to consider are (a) both submatrices are of order 3; (b) one of the

submatrices is of order 2 and the other is 3.

(a) In this case, there are nine such pairs that are listed below:

↓ A[{1, 2, 3}, {1, 2, 3}], ↑A[{1, 2, 3}, {2, 3, 4}],

↓ A[{1, 2, 3}, {1, 2, 3}], ↑A[{2, 3, 4}, {1, 2, 3}],

↓ A[{1, 2, 3}, {1, 2, 3}], ↑A[{2, 3, 4}, {3, 4, 5}],(4.4)

↓ A[{1, 2, 3}, {3, 4, 5}], ↑A[{1, 2, 3}, {2, 3, 4}],

↓ A[{1, 2, 3}, {3, 4, 5}], ↑A[{2, 3, 4}, {1, 2, 3}],(4.5)

↓ A[{1, 2, 3}, {3, 4, 5}], ↑A[{2, 3, 4}, {3, 4, 5}],

↓ A[{2, 3, 4}, {2, 3, 4}], ↑A[{1, 2, 3}, {2, 3, 4}],

↓ A[{2, 3, 4}, {2, 3, 4}], ↑A[{2, 3, 4}, {1, 2, 3}],

↓ A[{2, 3, 4}, {2, 3, 4}], ↑A[{2, 3, 4}, {3, 4, 5}].

Except the pairs of submatrices in (4.4) and (4.5), all other seven pairs lie in
a 3-by-5 or 5-by-3 submatrix, so using Lemma 4.1, they are unconditional.
Moreover, the matrices A1 and A2 below show that the two pairs in (4.4)
and (4.5) are both conditional and independent. Therefore, the inequalities
given in the statement must hold for a TP3 completion.

A1 =











10 60 6 5 2

1 8.99 x 8.61 6

1 9 8 10 8.35

1 10 11 300 500











, A2 =











1 2 2.95 5 7

1 3.2 x 16 26.25

1 4 12 31 54

1 5 18 51 97











.

In the partial TP3 matrix A1, the inequalities detA1[{1, 2, 3}, {1, 2, 3}] > 0

and detA1[{2, 3, 4}, {3, 4, 5}] > 0 imply 7.9796 < x < 7.9753, and in the

partial TP3 matrix A2, the inequalities detA2[{1, 2, 3}, {3, 4, 5}] > 0, and

detA2[{2, 3, 4}, {1, 2, 3}] > 0 imply 7.2 < x < 7.15542. Therefore, there is

no TP3 completion for any of the matrices A1 and A2.

(b) In this case, the only pair with different parities for the sum of indices of

x that are not contained in a 3-by-4 or 3-by-5 submatrix (or the transpose

of those) is ↑ A[{2, 3, 4}, {1, 2, 3}], ↓A[{1, 2}, {3, 4}]. This can be considered

as an unspecified entry in the (2, 3) position of a 4-by-4 partial TP3 matrix,

using Lemma 4.2, the extra condition for TP3 completion is

−detA[{2, 3, 4}, {1, 2, 3}](0)

detA[{3, 4}, {1, 2}]
<

detA[{1, 2}, {3, 4}](0)

detA[{1}, {4}]
=

a13a24

a14
.(4.6)

However, (4.6) is obtained by the inequality produced by matrices in (4.5)

and the assumption of partial TP3, as shown below, so it is not an indepen-

dent condition for having a TP3 completion.
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The inequality obtained from the pair in (4.5) is

−detA[{2, 3, 4},{1, 2, 3}](0)

detA[{3, 4}, {1, 2}]
<
a13detA[{2, 3}, {4, 5}]+a33detA[{1, 2}, {4, 5}]

detA[{1, 3}, {4, 5}]
.

So it is enough to show that

a13detA[{2, 3}, {4, 5}] + a33detA[{1, 2}, {4, 5}]

detA[{1, 3}, {4, 5}]
<

a13a24

a14
.(4.7)

To show this, we have the following

a14a25(a33a14 − a34a13) < a15a24(a33a14 − a34a13) ⇐⇒

a14a25a33a14 − a14a25a34a13 − a15a24a33a14 < −a15a24a34a13 ⇐⇒

a13a14a24a35 + a14a25a33a14 − a14a25a34a13 − a15a24a33a14 <

a13a14a24a35 − a15a24a34a13 ⇐⇒

a13(a24a35 − a25a34) + a33(a14a25 − a15a24)

a14a35 − a15a34
<

a13a24

a14
,

this is exactly the inequality (4.7).

Therefore, there are two independent conditions necessary for the 5-by-5

pattern with (2, 3) unspecified. By Lemma 3.1, it can be shown that a

similar result is true for the unspecified entry in positions (3, 2), (3, 4), and

(4, 3).

iv. For the case (i, j) = (3, 3), we need to consider the contiguous 5-by-5 matrix. In

a similar way to the previous case, we consider two cases:

(a) Suppose both pairs of submatrices are of order 3. There are nine 3-by-3

contiguous submatrices containing x:

↑ A[{1, 2, 3}, {1, 2, 3}],(4.8)

↑ A[{1, 2, 3}, {3, 4, 5}],(4.9)

↑ A[{2, 3, 4}, {2, 3, 4}],(4.10)

↑ A[{3, 4, 5}, {1, 2, 3}],(4.11)

↑ A[{3, 4, 5}, {3, 4, 5}],(4.12)

↓ A[{1, 2, 3}, {2, 3, 4}],(4.13)

↓ A[{2, 3, 4}, {1, 2, 3}],(4.14)

↓ A[{2, 3, 4}, {3, 4, 5}],(4.15)

↓ A[{3, 4, 5}, {2, 3, 4}].(4.16)

These pairs create 20 intervals and the following 12 pairs of them satisfy

conditions of Lemma 3.3, so they are unconditional:

{(4.8), (4.13)}, {(4.8),(4.14)}, {(4.9), (4.13)}, {(4.9), (4.15)},
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{(4.10),(4.13)}, {(4.10),(4.14)}, {(4.10),(4.15)}, {(4.10),(4.16)},

{(4.11), (4.14)},{(4.11),(4.16)}, {(4.12),(4.15)}, {(4.12),(4.16)}.

The remaining eight pairs are

(4.17) {(4.8), (4.15)}, {(4.8), (4.16)}, {(4.12), (4.13)}, {(4.12), (4.14)},

and

(4.18) {(4.9), (4.14)}, {(4.9), (4.16)}, {(4.11), (4.13)}, {(4.11), (4.15)}.

Using Lemma 3.1, it is enough to show that only one of the pairs in (4.17)
and (4.18) are conditional. In the following matrices B1 and B2, the only
conditional pairs of minors are {(4.8), (4.15)} and {(4.9), (4.16)}, respec-
tively, and the inequalities obtained from all other seven pairs hold. Thus,
these eight pairs of minors are conditional and the conditions obtained from
them are independent.

B1 =















500 300 11 10 1

8.35 10 8 9 1

6 8.61 x 8.99 1

2 5 6 60 10

1 3 4 80 20















, B2 =















1 1 1 1 1

1 2 3.2 4 5

1 2.95 x 12 18

1 5 16 31 51

1 7 26.25 54 97















.

The polynomial inequalities obtained from conditional pairs of minors listed

in (4.17) and (4.18) are listed below:

− detA[{1, 2, 3}, {1, 2, 3}](0)

detA[{1, 2}, {1, 2}]
<

detA[{2, 3, 4}, {3, 4, 5}](0)

detA[{2, 4}, {4, 5}]
,

− detA[{1, 2, 3}, {1, 2, 3}](0)

detA[{1, 2}, {1, 2}]
<

detA[{3, 4, 5}, {2, 3, 4}](0)

detA[{4, 5}, {2, 4}]
,

− detA[{3, 4, 5}, {3, 4, 5}](0)

detA[{4, 5}, {4, 5}]
<

detA[{1, 2, 3}, {2, 3, 4}](0)

detA[{1, 2}, {2, 4}]
,

− detA[{3, 4, 5}, {3, 4, 5}](0)

detA[{4, 5}, {4, 5}]
<

detA[{2, 3, 4}, {1, 2, 3}](0)

detA[{2, 4}, {1, 2}]
,

− detA[{1, 2, 3}, {3, 4, 5}](0)

detA[{1, 2}, {4, 5}]
<

detA[{2, 3, 4}, {1, 2, 3}](0)

detA[{2, 4}, {1, 2}]
,

− detA[{1, 2, 3}, {3, 4, 5}](0)

detA[{1, 2}, {4, 5}]
<

detA[{3, 4, 5}, {2, 3, 4}](0)

detA[{4, 5}, {2, 4}]
,

− detA[{3, 4, 5}, {1, 2, 3}](0)

detA[{4, 5}, {1, 2}]
<

detA[{1, 2, 3}, {2, 3, 4}](0)

detA[{1, 2}, {2, 4}]
,

− detA[{3, 4, 5}, {1, 2, 3}](0)

detA[{4, 5}, {1, 2}]
<

detA[{2, 3, 4}, {3, 4, 5}](0)

detA[{2, 4}, {4, 5}]
.
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(b) Now, consider the pairs of submatrices containing x where one is of order 2

and the other one has order 3. The only cases for which they do not lie in

a 3-by-5 or its transpose submatrix are

↑ A[{1, 2, 3}, {3, 4, 5}], ↓A[{3, 4}, {2, 3}],(4.19)

↑ A[{3, 4, 5}, {1, 2, 3}], ↓A[{2, 3}, {3, 4}].(4.20)

Both of these pairs are contained in a 4-by-4 submatrix. The pair of sub-

matrices in (4.19) creates the following condition:

−detA[{1, 2, 3}, {3, 4, 5}](0)

detA[{1, 2}, {4, 5}]
<

detA[{3, 4}, {2, 3}](0)

detA[{4}, {2}]
=

a32a43

a42
.

We show that this inequality is obtained from being partial TP3 and the

inequality produced by the pair of submatrices in (4.9) and (4.16), that is

−detA[{1, 2, 3},{3, 4, 5}](0)

detA[{1, 2},{4, 5}]
<

a32detA[{4, 5},{3, 4}]+a34detA[{4, 5},{2, 3}]

detA[{4, 5}, {2, 4}]
.

It is enough to show that

a32detA[{4, 5}, {3, 4}] + a34detA[{4, 5}, {2, 3}]

detA[{4, 5}, {2, 4}]
<

a32a43

a42
.(4.21)

The proof for the inequality (4.21) is similar to that of the inequality (4.7),

and is omitted.

Similarly, we can show that the condition obtained from the submatrices in (4.11)

and (4.15) and the assumption of partial TP3 imply the condition obtained by (4.20).

So the case of 2-by-2 versus 3-by-3 does not create extra independent conditions.

Therefore, when (i, j) = (3, 3), there are eight independent conditions needed to

ensure the TP3 completability of a 5-by-5 pattern.

For an m-by-n, m,n ≥ 5, pattern P with one unspecified entry, Lemma 2.2 can

be used to reduce the checking for TP3 completion of P to that of a subpattern of

order at most 5-by-5. Theorem 4.3, then can be used in the corresponding Sij to

compute all the conditions for TP3 completability.

5. TPk completion of patterns with one unspecified entry. In this section,

a characterization of TPk completable patterns with one unspecified entry, k ≥ 4, is

given.

Lemma 5.1. Let A be a k-by-k partial TP matrix. For any r ≥ 0, and ℓ > k,

matrix A can be contained contiguously in a partial TPk+r matrix of order ℓ.
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Proof. This can be shown by repeatedly using Lemma 2.4 in [4].

Lemma 5.2. Let P be an m-by-n pattern, n ≥ m ≥ 4, with one unspecified entry

in the position (i, j). Suppose i + j > 4 and i + j < m+ n − 2. Then P is not TPk

completable, for k ≥ 4.

Proof. We show that there is a partial TPk matrix with pattern P and with

no TPk completion. For this, start with a 4-by-4 partial TP matrix B with no TP

completion. There is such a matrix by [4]. Considering the location of x in P , and

using Lemma 5.1, extend B to a partial TPk matrix A, such that A has pattern

P . There is no TPk completion for A, with k ≥ 4, since otherwise there would be

a TP4 (and so TP) completion for B. This implies that the pattern P is not TPk

completable.

In order to find the submatrix B described above, we consider the following cases

for (i, j)

1. If i ≤ m − 3 and j ≥ 4, then x lies in the (1, 4) position of the submatrix

A[{i, i+ 1, i+ 2, i+ 3}, {j − 3, j − 2, j − 1, j}].

2. If 2 ≤ i ≤ m and j = 3, then x lies in the (2, 3) position of the submatrix

A[{i− 1, i, i+ 1, i+ 2}, {1, 2, 3, 4}].

3. If 3 ≤ i ≤ m and j = 2, then x lies in the (3, 2) position of the submatrix

A[{i− 2, i− 1, i, i+ 1}, {1, 2, 3, 4}].

4. If 4 ≤ i ≤ m and j = 1, then x lies in the (4, 1) position of the submatrix

A[{i− 3, i− 2, i− 1, i}, {1, 2, 3, 4}].

5. If (i, j) = (m − 2, n − 1), (m − 1, n − 2), (m,n − 3), then the submatrix

A[{m−3,m−2,m−1,m}, {n−3, n−2, n−1, n}] has (i, j) in its off-diagonal

entries.

6. If (i, j) = (m− 2, n− 2), (m− 1, n− 3), since i + j > 4, then m + n > 8, so

either m > 4 or n > 4, in the former case the submatrix A[{m−4,m−3,m−

2,m− 1}, {n− 3, n− 2, n− 1, n}] has (i, j) in its off-diagonal entries, in the

latter case the submatrix A[{m−3,m−2,m−1,m}, {n−4, n−3, n−2, n−1}]

has (i, j) in its off-diagonal entries.

7. If (i, j) = (m − 2, n − 3), then again using i + j > 4 the smallest possible

values for i and j are (i, j) = (4, 6), (i, j) = (5, 5), and (i, j) = (6, 4). The

submatrices A[{m− 3,m− 2,m− 1,m}, {n− 5, n− 4, n− 3, n− 2}], A[{m−

4,m− 3,m− 2,m− 1}, {n− 4, n− 3, n− 2, n− 1}], and A[{m− 5,m− 4,m−

3,m − 2}, {n − 3, n − 2, n − 1, n}] contain x on their anti-diagonal entries,

respectively.
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In each of the above cases, the obtained 4-by-4 partial TP4 pattern is not TP4 com-

pletable; see [4]. This completes the proof.

Lemma 5.3. Let P be an m-by-n pattern, n ≥ m ≥ 4, with one unspecified entry

x in the position (i, j). Suppose i + j ≤ 4 or i + j ≥ m + n − 2. Then P is TPk

completable for k ≥ 4.

Proof. Let A be a partial TPk matrix with pattern P . We consider the following

cases:

1. If i = 1, then all of the contiguous minors of order at most k that contain

x are contained in a k-by-(k + 3) submatrix, say B. Since A is partial TPk,

and B has minors of order less than or equal to k, the submatrix B is in fact

partial TP. The unspecified entry lies in the (i, j) position of B, with i+j ≤ 4,

using [4], B is TP (and therefore TPk) completable. Using contiguity, there

is a TPk completion for A. By similar arguments, it can be shown that there

is a TPk completion for A if j = 1, i = m, and j = n.

2. If i = j = 2, then the contiguous minors of order at most k containing x are

contained in a (k+1)-by-(k+1) submatrix. However, the only minor of order

k + 1 in this submatrix is the determinant of the entire submatrix, and that

contains the unspecified entry, so there are no minors of order k+1 consisting

of only specified entries. Therefore, the submatrix has only minors of order

at most k, and because A is partial TPk, the submatrix is partial TP. The

unspecified entry lies in the (2, 2) position in this partial TP submatrix, and

as i+ j ≤ 4, the submatrix has a TP (and so TPk) completion. Again using

contiguity, there is a TPk completion for A. By similar arguments, it follows

that there is a TPk completion for A if i = m− 1 and j = n− 1.

Lemmas 5.2 and 5.3 imply the following results.

Theorem 5.4. For m,n, k ≥ 4, an m-by-n pattern P with one unspecified entry

in the (i, j) position is TPk completable if and only if i+ j ≤ 4 or i+ j ≥ m+n− 2.

Theorem 5.5. Let P be an m-by-n pattern with one unspecified entry. If P is

TPk completable, then P is TPk−1 completable.

Proof. We know that every pattern with exactly one unspecified entry is both

TP1 and TP2 completable. So the statement is true for k < 4. For k ≥ 4, the result

follows from Theorem 5.4.

6. Appendix. Characterizing explicit conditions for TPk completability, k ≥ 4,

using only upper bounds and lower bounds, requires tedious effort. Here we consider

a 7-by-7 partial TP4 matrix A where the (4, 4) entry is unspecified. There are sixteen

4-by-4 contiguous minors containing the unspecified entry, eight of which produce
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lower bounds, and eight produce upper bounds. We use the following labelling for

the submatrices of A of order 4 that produce upper bound (Ui) or lower bound (Li)

for x.

L1 = A[{1234}, {1234}], L2 = A[{1234}, {3456}], L3 = A[{2345}, {2345}],

L4 = A[{2345}, {4567}], L5 = A[{3456}, {1234}], L6 = A[{3456}, {3456}],

L7 = A[{4567}, {1234}], L8 = A[{4567}, {4567}], U1 = A[{1234}, {2345}],

U2 = A[{1234}, {4567}], U3 = A[{2345}, {1234}], U4 = A[{2345}, {3456}],

U5 = A[{3456}, {2345}], U6 = A[{3456}, {4567}], U7 = A[{4567}, {1234}],

U8 = A[{4567}, {3456}].

So, there are 64 upper bound/lower bound pairs obtained from only 4-by-4 minors.

From these minors 24 of them satisfy conditions of Lemma 3.3 and so they are uncon-

ditional pairs of minors. However, the following list of matrices together with Lemma

3.1 show that the remaining pairs of minors are conditional. In addition, there are

eight conditions obtained from the TP3 case. Moreover, there are more pairs of minors

(of order 4-by-4 with either 2-by-2 or 3-by-3) that are not known to be conditional or

unconditional.

6.1. A list of partial TP4 matrices with no TP4 completion.

L1 > U2 :









100 12 6 3 1 1 1

1 2 3 4 5 6 7

1 3 5 7 9 11 20

1 4 9 x 20 30 262.7









.

L4 > U3 :









100 12 6 3 1 1 1

1 2 3 3 5 6 7

1 3 5 x 9 11 20

1 4 9 10 20 30 262.7









.

L1 > U4 :















57 12.1 5.95 3.46 1 1

1 2 3 4 5 6.1

1.15 3 4.998 7 9 11

1.09 4 9.2 x 20 30

.999 5.4 15.49 26 40 200















.
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L1 > U6 :



















1 1.2 1 1.0099 1 1 1

1 4 5 6.989 8 9 10

1 6 9 16 21.0005 27 35.325

1.000101 7 12.0925 x 38 56.01 85

1 8 16 38.999 69.0001 116 206

1 9 22 64.55 136 268.325 577



















.

L2 > U5 :



















1 1 1.108 1 1 1

1 1.55877 2.95047 4.41994 5.59978 5.70515

1 1.69127 4.15273 7.44402 10.4814 11.3799

1 3.20442 x 44.1068 71.1925 84.8527

1 3.66803 23.3806 59.95 100.867 127.887

1 4.16746 29.581 80.9181 144.658 206.988



















.

L2 > U3 :















1 1 1 1 1 1

1 1.02546 1.7817 2.02443 2.28748 3.99454

1 1.27716 10.6119 13.7854 17.2935 40.8292

1 1.57735 21.3954 x 36.8739 103.157

1 2.13274 42.37 56.956 81.9643 347.708















.

L2 > U6 :



















1 1.173 1 1 1

1 1.66861 2.15911 2.54789 2.74514

1 2.43216 3.98167 5.85376 7.10803

1.0032 x 4.35477 7.75572 10.6744

1 2.744 4.92001 12.5234 20.7245

1 3.35 6.75196 77.476 176.401



















.

L2 > U7, L3 > U7 :























500 1 1 1.01 1 1

1 1.89299 2.69541 3.06855 3.39843 4.55957

1 2.98368 5.64721 7.41 9.22161 15.6336

1 3.7812 8.21308 x 16.775 33.0214

1 4.84931 11.7806 19.464 28.8714 65.2499

1 5.65706 14.8655 28.53 46.3549 129.497

1 7.44993 22.0492 51.7033 97.8835 10000000























.
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L3 > U2 :















1 1 1 1 1 1

1 1.85217 2.2313 2.53312 2.95498 3.29232

1 2.46495 3.62929 6.17578 9.87553 13.0198

1 2.983 x 11.9684 23.14701 32.9

1 2.98379 7.015 20.1909 45.6336 81.9216















.

L3 > U6 :















1.0001 1 1 1 1 1

1 1.2081 1.9291 2.75604 3.01261 3.61019

1 1.86343 x 11.8739 14.3995 21.3672

1.021 3.19352 14.3493 33.6922 43.3319 73.0577

1 4.05599 20.2848 49.0769 64.9434 116.177















.
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