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ON THE KEMENY CONSTANT AND STATIONARY

DISTRIBUTION VECTOR FOR A MARKOV CHAIN∗

STEVE KIRKLAND†

Abstract. Suppose that A is an irreducible stochastic matrix of order n, and denote its eigen-

values by 1, λ2, . . . , λn. The Kemeny constant, K(A) for the Markov chain associated with A is

defined as K(A) =
∑n

j=2
1

1−λj
, and can be interpreted as the mean first passage from an unknown

initial state to an unknown destination state in the Markov chain. Let w denote the stationary

distribution vector for A, and suppose that w1 ≤ w2 ≤ · · · ≤ wn. In this paper, we show that

K(A) ≥
∑n

j=1
(j − 1)wj , and we characterise the matrices yielding equality in that bound. The

results are established using techniques from matrix theory and the theory of directed graphs.
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1. Introduction and preliminaries. A square entrywise nonnegative matrix

A of order n is called stochastic if A1 = 1, where 1 denotes the all–ones vector of the

appropriate order. Stochastic matrices are central to the theory of discrete time, time

homogeneous Markov chains on a finite state space. For instance, if the stochastic

matrix A is primitive, that is Am has all positive entries for some m ∈ N, then as is

well–known, the iterates of a Markov chain with transition matrix A converge to the

(unique) left Perron vector w of A, normalised so that wT1 = 1. That eigenvector w,

which is known as the stationary distribution vector for the Markov chain, thus carries

information about the long–term behaviour of the Markov chain associated with A.

We remark that in the case that A is irreducible but not primitive (in other words,

the directed graph D of A is strongly connected and the greatest common divisor of

the lengths of the cycles in D exceeds 1) then A still has a stationary distribution

vector w, though the sequence of iterates of the corresponding Markov chain does not

converge to w in general. Instead, a weaker conclusion holds, namely that for any
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nonnegative vector x such that xT1 = 1, we have

lim
k→∞

1

k

k−1∑

j=0

xTAk = wT .

Thus, we see that even in this case, the stationary distribution vector w still carries

some long–term information about the associated Markov chain.

If one happens to be interested in the short–term properties of a Markov chain,

then the corresponding mean first passage times provide a useful collection of quanti-

ties for measuring the behaviour of a Markov chain over a shorter time scale. Recall

that for a Markov chain with an irreducible transition matrix of order n, the mean

first passage time µi,j from state i to state j is the expected number of steps necessary

for the Markov chain to arrive at state j for the first time, given that it started in

state i. Much is known about mean first passage times, and we refer the reader to [7]

for a discussion of that topic from matrix–theoretic and graph–theoretic perspectives.

In particular, a remarkable result of Kemeny asserts that for each i = 1, . . . , n, the

quantity

κi ≡
∑

j=1,...,n,j 6=i

µi,jwj(1.1)

is independent of the choice of the index i. Indeed, it turns out that if the eigenvalues

of our irreducible transition matrix A are given by 1, λ2, . . . , λn, then

κi =
n∑

j=2

1

1− λj

, i = 1, . . . , n.(1.2)

The quantity on the right hand side of (1.2) is known as the Kemeny constant for the

Markov chain associated with A, and throughout this paper we denote it by K(A).

The Kemeny constant admits several interpretations. From (1.1) and the fact

that µi,i = 1
wi

, i = 1, . . . , n, we find that for each i = 1, . . . , n, K(A) + 1 can

be seen as the expected number of steps needed to arrive at a randomly chosen

destination state, starting from vertex i. Alternatively, it is observed in [8] that

K(A) =
∑n

i=1

∑
j=1,...,n,j 6=i wiµi,jwj ; hence, one may view the Kemeny constant in

terms of the expected number of steps in a trip from a randomly chosen initial state

to a randomly chosen destination state. Finally, we note that a result of Hunter [5]

facilitates an interpretation of the Kemeny constant in terms of the so–called expected

time to mixing for the associated Markov chain. These various interpretations of the

Kemeny constant have led to its use as an indicator of the efficiency of certain vehicle

traffic networks (see [2, 3]), since in those models, low values of the Kemeny constant

correspond to low average travel times. In a related vein, results in [7, Section 5.3]

show that the Kemeny constant is correlated with the conditioning of the stationary
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distribution vector when A is perturbed, with small values of the Kemeny constant

corresponding to well–conditioned stationary distribution vectors.

In view of these last observations regarding low values of the Kemeny constant,

it is not surprising that there is interest in identifying stochastic matrices A such

that K(A) is small (in some sense). For example it is known that for an irreducible

stochastic matrix A of order n, we have K(A) ≥ n−1
2 (see [5]), with equality holding

if and only if A is the adjacency matrix of a directed cycle of length n (see [6]). In

a related vein, in [6] a lower bound on K(A) is provided in terms of the length of a

longest cycle in the directed graph of A, and the matrices yielding equality in that

lower bound are characterised.

In this paper, we continue in a similar spirit by investigating how the long–term

information carried by the stationary distribution vector for an irreducible stochastic

matrix A is reflected in the short–term information embedded in the Kemeny con-

stant. Specifically, in our main result (Theorem 2.2 below), we prove that if A is an

n × n irreducible stochastic matrix with stationary distribution vector w, and if the

entries of w are in nondecreasing order, then K(A) ≥
∑n

j=1(j − 1)wj . Our second

key result (Theorem 3.7 below) explicitly characterises the matrices yielding equality

in the bound of Theorem 2.2. We observe here that the equality characterisation

given in Theorem 3.7 facilitates the construction of optimal (in terms of the Kemeny

constant) transition matrices exhibiting specified long–term properties (in terms of

the stationary distribution).

Throughout the sequel, we assume familiarity with basic results on stochastic

matrices and Markov chains, as well as on directed graphs. The interested reader is

referred to [11] for background on the former and [1] for background on the latter.

2. A lower bound on the Kemeny constant in terms of the stationary

distribution. In order to establish Theorem 2.2, we require a few technical observa-

tions. To fix ideas, suppose that we have an irreducible stochastic matrix A of order n

with stationary distribution vector w. We write A in partitioned form by partitioning

off the last row and column of A:

A =

[
T (I − T )1

1
wn

wT (I − T ) 1− 1
wn

wT (I − T )1

]
,

where w is formed from w by deleting its last entry. (We note in passing that neces-

sarily both (I − T )1 and wT (I − T ) are entrywise nonnegative vectors.) Continuing

with this notation, it is well–known that the mean first passage times into vertex n

are given by µi,n = eTi (I − T )−11, i = 1, . . . , n− 1 (see [11]). Further, the matrix

S ≡ T +
1

wT (I − T )1
(I − T )1wT (I − T ),
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which is called a stochastic complement [9], is known to be irreducible and stochastic,

with the vector 1
1−wn

w as its stationary distribution vector. It turns out that K(A)

and K(S) are connected: from the proof of Theorem 6.5.1 in [7], we find that

K(A) = K(S) +
wnw

T (I − T )−11

1− wn

.(2.1)

The following technical result will be useful in establishing Theorem 2.2. Recall

that a square, entrywise nonnegative matrix is substochastic if each of its row sums is

bounded above by 1.

Lemma 2.1. Let T be a substochastic matrix of order k whose spectral radius is

less than 1. Then

trace(I − T )−1 ≥ k.(2.2)

Equality holds in (2.2) if and only if T is nilpotent.

Proof. We proceed by induction on k, and note that the result is readily estab-

lished when k = 1. Suppose now that the result holds for some k ∈ N, and that T is

of order k + 1. We partition out the last row and column of T as

[
T1,1 t1,2
t2,1 t2,2

]
.

Using the partitioned form of the inverse [4], we find that

(I − T )−1 =[
(I − T1,1)

−1 + δ(I − T1,1)
−1t1,2t2,1(I − T1,1)

−1 δ(I − T1,1)
−1t1,2

δt2,1(I − T1,1)
−1 δ

]
,

where δ = 1
1−t2,2−t2,1(I−T1,1)−1t1,2

. Hence, we have

trace(I − T )−1 ≥ trace((I − T1,1)
−1) +

1

1− t2,2 − t2,1(I − T1,1)−1t1,2
.

Applying the induction hypothesis, we find readily that trace(I − T )−1 ≥ k + 1.

Further, if trace(I−T )−1 = k+1, then necessarily we have trace((I−T1,1)
−1) = k

and t2,2+t2,1(I−T1,1)
−1t1,2 = 0.Again invoking the induction hypothesis, we find that

T1,1 is nilpotent; that fact, combined with the condition t2,2+ t2,1(I −T1,1)
−1t1,2 = 0

now readily yields that T must be nilpotent. Finally, if T is nilpotent, then equality

must hold in (2.2).
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Here is one of the main results of this paper.

Theorem 2.2. Suppose that A is an irreducible stochastic matrix of order n, that

w is the stationary distribution vector of A, and that w1 ≤ w2 ≤ · · · ≤ wn. Then

K(A) ≥

n∑

j=1

(j − 1)wj .(2.3)

Denote the leading (n − 1) × (n − 1) principal submatrix of A by T , and the leading

(n− 1)–subvector of w by w. Equality holds in (2.3) if and only the following hold:

i) T is nilpotent; and

ii) wT (I − T )−11 =
∑n

j=1(n− j)wj .

Proof. We proceed by induction on n, and note that the case that n = 2 is readily

established.

Suppose now that the statements hold for some n − 1 with n − 1 ≥ 2, and that

A is of order n. We note that from the hypothesis, A can be written as

A =

[
T (I − T )1

1
wn

wT (I − T ) 1− 1
wn

wT (I − T )

]
.

Observe that I −A can be factored as I −A = XY , where

X =

[
I − T

− 1
wn

wT (I − T )

]
and Y =

[
I −1

]
.

Since XY is a full–rank factorisation of A, the eigenvalues of Y X coincide with the

nonzero eigenvalues of I−A; it now follows from (1.2) that K(A) = trace((Y X)−1) =

trace(((I − T ) + 1
wn

1wT (I − T ))−1) = trace((I − T )−1)− wT (I − T )−11.

Next, we consider the following stochastic complement:

S = T +
1

wT (I − T )1
(I − T )1wT (I − T ),

which is irreducible, stochastic, and has 1
1−wn

w as its stationary distribution vector.

From (2.1), we have K(A) = K(S) + wnw
T (I−T )−1

1

1−wn
.

We now consider two cases: a) wT (I − T )−1 ≤
∑n

j=1(n − j)wj ; and b) wT (I −

T )−1 >
∑n

j=1(n− j)wj .

a) Since K(A) = trace((I − T )−1) − wT (I − T )−11, we find that K(A) ≥ trace((I −

T )−1)−
∑n

j=1(n−j)wj . Applying Lemma 2.1, we haveK(A) ≥ n−1−
∑n

j=1(n−j)wj =∑n

j=1(j − 1)wj .
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b) Since K(A) = K(S) + wnw
T (I−T )−1

1

1−wn
, we see that

K(A) > K(S) +
wn

1− wn

n∑

j=1

(n− j)wj .

Applying the induction hypothesis to S, we find that

K(S) ≥
1

1− wn

n−1∑

j=1

(j − 1)wj = n− 2−
1

1− wn

n−1∑

j=1

(n− j − 1)wj .

Consequently, we have

K(A) > n− 2−
1

1− wn

n−1∑

j=1

(n− j − 1)wj +
wn

1− wn

n∑

j=1

(n− j)wj

= n− 1−

n∑

j=1

(n− j)wj =

n∑

j=1

(j − 1)wj .

In either case, we find that (2.3) holds.

Next we consider the characterisation of the matrices yielding equality in (2.3).

From cases a) and b) above, we find that equality holds in (2.3) if only if trace((I −

T )−1) = n − 1 and wT (I − T )−1 =
∑n

j=1(n − j)wj . From Lemma 2.1, we see that

trace((I − T )−1) = n− 1 precisely when T is nilpotent. The desired characterisation

of equality in (2.3) now follows.

Remark 2.3. Suppose that v ∈ R
n is a nonnegative vector, that vT1 = 1, and

that the entries of v are in nondecreasing order. Suppose further that for some index i0
with 1 ≤ i0 ≤ n−1, we have vi0 < vi0+1. Form ṽ from v by replacing the entries of v in

positions i0 and i0+1 by
vi0+vi0+1

2 in both positions. A straightforward computation

reveals that
∑n

j=1(j−1)vj =
∑n

j=1(j−1)ṽj+
vi0+1−vi0

2 >
∑n

j=1(j−1)ṽj. It now follows

that over the class of nonnegative vectors v in R
n whose entries are in nondecreasing

order and sum to 1, the function f(v) ≡
∑n

j=1(j−1)vj is uniquely minimised when all

of the entries in v are equal – i.e., when v = 1
n
1 – and that the minimum value attained

is f( 1
n
1) = n−1

2 . In particular, suppose that A is an irreducible stochastic matrix of

order n having stationary vector w with entries in nondecreasing order. Applying

Theorem 2.2 and the preceding observation, we find that K(A) ≥ f(w) ≥ n−1
2 , thus

yielding an alternate proof of the inequality K(A) ≥ n−1
2 established in [5]. Further,

this line of reasoning also shows that if K(A) = n−1
2 , then necessarily w = 1

n
1.
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Remark 2.4. Suppose that B is an irreducible nonnegative matrix of order n,

and let x and y denote right and left Perron vectors of B, respectively, normalised so

that yTx = 1. Let the Perron value of B be λ1, and denote the remaining eigenvalues

of B by λ2, . . . , λn. Letting X denote the diagonal matrix whose diagonal entries are

the corresponding entries of x, it is straightforward to verify that the matrix A =
1
λ1
X−1BX is irreducible, stochastic, and has the vector

[
x1y1 x2y2 · · · xnyn

]

as its stationary distribution vector. If we suppose that the rows and columns of B

have been simultaneously permuted so that x1y1 ≤ x2y2 ≤ · · · ≤ xnyn, then applying

Theorem 2.2 to A, we obtain the following (modest) generalisation of (2.3):

n∑

j=2

λ1

λ1 − λj

≥

n∑

j=1

(j − 1)xjyj .

3. A characterisation of the equality case in (2.3). While Theorem 2.2 pro-

vides a characterisation of the matrices yielding equality (2.3), that characterisation

is somewhat opaque, since it is framed in terms of (I − T )−1. Evidently, it is far

preferable to have a characterisation of the equality case in (2.3) that is expressed

directly in terms of the matrix A. We devote the this section to establishing just such

a characterisation.

Our next technical result concerns nilpotent substochastic matrices.

Lemma 3.1. Let T be a nilpotent substochastic matrix of order r, and let x ∈ R
r

be a positive vector such that x1 ≤ x2 ≤ · · · ≤ xr. Suppose that (I − T )−11 ≥ 0 and

xT (I − T ) ≥ 0T , let H = (I − T )−1, and let ∆ denote the directed graph of T . Then

for 1 ≤ i, j ≤ r, we have

hi,j ≤





0, if there is no walk from i to j in ∆

1, if i < j and there is a walk from i to j in ∆

1, if i = j
xj

xi
, if i > j and there is a walk from i to j in ∆.

(3.1)

Proof. We first claim that for any 1 ≤ i, j ≤ r, hi,j ≤ 1. To establish the claim,

we proceed by induction on r. For the case r = 2, we have either

T =

[
0 a

0 0

]
,

where a ≤ 1, or

T =

[
0 0

b 0

]
,

where b ≤ x1

x2
. In either case, (3.1) follows readily.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 354-372, May 2014



ELA

The Kemeny Constant and Stationary Distribution 361

Suppose now that the claim holds for some r − 1 ≥ 2, and that T is of order r.

Evidently each diagonal entry of H is 1, so suppose that we have distinct indices i, j,

and consider hi,j . If there is no walk from i to j in ∆, then certainly hi,j = 0. Next,

suppose that there is a walk from i to j in ∆, and that the longest such walk has

length at most r−2. Then there is a proper principal submatrix of T, say T̃ , such that

hi,j is equal to an appropriate entry of (I − T̃ )−1. In that case, we find that hi,j ≤ 1

from the induction hypothesis. Finally, suppose that the longest walk from i to j in

∆ has length r − 1. Then

hi,j =
∑

l

ti,le
T
l (I − T )−1ej ,

where the sum is taken over indices l such that ti,l > 0, and in addition, the longest

walk from l to j has length at most r − 2. From the cases already considered, we

find that eTl (I − T )−1ej ≤ 1 for each such l, and since
∑r

l=1 ti,l ≤ 1, we deduce that

hi,j ≤ 1. This completes the proof of the claim.

Next, we claim that hi,j ≤
xj

xi
for i, j = 1, . . . , r. To establish this claim, we

consider the matrix U = X−1T TX, where X ≡ diag(x) is the diagonal matrix whose

diagonal entries are the corresponding entries of x. It is readily verified that U is

nilpotent and substochastic, with (I − U)1 ≥ 0 and xT (I − U) ≥ 0T . Applying our

earlier claim to U , we see that (I −U)−1
j,i ≤ 1 for i, j = 1, . . . , r. This last now readily

yields that hi,j ≤
xj

xi
for i, j = 1, . . . , r.

Finally, with both claims in hand, it is straightforward to verify that (3.1) holds.

Recall that a directed graph on n vertices is a transitive tournament if its ad-

jacency matrix is permutationally similar to the n × n (0, 1) matrix with 1s on and

above the first superdiagonal, and 0s elsewhere. Much is known about tournaments

in general (and transitive tournaments in particular); we refer the interested reader

to the classic book of Moon [10] for background material. It is known that each tran-

sitive tournament on n ≥ 2 vertices has a unique Hamilton path, and that in fact

each transitive tournament is uniquely identified by its Hamilton path.

Lemma 3.1 enables us to establish the following.

Corollary 3.2. Let T,H and x be as in Lemma 3.1, and let D denote the

directed graph of H. If xT (I − T )−11 =
∑r

j=1(r + 1− j)xj , then

i) D is formed from a transitive tournament by adding a loop at each vertex; and

ii) for all i, j = 1, . . . , r,

hi,j =





0, if i →/ j in D

1, if i ≤ j and i → j in D
xj

xi
, if i > j and i → j in D.

(3.2)
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Proof. Let B denote the adjacency matrix of D and let U, V denote the strictly

upper triangular part and the lower triangular part of B, respectively (observe that

V has 1s on the diagonal). Let L denote the lower triangular matrix with 1s on and

below the main diagonal, and 0s elsewhere. Since T is nilpotent, D has no cycles of

length greater than 1. Hence, we find that B+BT ≤ L+LT . Consequently, we have

(UT + V ) + (U + V T ) ≤ L + LT . It now follows that the lower triangular matrix

UT + V satisfies UT + V ≤ L. From Lemma 3.1, it follows that H ≤ U +X−1V X,

where X = diag(x). Since V ≤ L − UT , we thus find that H ≤ U + X−1V X ≤

U +X−1(L− UT )X .

Observe now that xTH1 ≤ xTU1+1T (L−UT )X1 = 1TLx =
∑r

j=1(r+1−j)xj .

In particular, since xTH1 =
∑r

j=1(r + 1 − j)xj , it must be the case that H =

U +X−1V X and V = L− UT . Conditions i) and ii) now follow readily.

Consider a directed graph on r vertices formed from a transitive tournament by

adding a loop at each vertex. Recalling that any transitive tournament is uniquely

specified by its Hamilton path, we introduce the following notation. Given a permuta-

tion i1, . . . , ir of the numbers 1, . . . , r, we let D(i1, . . . , ir) denote the directed graph

formed from the transitive tournament with Hamilton path i1 → i2 → · · · → ir
by adding a loop at each vertex. Further, given a positive vector x ∈ R

r with

x1 ≤ · · · ≤ xr, we let H(x,D(i1, . . . , ir)) be the r × r matrix such that for each

p, q = 1, . . . , r,

hp,q =

{
0, if p →/ q in D(i1, . . . , ir)

min{1,
xq

xp
}, if p → q in D(i1, . . . , ir).

Evidently H(x,D(i1, . . . , ir)) is a matrix of the type appearing in (3.2).

Our next technical result is straightforward.

Lemma 3.3. Suppose that P is an upper triangular matrix of order r with 1s on

the main diagonal, and let z be a positive vector in R
r. Suppose further that P is an

inverse M–matrix such that P−11 ≥ 0, zTP−1 ≥ 0T . Denote P ’s leading and trailing

principal submatrices of order r−1 by P and P̃ , respectively, and denote the subvectors

formed from z by deleting its last and first entries by z and z̃, respectively. Then P

and P̃ are inverse M–matrices; further, we have P
−1

1 ≥ 0, zTP
−1

≥ 0T , P̃−11 ≥ 0

and z̃T P̃−1 ≥ 0T .

Proof. Write P as

P =

[
P u

0T 1

]
,
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so that

P−1 =

[
P

−1
−P

−1
u

0T 1

]
.

Since P is an inverse M–matrix, so is P ; further, P
−1

u ≥ 0. Since zTP−1 ≥ 0T , we

find that zTP
−1

≥ 0T , and since P−11 ≥ 0, we have P
−1

1 ≥ P
−1

u ≥ 0. A similar

argument establishes the desired conclusions for P̃ and z̃.

Next, we investigate some useful properties of the matrix H(x,D(i1, . . . , ir)).

Proposition 3.4. Suppose that r ≥ 3 and that x ∈ R
r is a positive vector whose

entries are in nondecreasing order. Suppose that i1, . . . , ir is a permutation of the

numbers 1, . . . , r. Let H ≡ H(x,D(i1, . . . , ir)), and suppose that H is an inverse

M–matrix such that H−11 ≥ 0 and xTH−1 ≥ 0T . Then one of the following holds:

a) xi1 ≤ xi2 ≤ · · · ≤ xir ;

b) xi1 ≥ xi2 ≥ · · · ≥ xir ;

c) there is an index k with 2 ≤ k ≤ r − 1 such that xi1 ≥ xi2 ≥ · · · ≥ xik and

xik < xik+1
≤ · · · ≤ xir .

Proof. We proceed by induction on r, and begin with the case that r = 3.

Observe that there are six possible cases for the list of integers i1, i2, i3, namely:

1, 2, 3; 2, 1, 3; 3, 1, 2; 3, 2, 1; 1, 3, 2; and 2, 3, 1. Since x1 ≤ x2 ≤ x3, we find that in

each of the first four of these cases satisfies one of a), b) and c). For the fifth case,

we have

H =




1 1 1

0 1 0

0 x2

x3
1


 .

Hence,

H−1 =




1 −(x3−x2

x3
) −1

0 1 0

0 −x2

x3
1


 .

Since H−11 ≥ 0, then necessarily x2 = x3; hence, x1 ≤ x3 = x2, so that a) is satisfied.

Similarly, for the sixth case, we have

H =




1 0 0
x1

x2
1 1

x1

x3
0 1


 ,
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so that

H−1 =




1 0 0

−x1(x3−x2)
x2x3

1 −1

−x1

x3
0 1


 .

Since xTH−1 ≥ 0T , it must be the case that x2 = x3; hence, x2 = x3 ≥ x1, so that

b) is satisfied. This completes the analysis for the case that r = 3.

Henceforth, we suppose that r ≥ 4 and that the induction hypothesis holds for

matrices of order r − 1. Form x from x by deleting its ir–th entry, and form x̃

from x by deleting its i1–th entry. Applying Lemma 3.3, it follows that the matrices

H ≡ H(x,D(i1, . . . , ir−1)) and H̃ ≡ H(x̃, D(i2, . . . , ir)) both satisfy the hypotheses of

our proposition. Thus, the induction hypothesis applies to both H and H̃. Applying

the induction hypothesis to H, we see that either i) xi1 ≤ xi2 ≤ · · · ≤ xir−1
; ii)

xi1 ≥ xi2 ≥ · · · ≥ xir−1
; or iii) there is an index k with 2 ≤ k ≤ r − 2 such that

xi1 ≥ xi2 ≥ · · · ≥ xik and xik < xik+1
≤ · · · ≤ xir−1

.

If i) holds and xir−1
≤ xir , then a) holds. If i) holds and xir−1

> xir , then

applying the induction hypothesis to H̃ , we find that necessarily it is the case that

xi2 = xi3 = · · · = xir−1
. But then there is a permutation matrix Q so that

QHQT =




1 1 1 · · · 1 γ

0 1 1 · · · 1
xir

xi2

0 0 1 · · · 1
xir

xi3

...
. . .

...

0 0 · · · 0 1
xir

xir−1

0 0 0 · · · 0 1




,

where γ = min{1,
xir

xi1

}. Hence,

QH−1QT =




1 −1 0 · · · 0
xir

xi2

− γ

0 1 −1 · · · 0 0

0 0 1 · · · 0 0
...

. . .
...

0 · · · 0 1 −1 0

0 0 · · · 0 1 −
xir

xir−1

0 0 0 · · · 0 1




.

Since H−11 ≥ 0, we find that γ ≤
xir

xi2

. Since xir < xi2 , we have γ < 1, so it must be

that case that γ =
xir

xi1

. We now deduce that xi1 = xi2 . Thus, b) holds.
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If ii) holds, then b) or c) holds, according as we have xir−1
≥ xir or xir−1

< xir ,

respectively.

Finally, suppose that iii) holds. Observe that it cannot be the case that xir−1
>

xir , otherwise we have a contradiction to the fact that the induction hypothesis applies

to H̃ . Hence, it must be the case that xir−1
≤ xir , so that c) holds.

Having unearthed some of the structure of the matrix H(x,D(i1, . . . , ir)), we next

consider its inverse.

Lemma 3.5. Suppose that n ≥ 4 and that x ∈ R
n−1 is a positive vector whose

entries are in nondecreasing order. Suppose that i1, . . . , in−1 is a permutation of

the numbers 1, . . . , n − 1, and consider H ≡ H(x,D(i1, . . . , in−1)). Write H−1 as

H−1 = I − T .

a) Suppose that xi1 ≤ xi2 ≤ · · · ≤ xin−1
. Then for each p, q = 1, . . . , n− 1, we have

tip,iq =

{
1, if q = p+ 1

0, if q 6= p+ 1.

b) Suppose that xi1 ≥ xi2 ≥ · · · ≥ xin−1
. Then for each p, q = 1, . . . , n− 1, we have

tip,iq =

{ xip+1

xip
, if q = p+ 1

0, if q 6= p+ 1.

c) Suppose that there is an index k with 2 ≤ k ≤ n− 2 such that xi1 ≥ xi2 ≥ · · · ≥ xik

and xik < xik+1
≤ · · · ≤ xin−1

. Then for each p, q = 1, . . . , k, we have

tip,iq =

{ xip+1

xip
, if q = p+ 1

0, if q 6= p+ 1,

and for each p, q = k, . . . , n− 1, we have

tip,iq =

{
1, if q = p+ 1

0, if q 6= p+ 1.

Further, for each p = k + 1, . . . , n− 1 and q = 1, . . . , k, we have tip,iq = 0. Finally,

for l = 1, . . . , k, we have

til,ik+1
=





1, if l = k

0, if xil+1
≥ xik+1

xil
−xil+1

xil

, if xik+1
≥ xil

xik+1
−xil+1

xil

, if xil ≥ xik+1
≥ xil+1

,
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and for l = 1, . . . , k, j = k + 2, . . . , n− 1, we have

til,ij =





0, if xij−1
≥ xil or xil+1

≥ xij
xil

−xij−1

xil

, if xij ≥ xil ≥ xij−1
≥ xil+1

xil
−xil+1

xil

, if xij ≥ xil ≥ xil+1
≥ xij−1

xij
−xij−1

xil

, if xil ≥ xij ≥ xij−1
≥ xil+1

xij
−xil+1

xil

, if xil ≥ xij ≥ xil+1
≥ xij−1

.

Proof. a) From the hypothesis, we find that hil,ij > 0 whenever 1 ≤ l ≤ j ≤ n− 1.

Further, for such l and j, we have hil,ij = min{1,
xij

xil

} = 1. It now follows readily

that til,il+1
= 1, l = 1, . . . , n− 2 while the remaining entries of T are zero.

b) The proof in this part follows by an argument analogous to that presented for

part a).

c) Let P be the permutation matrix P =
[
ei1 · · · ein−1

]
, and consider PTHP

which we partition as

PTHP =

[
H1 Ĥ

0 H2

]
,

where H1, H2 are k × k and (n− k − 1) × (n− k − 1), respectively. Since xik+1
≤

· · · ≤ xin−1
, we see that H2 is a matrix of the type described in part a), and since

xi1 ≥ · · · ≥ xik , H1 is a matrix of the type described in part b); consequently, the

desired expressions for tip,iq follow readily for the cases p, q = 1, . . . , k and p, q =

k + 1, . . . , n − 1. Evidently, we also have tip,iq = 0 for each p = k + 1, . . . , n− 1

and q = 1, . . . , k. It remains only to determine til,ij when l = 1, . . . , k and j =

k + 1, . . . , n− 1.

Note that for l = 1, . . . , k, j = k + 1, . . . , n− 1, we have

til,ij = eTl H
−1
1 ĤH−1

2 ej−k.

Observe also that for each l = 1, . . . , k − 1, eTl H
−1
1 = eTl −

xil+1

xil

eTl+1, while eTkH
−1
1 =

eTk . Further, for each j = k+2, . . . , n− 1, H−1
2 ej−k = ej−k − ej−k−1, while H

−1
2 e1 =

e1. Finally, note that for l = 1, . . . , k, j = k + 1, . . . , n− 1, ĥl,j−k = min{1,
xij

xil

}.

We now consider the case j = k + 1. For each l = 1, . . . , k, we have

til,ik+1
= eTl H

−1
1 ĤH−1

2 e1 = eTl H
−1
1 Ĥe1

=

{
eTk Ĥe1, if l = k

(eTl −
xil+1

xil

eTl+1)Ĥe1, if l = 1, . . . , k − 1
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=

{
1, if l = k

min
{
1,

xik+1

xil

}
−

xil+1

xil

min
{
1,

xik+1

xil+1

}
, if l = 1, . . . , k − 1.

Recalling that xil ≥ xil+1
for l = 1, . . . , k − 1, it now follows that for each such l,

min

{
1,

xik+1

xil

}
−

xil+1

xil

min

{
1,

xik+1

xil+1

}
=





0, if xil+1
≥ xik+1

xil
−xil+1

xil

, if xik+1
≥ xil

xik+1
−xil+1

xil

, if xil ≥ xik+1
≥ xil+1

.

The desired expressions for til,ik+1
, l = 1, . . . , k are now established from the consid-

erations above.

Next we consider the case that k + 2 ≤ j ≤ n− 1. Note that tik,ij = eTk Ĥej−k =

ĥk,j−k − ĥk,j−k−1 = min
{
1,

xij−k

xik

}
−min

{
1,

xij−k−1

xik

}
= 0. If 1 ≤ l ≤ k − 1, then

til,ij =

(
e
T
l −

xil+1

xil

e
T
l+1

)
Ĥ(ej−k − ej−k−1)

= min

{
1,

xij

xil

}
−min

{
1,

xij−1

xil

}
−

xil+1

xil

(
min

{
1,

xij

xil+1

}
−min

{
1,

xij−1

xil+1

})
.(3.3)

If xij−1
≥ xil or xil+1

≥ xij , we find from (3.3) that til,ij = 0. For the remaining

cases, we find that

til,ij =





xil
−xij−1

xil

, if xij ≥ xil ≥ xij−1
≥ xil+1

xil
−xil+1

xil

, if xij ≥ xil ≥ xil+1
≥ xij−1

xij
−xij−1

xil

, if xi1 ≥ xij ≥ xij−1
≥ xil+1

xij
−xil+1

xil

, if xil ≥ xij ≥ xil+1
≥ xij−1

.

Remark 3.6. Here we maintain the notation and terminology of Lemma 3.5.

It is readily verified that if we are in either case a) or case b) of that lemma, then

(I −T )1 ≥ 0 and xT (I −T ) ≥ 0T . Our goal in this remark is to establish that in case

c) we also have (I − T )1 ≥ 0 and xT (I − T ) ≥ 0T .

So, suppose that we are in case c) of Lemma 3.5. Letting P be the permutation

matrix
[
ei1 · · · ein−1

]
, we find that

(I − T ) = P

[
H−1

1 −H−1
1 ĤH−1

2

0 H−1
2

]
PT .

Hence,

(I − T )1 =

[
H−1

1 1−H−1
1 ĤH−1

2 1

en−k−1

]
,
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and so we deduce that (I − T )1 ≥ 0 if and only if H−1
1 1 −H−1

1 ĤH−1
2 1 ≥ 0. Since

H−1
2 1 = en−k−1, we see that (I − T )1 ≥ 0 if and only if

H−1
1 (1− Ĥen−k−1) ≥ 0.(3.4)

If it happens that xin−1
≥ xi1 , then Ĥen−k−1 = 1, and certainly (3.4) holds. On the

other hand, if there is an index j between 1 and k − 1 such that xij+1
≤ xin−1

≤ xij ,

then

Ĥen−k−1 =




xin−1

xi1

...
xin−1

xij

1
...

1




.

In that case, we find that

H−1
1 (1− Ĥen−k−1) =




xi1
−xi2

xi1
xi2

−xi3

xi2

...
xij−1

−xij

xij−1

xij
−xin−1

xij

0
...

0




,

and again (3.4) holds.

Similarly, we have

xT (I − T ) = xTP

[
H−1

1 −H−1
1 ĤH−1

2

0 H−1
2

]
PT =

[
xi1e

T
1 zT

]
PT ,

where zT =
[
xi1 · · · xik

]
H−1

1 ĤH−1
2 −

[
xik+1

· · · xin−1

]
H−1

2 . Consequently,

xT (I − T ) ≥ 0T if and only if
[
xi1 · · · xik

]
H−1

1 ĤH−1
2 −

[
xik+1

· · · xin−1

]
H−1

2 ≥ 0T .(3.5)

Proceeding analogously as above, we find that the left hand side of (3.5) is the zero

vector if xi1 ≥ xin−1
. On the other hand, if there is an index p between 0 and n−k−2

such that xik+p+1
≥ xi1 ≥ xik+p

, then the left side of (3.5) is given by
[
0 · · · 0 (xik+p+1

− xi1) (xik+p+2
− xik+p+1

) · · · (xin−1
− xin−2

)
]
.
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Again we see that (3.5) holds.

At last we can present the main result of this section, the characterisation of

matrices yielding equality in (2.3).

Theorem 3.7. Suppose that A is an irreducible stochastic matrix of order n

with stationary distribution vector w. Suppose further that the entries of w are in

nondecreasing order, and form w from w by deleting its last entry. We have K(A) =∑n

j=1(j − 1)wj if and only if there is a permutation of the numbers 1, . . . , n− 1, say

i1, . . . , in−1, such that one of the following holds:

a) wi1 ≤ wi2 ≤ · · · ≤ win−1
and A =

[
T (I − T )1

1
wn

wT (I − T ) 1− 1
wn

wT (I − T )1

]
, where

T is as given in Lemma 3.5 a) (taking w for x in that lemma);

b) wi1 ≥ wi2 ≥ · · · ≥ win−1
and A =

[
T (I − T )1

1
wn

wT (I − T ) 1− 1
wn

wT (I − T )1

]
, where

T is as given in Lemma 3.5 b) (taking w for x in that lemma);

c) n ≥ 4 and there is an index k with 2 ≤ k ≤ n− 2 such that wi1 ≥ wi2 ≥ · · · ≥ wik

and wik < wik+1
≤ · · · ≤ win−1

, and

A =

[
T (I − T )1

1
wn

wT (I − T ) 1− 1
wn

wT (I − T )1

]
,

where T is as given in Lemma 3.5 c) (taking w for x in that lemma).

Proof. Write A as A =

[
T (I − T )1

1
wn

wT (I − T ) 1− 1
wn

wT (I − T )1

]
, and suppose that

K(A) =
∑n

j=1(j − 1)wj . From Theorem 2.2, we find that necessarily T is nilpotent

and wT (I − T )−11 =
∑n

j=1(n− j)wj . Applying Corollary 3.2, we find that there are

indices i1, . . . , in such that (I−T )−1 = H(w,D(i1, . . . , in−1)). Since (I−T )−1 satisfies

the hypotheses of Proposition 3.4, we find that either i) wi1 ≤ wi2 ≤ · · · ≤ win−1
, or

ii) wi1 ≥ wi2 ≥ · · · ≥ win−1
, or iii) there is an index k with 2 ≤ k ≤ n− 2 such that

wi1 ≥ wi2 ≥ · · · ≥ wik and wik < wik+1
≤ · · · ≤ win−1

. Applying Lemma 3.5 now

yields the desired expressions for the entries of T in each of the three cases of interest.

Conversely, suppose that the permutation i1, . . . , in and matrix T are as in

the statement, and that A =

[
T (I − T )1

1
wn

wT (I − T ) 1− 1
wn

wT (I − T )1

]
. From Re-

mark 3.6 we have that (I − T )1 ≥ 0 and wT (I − T ) ≥ 0T , so that A is nonneg-

ative. It now follows that A is stochastic with stationary distribution vector w.

Observe that T is nilpotent. Further, from Lemma 3.5, it follows that (I − T )−1 =

H(w,D(i1, . . . , in−1)); a straightforward computation shows that wT (I − T )−11 =
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wTH(w,D(i1, . . . , in−1))1 =
∑n

j=1(n − j)wj , and so from Theorem 2.2 we find that

K(A) =
∑n

j=1(j − 1)wj , as desired.

Remark 3.8. Let A be an irreducible stochastic matrix of order n. As we saw

in Section 1, necessarily K(A) ≥ n−1
2 . Suppose now that equality holds in that bound

– i.e., that K(A) = n−1
2 . From Remark 2.3, necessarily the stationary distribution

vector of A must be 1
n
1, and evidently equality must also hold in (2.3). Applying

Theorem 3.7, it now follows that there is a permutation of the integers 1, . . . , n− 1,

say i1, . . . , in−1, such that aip,ip+1
=1, p = 1, . . . , n− 2, while all remaining entries of

the leading (n−1)× (n−1) principal submatrix of A are zeros. Using the fact that A

is stochastic with stationary distribution vector 1
n
1, we find readily that ain−1,n = 1,

an,i1 = 1, and all remaining entries of the last row and column of A are zeros.

Consequently, our matrix A is in fact the (0, 1) adjacency matrix of the directed cycle

of length n given by n → i1 → i2 → · · · → in−1 → n. This line of reasoning yields an

alternate proof of the characterisation (established in [6]) of the irreducible stochastic

matrices A of order n such that K(A) = n−1
2 .

The following example gives a particular instance of the class of matrices appear-

ing in Theorem 3.7 c).

Example 3.9. Suppose that n ≥ 4 and fix an index k with 2 ≤ k ≤ n − 2.

Suppose that we have a positive vector w ∈ R
n whose entries sum to 1, and whose

entries are in nondecreasing order. We consider the permutation of 1, . . . , n− 1 given

by il = k+1− l, l = 1, . . . , k, ij = j, j = k+1, . . . , n− 1. Below we exhibit the matrix

of Theorem 3.7 c) that arises from the permutation i1, . . . , in−1:




0 0 · · · 0 1 0 · · · 0 0
w1

w2
0 · · · 0 w2−w1

w2
0 · · · 0 0

. . .
...

...
...

...
...

0 · · · wk−1

wk
0 wk−wk−1

wk
0 · · · 0 0

0 0 · · · 0 0 1 · · · 0 0

0 0 · · · 0 0 0 1 0
...

...
...

...
. . .

...

0 0 · · · 0 0 0 · · · 0 1

0 · · · 0 wk

wn

wk+1−wk

wn

wk+2−wk+1

wn
· · · wn−1−wn−2

wn

wn−wn−1

wn




.

(3.6)

Observe then that for any n ≥ 4, and any positive vector w as above, there are

at least n− 1 distinct matrices yielding equality in (2.3), namely the n− 3 matrices

described in (3.6) (one for each k between 2 and n − 2) as well as the two matrices

arising from the constructions in Theorem 3.7 a) and b). If it happens that w has
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distinct entries, it is readily verified that these n − 1 matrices are the only ones to

yield equality in (2.3).

Our final example illustrates Theorem 3.7 c) for a case in which w has repeated

entries.

Example 3.10. Suppose that w is a positive vector in R
11 such that wT1 = 1.

Suppose further that w is in nondecreasing order, with the extra conditions that

w1 = w2, w6 = w7 and w9 = w10. Next we consider the indices i1, . . . , i10 given by
[
i1 · · · i10

]
=

[
9 10 3 1 2 4 5 7 6 8

]
.

The stochastic matrix A (which yields equality in (2.3) for the vector w) that arises

from Theorem 3.7 c) with the sequence i1, . . . , i10 is given by:



0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0
w1

w3
0 0 w3−w1

w3
0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0

0 0 w3

w10

w4−w3

w10

w5−w4

w10
0 w7−w5

w10

w8−w7

w10
0 0 w10−w8

w10

0 0 0 0 0 0 0 0 w9

w11
0 w11−w9

w11




.
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