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Abstract. Let G be a graph and L(G) be the Laplacian matrix of G. In this article, we

first point out that the sequence of the moduli of Laplacian coefficients of G is log-concave and

hence unimodal. Using this fact, we provide an upper bound for the partial sums of the Laplacian

eigenvalues of G, based on coefficients of its Laplacian characteristic polynomial. We then obtain

some lower bounds on the algebraic connectivity of G. Finally, we investigate the mode of such

sequences.
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1. Introduction. Throughout this paper, we consider simple undirected graphs

having n vertices and m edges. For a given graph G, let V (G) and E(G) denote the

vertex and the edge set ofG, respectively. Let A(G) be the adjacency matrix ofG. The

Laplacian matrix and signless Laplacian matrix of G are defined as L(G) = D(G) −
A(G) and Q(G) = D(G)+A(G), respectively, where D(G) is a diagonal matrix whose

diagonal entries are vertex degrees of G. The eigenvalues of matrices L(G) and Q(G)

are denoted by µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) = 0 and ν1(G) ≥ ν2(G) ≥ · · · ≥ νn(G),

respectively. As it is well-known, L(G) and Q(G) are positive semi-definite, and they

have the same characteristic polynomial if and only if the graph G is bipartite. The

second smallest eigenvalue of L(G), µn−1(G), is called the algebraic connectivity of

G, and it is positive if and only if the graph G is connected. For bibliographies on

the graph Laplacian, the reader is referred to [11].

The Laplacian characteristic polynomial of G is denoted by LG(x) = det(xI −
L(G)) =

∑n
i=0(−1)n−icix

i. By the following theorem attributed to Kel’mans, the

Laplacian coefficient, ck, can be expressed in terms of subtree structures of G, for

0 ≤ k ≤ n (see e.g. [3, 11]). Let F be a spanning forest of G with components Ti of
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order ni (1 ≤ i ≤ k), the weight of F is defined as γ(F ) =
∏k

i=1 ni.

Theorem 1.1. [3, 11] The Laplacian coefficient ck of a graph G of order n is

given by

ck =
∑

F∈Fk

γ(F ),

where Fk is the set of all spanning forests of G with exactly k components.

In particular, we have cn = 1, cn−1 = 2m, c0 = 0, and

c1 = nτ(G),(1.1)

in which τ(G) denotes the number of spanning trees of G (see e.g. [11, Theorem 4.3]).

Let QG(x) =
∑n

i=0(−1)n−iζix
i be the characteristic polynomial of Q(G). Using

the terminology and notation from [4], a spanning subgraph of G whose connected

components are trees or odd unicyclic graphs is called a TU -subgraph of G. Suppose

that a TU -subgraph H of G contains c odd unicyclic graphs and s trees such as

T1, . . . , Ts. The weight of H is defined as W (H) = 4c
∏s

i=1 ni, in which ni is the

order of Ti. Note that if H contains no tree, then W (H) = 4c. According to the

following theorem, ζi can be expressed in terms of TU -subgraphs of G.

Theorem 1.2. [4, Theorem 4.4] Let G be a connected graph. Then we have

ζn = 1 and

ζn−i =
∑

Hi

W (Hi), i = 1, . . . , n,

where the summation is over all TU -subgraphs Hi of G with i edges.

In particular, we have ζn−1 = 2m and

ζn−2 = a+
3

2
m(m− 1),(1.2)

where a is the number of pairs of non-adjacent edges in G [4, Corollary 4.5]. Moreover,

according to the definition, cn−2 = ζn−2.

A finite sequence of real numbers {a0, a1, a2, . . . , an} is said to be

(i) unimodal if there is some k ∈ {0, 1, . . . , n}, called the mode of the sequence,

such that

a0 ≤ · · · ≤ ak−1 ≤ ak ≥ ak+1 ≥ · · · ≥ an,

(ii) logarithmically concave (or simply, log-concave) if the inequality

a2i ≥ ai−1ai+1,
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holds for every i ∈ {1, 2, . . . , n− 1}.

For instance, one may check that the Laplacian characteristic polynomial of the

path P4 is LP4
(x) = x4 − 6x3 + 10x2 − 4x. So that the sequence of the moduli of

coefficients of LP4
(x), i.e., {0, 4, 10, 6, 1}, is log-concave and unimodal as well.

Also, a polynomial
∑n

k=0 akx
k is called unimodal (resp., log-concave) if the se-

quence of its coefficients {a0, a1, . . . , an} is unimodal (resp., log-concave). Unimodal-

ity problems of graph polynomials have always been of great interest to researchers

in graph theory. For instance, it was conjectured that the chromatic polynomial of

a graph is unimodal [14, p. 68] and even log-concave [16, p. 266]. There has been

an extensive literature in recent years on the unimodality problems of independence

and matching polynomials of graphs, we refer the reader to [15] and the references

therein. In the present paper, we are interested in studying this problem for the

(signless) Laplacian characteristic polynomial. First, we show that the sequences of

the moduli of (signless) Laplacian coefficients of graphs are log-concave, and hence

unimodal. As a consequence, we obtain some lower and upper bounds on the alge-

braic connectivity and the least eigenvalue of the signless Laplacian matrix, which is

studied in [7] as a measure of non-bipartiteness of a graph. Moreover, we obtain upper

bounds for the partial sums of the Laplacian eigenvalues. Finally, we investigate the

mode of such sequences.

2. Unimodality of the Laplacian characteristic polynomial. Before prov-

ing our results, we state some theorems which are useful in the sequel of the paper.

A basic approach to unimodality problems is to use Newton’s inequalities, as you

see in the following theorem.

Theorem 2.1. [2, Theorem B, p. 270] If the generating polynomial

P (x) =

n
∑

i=0

aix
i, an 6= 0,

of a finite sequence 0 ≤ ai for 0 ≤ i ≤ n, has only real roots (≤ 0), then

a2i ≥ ai−1ai+1
i

i− 1

n− i+ 1

n− i
, 2 ≤ i ≤ n− 1,

and hence, {ai}ni=0 is unimodal, either with a peak or with a plateau of 2 points.

Theorem 2.2. Let G be a graph on n vertices. Then the sequences {ci}ni=0 and

{ζi}ni=0 are log-concave. In particular, these two sequences are unimodal, either with

a unique mode or with two consecutive modes.

Proof. Since the Laplacian matrix is a positive semi-definite matrix, all non-zero

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 392-406, June 2014



ELA

On the Log-Concavity of Laplacian Characteristic Polynomials of Graphs 395

coefficients of the polynomial

(−1)nLG(−x) = (−1)2n
n
∑

i=0

cix
i

= (−1)2n
n
∏

i=1

(x+ µi(G)),

are positive. Moreover, all zeros of this polynomial are real and negative. So, Theo-

rem 2.1 implies that the sequence {ci}ni=0 is log-concave and unimodal (with a peak or

a plateau of two points) as well. In a similar way, the assertion holds for the sequence

{ζi}ni=0.

Example 2.3. The Laplacian characteristic polynomial of the graph G = K4−e,

where e ∈ E(K4), is LG(x) = x4−10x3+32x2−32x. Thus, the mode of the sequence

of the moduli of coefficients of LG(x), i.e., {0, 32, 32, 10, 1}, is not necessarily unique

(Note that in a unimodal sequence {ai}ni=0, the mode is any index m for which

am = max0≤i≤n ai).

It is not hard to see that if a sequence {ai}ni=0 is positive, then it is log-concave

if and only if the sequence { ai

ai+1
}n−1
i=0 is non-decreasing. Applying this fact, we have

the following corollary.

Corollary 2.4. Let G be a graph on n vertices with the Laplacian characteristic

polynomial LG(x) =
∑n

i=0(−1)n−icix
i, and let li =

cn−i

cn−i+1
, for 1 ≤ i ≤ n. Then the

sequence {li}ni=1 is a decreasing sequence.

3. Partial sums of the Laplacian eigenvalues. In this section, we would like

to obtain an upper bound for the sum of k largest eigenvalues of L(G). We first state

some definitions and theorems.

A nonnegative matrix A = (aij)n×n is called doubly stochastic if
∑n

i=1 aik = 1

and
∑n

i=1 aki = 1, for all 1 ≤ k ≤ n.

Theorem 3.1. [13, Birkhoff Theorem] The set of all doubly stochastic matrices

of order n is a convex polyhedron with permutation matrices as its vertices.

Theorem 3.2. [13, Theorem 38.3.1] Let X = (x1, . . . , xn)
t and Y = (y1, . . . , yn)

t

be two vectors in R
n such that

xn ≤ · · · ≤ x1,

yn ≤ · · · ≤ y1,
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k
∑

i=1

xi ≤
k
∑

i=1

yi, for all k < n,

n
∑

i=1

xi =

n
∑

i=1

yi.

Then there exists a doubly stochastic matrix S such that SY = X.

Lemma 3.3. Let G be a graph on n vertices and m edges such that 4 ≤ n ≤ m.

Then we have µ1µ2 ≤ 1√
2
cn−2.

Proof. From the inequality of arithmetic and geometric means, we conclude that

µ1µ2 ≤
(

µ1+µ2

2

)2
. On the other hand, [9, Theorem 7] states that if G is a graph

with at least two vertices, then µ1 + µ2 ≤ m + 3. Let a be the number of pairs of

non-adjacent edges in G. Using equation (1.2), we find that for any m(≥ n ≥ 4)

µ1µ2 ≤
(

m+ 3

2

)2

≤ 3

2
√
2
(m2 −m) since m ≥ 4

≤ 1√
2

(

a+
3

2
m(m− 1)

)

since a ≥ 0

=
1√
2
cn−2.

Theorem 3.4. Let G be a graph on n vertices and m edges, where 4 ≤ n ≤ m.

Then

(i) µ1 ≤ m;

(ii) µ1 + µ2 ≤ m+
√
2
cn−2

cn−1
;

(iii) µ1 + µ2 + µ3 ≤ m+
√
2
cn−2

cn−1
+
√
2
cn−3

cn−2
;

(iv)

k
∑

i=1

µi ≤ m+
√
2
cn−2

cn−1
+
√
2
cn−3

cn−2
+

k
∑

i=4

cn−i

cn+1−i
, for 4 ≤ k ≤ n− 1.

Proof. (i) Theorem 2.2(c) in [11] states that for any graph of order n, we have

µ1 ≤ n. So, by the assumption on m, we obtain µ1 ≤ m. To prove the other parts,

let li =
cn−i

cn−i+1
, for 1 ≤ i ≤ n− 1. Consider two vectors

X = (µ1, . . . , µn−1)
t,

Y =

(

1

2
l1,

√
2 l2,

√
2 l3, l4, . . . , ln−1

)t

.
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First, we want to show that coordinates of the vector Y (except the first two) are

in non-increasing order. Applying Theorem 2.1 to the polynomial (−1)nLG(−x) we

find that

c2n−1 ≥ cn−2cn
2(n− 1)

n− 2
,

and

c2n−2 ≥ cn−1cn−3
3(n− 2)

2(n− 3)
.

Therefore,

l1 ≥ 2(n− 1)

n− 2
l2,(3.1)

l2 ≥ 3(n− 2)

2(n− 3)
l3.(3.2)

Using equations (3.1) and (3.2), one may obtain that 1
2 l1 ≥

√
2 l3. Moreover, Corol-

lary 2.4 implies that l2 ≥ l3 ≥ l4 ≥ · · · ≥ ln−1. Hence,

1

2
l1 ≥

√
2 l3 ≥ l4 ≥ · · · ≥ ln−1,(3.3)

√
2 l2 ≥

√
2 l3 ≥ l4 ≥ · · · ≥ ln−1.(3.4)

In order to sort coordinates of Y in non-increasing order, if
√
2 l2 > 1

2 l1, then

we could change the first two coordinates of the vector Y without any effect in our

subsequent calculations, because case (i) is proved.

Also, Lemma 3.3 implies that µ1µ2 ≤ 1√
2
cn−2 =

√
2
2 l1l2. For 3 ≤ k ≤ n− 1, the

moduli of the (n− k)th coefficient of LG(x) equals

cn−k =
∑

I⊆{1,...,n}
|I|=k

∏

i∈I

µi(G).

Then

k
∏

i=1

µi ≤ cn−k =

k
∏

i=1

li.(3.5)

On the other hand, µn(G) = 0 follows that

n−1
∏

i=1

µi = c1 =

n−1
∏

i=1

li.(3.6)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 392-406, June 2014



ELA

398 D. Kiani and M. Mirzakhah

Next, in order to use Theorem 3.2, we need to define the following vectors

X ′ = (ln(µ1), . . . , ln(µn−1))
t,(3.7)

Y ′ =

(

ln

(

1

2
l1

)

, ln
(√

2 l2

)

, ln
(√

2 l3

)

, ln (l4) , . . . , ln (ln−1)

)t

.(3.8)

Now, applying Theorem 3.2 together with Lemma 3.3 and Equations (3.5) and

(3.6), there exists a doubly stochastic matrix S such that SY ′ = X ′.

For any 2 ≤ k ≤ n− 1, consider the function

f : Rn−1 −→ R

(x1, . . . , xn−1)
t 7−→

k
∑

i=1

exp(xi).

Since the exponential function is convex, one may see that f is a convex function on

a set of positive vectors. Let Ωn denote the set of all doubly stochastic matrices of

order n.

For the vector Y ′ ∈ R
n−1 defined in equation (3.8), let

g : Ωn−1 −→ R

S 7−→ f(SY ′).

Again the function g is a convex function, because for each λ ∈ [0, 1]

g(λS1 + (1− λ)S2) = f(λS1Y
′ + (1− λ)S2Y

′)

≤ λf(S1Y
′) + (1 − λ)f(S2Y

′)

= λg(S1) + (1 − λ)g(S2).

A convex function defined on a convex polytope takes its maximal value at one

of its vertices. Therefore, by Theorem 3.1 g(S) ≤ g(P ), where P is the matrix related

to the permutation π. Then

f(X ′) = f(SY ′) = g(S)(3.9)

≤ g(P ).

Moreover,

k
∑

i=1

µi =

k
∑

i=1

exp(ln(µi)) = f(X ′)

≤ f(PY ′) by equation (3.9)
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=

k
∑

i=1

exp(y′π(i))

=

k
∑

i=1

exp(ln(yπ(i)))

=

k
∑

i=1

yπ(i).

Finally, by equations (3.4) and (3.3), for 2 ≤ k ≤ n−1, we have
∑k

i=1 yπ(i) ≤
∑k

i=1 yi.

This completes the proof.

Example 3.5. Suppose that G is the graph shown in Fig. 1. One may check

that LG(x) = x4 − 8x3 +19x2 − 12x. Using the notation of the previous theorem, we

have

X = (µ1(G), µ2(G), µ3(G))t

= (4, 3, 1)t,

Y =

(

1

2
l1,

√
2 l2,

√
2 l3

)t

=

(

c3

2c4
,

√
2 c2
c3

,

√
2 c1
c2

)t

≈ (4, 3.36, 0.89)t,

where ci is the moduli of ith Laplacian coefficient. According to the previous theorem,

we have

µ1(G) ≤ 4,

µ1(G) + µ2(G) ≤ 7.36,

µ1(G) + µ2(G) + µ3(G) ≤ 8.25.

Fig. 1

4. Some eigenvalue bounds. In this section, applying unimodality property,

we are seeking some lower bounds for the (signless) Laplacian eigenvalues. In this way,

we first state the follwoing theorem which is an equivalent statement of the classical
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theorem due to Eneström and Kakeya for finding bounds for the moduli of the zeros

of polynomials having positive real coefficients.

Theorem 4.1. [1, Eneström-Kakeya Theorem] Let P (x) =
∑n

i=0 aix
i, n ≥ 1, be

any polynomial with ai > 0 for all 0 ≤ i ≤ n. Setting

α = min
0≤i<n

ai

ai+1
and β = max

0≤i<n

ai

ai+1
,

all the zeros of P (x) are contained in the interval α ≤ |x| ≤ β.

As it is well-known, the multiplicity of 0 as an eigenvalue of L(G) is equal to the

number of components of G. Now, using the above theorem, we find a lower bound

on the algebraic connectivity of G, based on Laplacian coefficients.

Theorem 4.2. Let G be a graph on n vertices, then cα
cα+1

≤ µn−α, where α is

the number of connected components of G. In particular, if G is a connected graph of

order n, then
nτ(G)

c2
≤ µn−1.

Proof. Suppose that LG(−x) = (−1)nxα
∏n−α

i=1 (x+µi(G)) = (−1)nxαP (x), where

α is the number of connected components of G. Since the sequence {ci}ni=0 is log-

concave, applying Eneström-Kakeya Theorem and Corollary 2.4 to the polynomial

P (x), the result follows.

If G is a tree, the coefficient c2 is equal to its Wiener index, which is the sum of

distances between all pairs of vertices [17]. In other words, we have

c2 = wien(G) =
∑

u,v∈V (G)

dG(u, v).

Corollary 4.3. Let T be a tree of order n. Then we have
nτ(T )
wien(T) ≤ µn−1(G),

in which τ(T ) and wien(T) denote the number of spanning trees and Wiener index of

T .

Let η denote the nullity of the matrix Q(G). The following theorem explicitly

expresses the connection between η and the structure of G.

Theorem 4.4. [4, Corollary 2.2] In any graph, the multiplicity of the eigenvalue

0 of the signless Laplacian matrix is equal to the number of bipartite components.

In [7], the least eigenvalue of Q(G) was studied as a measure of non-bipartiteness

of a graph. Here, we obtain a lower bound for this quantity.

Theorem 4.5. Let G be a graph on n vertices. Then we have
ζη

ζη+1
≤ νn−η.

In particular, if G is a graph without any bipartite connected component, then ζ0
ζ1

≤
νn(G).

Proof. The proof is similar to Theorem 4.2.
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5. Mode of the Laplacian coefficients. In this section, we are interested in

determining the mode of the sequence {ci}ni=0, which is denoted by modeL(G).

Let {a0, . . . , an} be a sequence of non-negative real numbers whose generating

polynomial A(x) =
∑n

i=0 aix
i has only real zeros and A(1) > 0. Suppose that

P denotes the probability distribution on {0, 1, . . . , n} defined by normalization of

{a0, . . . , an}. Let µ denote the mean of the probability distribution P , that is

µ := A′(1)
A(1) in which A′(x) is the first derivative of the polynomial A(x). As a well-

known consequence of Newton’s inequality, the sequence {a0, . . . , an} has either a

unique mode or two consecutive modes. Darroch showed that each mode, denoted by

m, satisfies ⌊µ⌋ ≤ m ≤ ⌈µ⌉. This remarkable result seems to be quite unknown to

combinatorialists, although it has numerous combinatorial applications. To be more

precise, according to [12, p. 284], we have:

Theorem 5.1. [6, Theorem 4] Let A(x) =
∑n

i=0 aix
i be a polynomial that has

real roots only and satisfies A(1) > 0. Let m be an index so that am = max0≤i≤n ai.

Let µ = A′(1)
A(1) . Then we have |m−µ| < 1. Precisely, for any integer k with 0 ≤ k ≤ n,

the mode of the sequence {a0, . . . , an} equals

m =











k, if k ≤ µ < k + 1
k+2 ;

k, k + 1, or both, if k + 1
k+2 ≤ µ ≤ k + 1− 1

n−k+1 ;

k + 1, if k + 1− 1
n−k+1 < µ ≤ k + 1.

Remark 5.2. Suppose that A(x) = (−1)nLG(−x) = (−1)2n
∏n

i=1(x + µi(G)).

According to the definition, the mean of the probability distribution on {0, 1, . . . , n}
defined by normalization of {c0, . . . , cn} equals

µ =
A′(1)

A(1)
=

∑n
j=1

∏n
i=1

(1+µi(G))

1+µj(G)

A(1)
=

∑n
j=1

A(1)
1+µj(G)

A(1)
=

n
∑

j=1

1

1 + µj(G)
.

So, using Darroch’s Rule for the mode, we have |modeL(G)− µ| < 1.

Theorem 5.3. Let G be a graph on n vertices and e ∈ E(G). Then we have

modeL(G)−modeL(G− e) ∈ {−2,−1, 0, 1}.

Proof. By [11, Theorem 3.2], we have

µ1(G) ≥ µ1(G− e) ≥ µ2(G) ≥ µ2(G− e) ≥ · · · ≥ µn(G) ≥ µn(G− e).

Therefore, for each 1 ≤ i ≤ n− 1,

1

1 + µi(G)
≤ 1

1 + µi(G− e)
≤ 1

1 + µi+1(G)
.
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By summation (over i) of each side of the above inequalities, we find that

0 <

n
∑

i=1

1

1 + µi(G− e)
−

n
∑

i=1

1

1 + µi(G)

≤ 1

1 + µn(G− e)
− 1

1 + µ1(G)

< 1.

Also, Darroch’s Rule says that

−1 < modeL(G)−
n
∑

i=1

1

1 + µi(G)
< 1.

Combining these two later inequalities, we obtain that

−2 < modeL(G)−
n
∑

i=1

1

1 + µi(G− e)
< 1.

Again applying Darroch’s Rule to the graph G− e, we have

−1 < modeL(G− e)−
n
∑

i=1

1

1 + µi(G− e)
< 1.

Consequently, −3 < modeL(G)−modeL(G− e) < 2, and this completes the proof.

Moreover, a similar statement holds for signless Laplacian matrix.

Recall that the kth elementary symmetric function of n real numbers x1, x2, . . . ,

xn (k ≤ n), is defined as

σk(x1, . . . , xn) =
∑

S⊆{1,...,n},|S|=k

∏

i∈S

xi.

One may see that

LG(x) = xn − σ1(µ1, . . . , µn)x
n−1 + σ2(µ1, . . . , µn)x

n−2 − · · · ± σn(µ1, . . . , µn).

So, we have cn−i(G) = σi(µ1, . . . , µn). For other properties of elementary symmetric

functions, the reader is referred to [10]. Also, [x] denotes the integral part of x.

Theorem 5.4. [8, Proposition 3.4] Let G be a graph with n vertices and without

isolated vertices. Then we have
∑i

k=1 µk(G) ≤ 2m− n+ 2i, for 1 ≤ i ≤ n.

Theorem 5.5. Let G be a connected graph with n vertices. Then for each

0 ≤ i ≤ [n−1
3 ],

cn−i−1(G) > cn−i(G).
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Proof. For abbreviation, we write σi(µ1, . . . , µn) by σi, where 1 ≤ i ≤ n − 1.

Consider any subset S ⊆ {1, . . . , n− 1} such that |S| = i+ 1. Obviously, there exists

exactly i + 1 subsets X ⊆ {1, . . . , n − 1} for which X ⊂ S and |X | = i. Therefore,

using this fact that
∑n−1

i=1 µi = 2m, we have

(i+ 1)σi+1 =
∑

S⊆{1,...,n−1}
|S|=i+1

(i+ 1)
∏

j∈S

µj

=
∑

X⊆{1,...,n−1}
|X|=i









∏

j∈X

µj



 .





∑

j /∈X

µj









=
∑

X⊆{1,...,n−1}
|X|=i









∏

j∈X

µj



 .



2m−
∑

j∈X

µj









> (2m− µ1 − · · · − µi)
∑

X⊆{1,...,n−1}
|X|=i





∏

j∈X

µj





= (2m− µ1 − · · · − µi)σi,(5.1)

where the fourth inequality holds provided
∑

j∈X µj ≤ µ1 + · · ·+ µ|X|.

On the other hand, Theorem 5.4 implies that for 1 ≤ i ≤
[

n−1
3

]

,

i
∑

k=1

µk ≤ 2m− n+ 2i

≤ 2m− i− 1.(5.2)

Now using equation (5.2), we have for 1 ≤ i ≤
[

n−1
3

]

(i+ 1)σi+1 > (2m− µ1 − · · · − µi)σi ≥ (i+ 1)σi.

This completes the proof.

Corollary 5.6. Let G be a graph on n vertices. Then we have

n
∑

i=1

1

1 + µi(G)
< n−

[

n− 1

3

]

.

Proof. According to the previous theorem, one may see that

cn−[n−1

3
]−1(G) > cn−[n−1

3
](G) > · · · > cn−2(G) > cn−1(G) > cn(G).
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Thus, modeL(G) ≤ n − 1 − [n−1
3 ]. Now, using Remark 5.2 together with Darroch’s

Rule for the mode, the result follows.

Moreover, a similar statement holds for signless Laplacian matrix.

Remark 5.7. Let G be a connected graph of order n and size m. Then, we

have
∑n−1

i=1 µi = 2m. Now, proceeding the proof of Theorem 5.5, we get that for each

1 ≤ i ≤ n,

(i + 1)σi+1 > (2m− µ1(G)− · · · − µi(G))σi

= (µi+1 + · · ·+ µn−1)σi

≥ (n− 1− i)µn−1σi.

Let f(x) = n−1−x
x+1 . One may check that f(x) is a decreasing function on x ∈ R\{−1}.

Obviously, f(x) > 1 when 0 ≤ x < [n−1
2 ]. Therefore,

σi+1

σi
> f(i)µn−1 > µn−1,

when 0 ≤ i < [n−1
2 ]. So, by Corollary 2.4 we have

cn−k−1

cn−k
=

σk+1

σk
> µn−1, where k =

[

n− 1

2

]

− 1.

On the other hand, we find that for each 1 ≤ i ≤ n,

(i+ 1)σi+1 =
∑

S⊆{1,...,n−1}
|S|=i+1



(i+ 1)
∏

j∈S

µj





=
∑

X⊆{1,...,n−1}
|X|=i









∏

j∈X

µj



 .





∑

j /∈X

µj









=
∑

X⊆{1,...,n−1}
|X|=i









∏

j∈X

µj



 .



2m−
∑

j∈X

µj









< (2m− µn−1 − · · · − µn−1−i+1)
∑

X⊆{1,...,n−1}
|X|=i

∏

j∈X

µj

= (2m− µn−1 − · · · − µn−1−i+1)σi

= (µ1 + · · ·+ µn−1−i)σi

≤ (n− 1− i)µ1σi.

In a similar way as above, we find that

σk+1

σk
< µ1, when k =

[

n− 1

2

]

.
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Finally, we conclude this article with the following question.

Question 5.8. Let G be a graph on n vertices with α connected components. Is

it true to say that

modeL(G) ≤
[

n− α

2

]

,

i.e., cn−i(G) < cn−i−1(G), for 0 ≤ i < [n−α
2 ]?
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