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THE P0-MATRIX COMPLETION PROBLEM∗
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Abstract. In this paper the P0-matrix completion problem is considered. It is established that
every asymmetric partial P0-matrix has P0-completion. All 4 × 4 patterns that include all diagonal
positions are classified as either having P0-completion or not having P0-completion. It is shown that
any positionally symmetric pattern whose graph is an n-cycle with n ≥ 5 has P0-completion.
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1. Introduction. A partial matrix is a rectangular array in which some entries
are specified while others are free to be chosen. A completion of a partial matrix is
a specific choice of values for the unspecified entries. A pattern for n × n matrices
is a list of positions of an n × n matrix, that is, a subset of {1, . . . , n} × {1, . . . , n}.
A positionally symmetric pattern is a pattern with the property that (i, j) is in the
pattern if and only if (j, i) is also in the pattern. A partial matrix specifies a pattern if
its specified entries lie exactly in those positions listed in the pattern. For a particular
class, Π, of matrices, we say a pattern has Π-completion if every partial Π-matrix
specifying the pattern can be completed to a Π-matrix. The Π-matrix completion
problem for patterns is to determine which patterns have Π-completion. For example,
the positive definite completion problem asks: “Which patterns have the property
that any partial positive definite matrix specifying the pattern can be completed to a
positive definite matrix?” The answer to this question is given in [3] through the use
of graph theoretic methods.

A principal minor is the determinant of a principal submatrix. For α a subset of
{1, 2, . . . n}, the principal submatrix obtained from A by deleting all rows and columns
not in α is denoted by A(α). An n × n matrix is called a P0-matrix (P -matrix ) if
all of its principal minors are nonnegative (positive). A partial P0-matrix (partial
P -matrix) is a partial matrix in which all fully specified principal submatrices are
P0-matrices (P -matrices). The P -matrix completion problem is treated in [1, 8]. The
main results in [8] include:

• all positionally symmetric patterns for n× n matrices have P -completion,
• all patterns for 3 × 3 matrices have P -completion,
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• the partial P0-matrix 


1 2 1 x14

−1 0 0 −2
−1 0 0 −1
x41 1 1 1


(1.1)

(which specifies the positionally symmetric pattern {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2),
(2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)}) does not have P0-
completion. In this article we discuss the P0-matrix completion problem.

Throughout the paper we denote the entries of a partial matrix A as follows:
di denotes a specified diagonal entry, aij a specified off-diagonal entry, and xij an
unspecified entry, 1 ≤ i, j ≤ n.

Graph theory has played an important role in the study of matrix completion
problems. A positionally symmetric pattern for n × n matrices that includes all
diagonal positions can be represented by means of a graph G = {V,E} on n vertices.
That is, V = {1, 2, . . . , n}, and E is the edge set. For 1 ≤ i, j ≤ n, the edge {i, j}
belongs to E if and only if the ordered pair (i, j) is in the pattern (in this case,
the ordered pair (j, i) is also in the pattern). A non-symmetric pattern for n × n
matrices that includes all diagonal positions is best described by means of a digraph
G = {V,E} on n vertices. That is, the directed edge or arc, (i, j), 1 ≤ i, j ≤ n, is in the
arc set E if and only if the ordered pair (i, j) is in the pattern. Since we consider non-
symmetric as well as positionally symmetric patterns, we use digraphs for all patterns
in this paper. The partial matrix (1.1) specifies the pattern whose digraph is shown
in Figure 1.1(a). We say that a partial matrix that specifies a pattern also specifies
the digraph determined by the pattern. We say that a digraph has Π-completion if
the associated pattern has Π-completion. When working with digraphs (Sections 3
and 4) we assume that patterns contain all diagonal positions, and thus we can use
digraphs as discussed here (if some diagonal positions were missing, marked digraphs
should be used, cf. [5]).

A subdigraph of a digraph G is a digraph G′ = {V ′, E′}, where V ′ ⊆ V and
E′ ⊆ E (note that (u, v) ∈ E′ requires u, v ∈ V ′, since G′ is a digraph). If W ⊆ V , the
subdigraph induced by W is the digraph 〈W 〉 = {W,E′}, where (i, j) ∈ E′ if and only if
i, j ∈ W and (i, j) ∈ E. A digraph is complete if it includes all possible arcs. A clique
is a complete subdigraph. A path is a sequence of arcs (v1, v2), (v2, v3), . . . , (vk−1, vk)
in which the vertices are distinct, except possibly v1 = vk. A digraph is called strongly
connected if for all i, j ∈ V , there is a path from i to j. A digraph is connected if
for all i, j ∈ V , there is a semipath (i.e. a path ignoring orientation) from i to j.
A cut-vertex of a connected digraph is a vertex whose deletion from G disconnects
the digraph. A connected digraph is nonseparable if it has no cut-vertices. A block
is a maximal nonseparable subdigraph. A block clique digraph is a digraph whose
blocks are all cliques. A symmetric n-cycle is a digraph on n vertices with arc set
E = {(i, i + 1), (i + 1, i), (n, 1), (1, n)|i = 1, 2, . . . , n− 1}.

Further study of related matrix completion problems appears in [2]. In their paper
the authors consider completion problems for several classes of matrices under special
symmetry assumptions on the specified entries. One of the main results establishes
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that certain classes, Π, of matrices have Π-completion for any pattern whose digraph
is block-clique. The authors also establish that a positionally symmetric pattern for a
positive P -matrix has positive P -completion if the graph of the pattern is an n-cycle
(the digraph is a symmetric n-cycle).

The recent survey article [5] contains a summary of currently known results on a
number of matrix completion problems. The article also contains detailed definitions
of graph theoretic concepts and an extended bibliography on matrix completion prob-
lems. In our discussion, we make use of [5, Theorem 5.8], which reduces the P0-matrix
completion problem to nonseparable strongly connected digraphs; the theorem estab-
lishes that a pattern that includes all diagonal positions has P0-completion if and only
if every nonseparable strongly connected induced subdigraph of the pattern’s digraph
has P0-completion. We also make use of [5, Example 9.6]

 0 −1 x13

0 0 −1
−1 0 0


(1.2)

whose digraph is shown in Figure 1.1 (b) and [5, Example 9.7]


0 1 x13 0
0 0 1 x24

x31 0 0 1
1 x42 0 0


(1.3)

whose digraph is shown in Figure 1.1 (c), to establish that digraphs containing these
digraphs as induced subdigraphs do not have P0-completion.

Fig. 1.1. Digraphs not having P0-completion.

In Section 2 of this manuscript we establish that all asymmetric patterns have Π-
completion, where Π is either the class of P - or the class of P0-matrices. In Section 3
we classify all patterns of 4 × 4 matrices that include all diagonal positions as either
having P0-completion or not having P0-completion. In Section 4 we show that every
symmetric n-cycle has P0-completion for n ≥ 5. Finally, Section 5 contains tables
that support the results of Sections 3 and 4.

2. Asymmetry. A partial matrix is asymmetric if whenever i = j and aij is
specified, then aji is not specified. The diagonal elements of the matrix may or may
not be specified.
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In this section we show that every asymmetric partial Π-matrix can be completed
to a Π-matrix for Π the class of either P - or P0-matrices.

Lemma 2.1. Every real skew-symmetric matrix is a P0-matrix.
Proof. Any skew-symmetric matrix, S, has purely imaginary eigenvalues. Since

S is real, its complex eigenvalues occur in pairs, and therefore det S ≥ 0. Also, since
any principal submatrix of S is also skew-symmetric, it follows that S is a P0-matrix.

Theorem 2.2. Every asymmetric partial Π-matrix has Π-completion.
Proof. Let A be an asymmetric partial Π-matrix. The proof is divided into three

cases.

Case 1: A is a partial P0-matrix with all specified diagonal entries equal to 0.

Complete A to a skew-symmetric matrix. By Lemma 2.1, this completion yields
a P0-matrix.

Case 2: A is a partial P0-matrix with some positive diagonal entries.

Let the entries of A be as indicated on page 2. Let Â be the completion of A
obtained by setting all xii, and all unspecified pairs xij , xji to 0. Set all other xij to
−aji, that is

Â =




d̂1 â12 â13 · · · â1n

−â12 d̂2 â23 · · · â2n

−â13 −â23 d̂3 · · · â3n

...
...

...
. . .

...
−â1n −â2n −â3n · · · d̂n



,

where d̂i = di or 0, and âij = aij , −aji or 0, for i, j = 1, 2, . . . , n. Let D =
diag(d̂1, d̂2, . . . , d̂n), then D ≥ 0. We can write Â = A0 + D, where A0 is a skew-
symmetric real matrix. By Lemma 2.1, A0 is a P0-matrix, and Â = A0 + D is also a
P0-matrix [7].

Case 3: A is a partial P -matrix.

Complete A to Â, and let Â = A0 + D as in Case 2. If no diagonal entries are
specified, let d = 1, otherwise let d = min {di|di specified}. It follows that A1 =
A0 + dI is a P -matrix ([7]). Let D1 = diag(f1, f2, . . . , fn), where

fi =
{

0 if the (i, i)-entry is not specified
di − d if the (i, i)-entry is specified .

Then D1 ≥ 0, and Â1 = A1 + D1 is a P -matrix ([7]) that completes A.
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3. Classification of Patterns of 4 × 4 Matrices. This section contains a com-
plete classification of the patterns of 4×4 matrices that include all diagonal positions
into two categories: those having P0-completion and those not having P0-completion.
The classification of patterns is carried out by analysis of the corresponding digraphs
on four vertices. A list of digraph diagrams on four vertices appears in [4]; all dia-
grams are numbered by q (the number of edges in the digraph) and n (the diagram
number within all digraphs with the same number of edges).

Example 3.1. The pattern whose digraph is shown in Figure 3.1 does not have
P0-completion, because the matrix

A =


 0 −1 x13

0 0 −1
−1 x32 0




does not have P0-completion. A is a partial P0-matrix because the diagonal entries
are nonnegative and the only complete principal submatrix, the A({1, 2}) submatrix,
has determinant 0. However, det A = −1.

Fig. 3.1. Digraph not having P0-completion

Lemma 3.2. The patterns whose digraphs are shown in Figure 3.2 have P0-
completion.

q = 7, n = 2 q = 6, n = 4 q = 6, n = 7 q = 5, n = 7

Fig. 3.2. Digraphs having P0-completion (identified as per [4]).

Proof. Note that since P0-matrices are closed under permutation similarity, we
are free to label the diagrams as we choose.

Let A =




d1 a12 x13 a14

a21 d2 x23 x24

x31 a32 d3 a34

a41 x42 a43 d4


 be a partial matrix specifying the pattern of

the digraph q = 7, n = 2. We need to consider three cases: (1) d1 and d3 both nonzero,
(2) d1 = 0, and (3) d3 = 0. In the first case, since multiplication of a P0-matrix by
a positive diagonal matrix produces a P0-matrix, without loss of generality assume
d1 = d3 = 1.
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Case 1: d1 = 1, d3 = 1.

Set x23 = 0, x13 = 0, x42 = w, x24 = −w. If a14a43 = 0, then set x31 = 0. If
a14a43 = 0, then set x31 = d4

a14a43
. In both cases, the magnitude of w can be chosen

sufficiently large to ensure that this matrix is a P0-matrix. The principal minors are
shown in Table 1-1 in Section 5 and are all nonnegative. If a14a43 = 0, then either
a14 = 0 or a43 = 0. If a14 = 0, then det A({1, 3, 4}) = −a34a43 +d4 = det A({3, 4}) ≥
0. If a43 = 0, then det A({1, 3, 4}) = −a14a41 +d4 = det A({1, 4}) ≥ 0. If a14a43 = 0,
then det A({1, 3, 4}) = −a14a41−a34a43+2d4 = det A({1, 4})+det A({3, 4}) ≥ 0. All
other nonconstant principal minors, including the determinant, are monic polynomials
of degree two in w. Therefore they can all be made nonnegative by selecting w of
sufficiently large magnitude.

Case 2: d1 = 0.

If −a43a32a21a14 ≥ 0, then A can be completed to a P0-matrix by setting all
unspecified entries to 0. The principal minors are shown in Table 1-2 in Section 5, and
it is easy to see that they are all nonnegative (det A = −a43a32a21a14 +det A({1, 2}) ·
det A({3, 4}) + d2d3 · det A({1, 4}) ≥ 0).

If −a43a32a21a14 < 0, then a43, a32, a21, and a14 are all nonzero. By use of
a diagonal similarity (which preserves P0-matrices), we may assume that a32 = 1
(thus a43a21a14 > 0). Then A can be completed to a P0-matrix as follows: Set
x23 = −1, x13 = 0, and x24 = 0. Set x42 = a43

d3
if d3 = 0 or x42 = a43 if d3 = 0

(note sign x42 = sign a43). Choose x31 = w, where w has the same sign as a21 and of
sufficiently large magnitude. The principal minors are shown in Table 1-2 and are all
nonnegative: We have det A({1, 2, 3}) = d3 · det A({1, 2})− a12w ≥ 0 since sign w =
sign a21. det A({1, 2, 4}) = d2 ·det A({1, 4})+d4 ·det A({1, 2})+a14a21x42 ≥ 0, since
a14a21a43 > 0 and sign x42 = sign a43. det A({1, 3, 4}) = d3 ·det A({1, 4})+a14a43w.
det A({2, 3, 4}) = d2 · det A({3, 4}) + d4 − a34x42. If d3 = 0, d4 − a24x42 =

(
1
d3

)
·

det A({3, 4}) ≥ 0. If d3 = 0, then d4 − a34x42 = d4 + det A({3, 4}) ≥ 0. det
A = b + a14a43d2w − a12d4w + a14x42w, where b is constant. The terms a14a43d2w
and −a12d4w are nonnegative because w has the same sign as a21, and a43a21a14,
−a12a21, d2,and d4 ≥ 0. Finally, the term a14x42w is positive since a14a43a21 > 0,
and x42 and w have the appropriate signs. Therefore, we can take w of sufficiently
large magnitude to ensure that det A ≥ 0.

Case 3: d3 = 0.

This case is similar to Case 2, and can be derived from the information in
Table 1-3.

Any partial P0-matrix specifying the pattern of the digraph q = 6, n = 4 may
be extended to a partial P0-matrix specifying the digraph q = 7, n = 2 by setting
the unspecified (4, 1)-entry equal to 0. The same reasoning applies to the digraphs
q = 6, n = 7 and q = 5, n = 7. Thus these patterns also have P0-completion.
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Theorem 3.3. (Classification of Patterns of 4 × 4 Matrices.) Let Q be a pat-
tern for 4 × 4 matrices that includes all diagonal positions. The pattern Q has P0-
completion if and only if its digraph is one of the following (numbered as in [4], q is
the number of edges, n is the diagram number).

q = 0;
q = 1;
q = 2, n = 1–5;
q = 3, n = 1–13;
q = 4, n = 1–12, 14–27;
q = 5, n = 1–5, 7–10, 14–17, 21–38;
q = 6, n = 1–8, 13, 15, 17, 19, 23, 26, 27, 32, 35, 38–40, 43, 45–48;
q = 7, n = 2, 4, 5, 9, 14, 24, 29, 34, 36;
q = 8, n = 1, 10, 12, 18;
q = 9, n = 8, 11;
q = 12.

Proof. Part 1. Completion

The patterns of the following digraphs have P0-completion because any asym-
metric digraph has P0-completion (by Theorem 2.2): q = 1; q = 2, n = 2–5; q = 3,
n = 4–13; q = 4, n = 16–27; q = 5, n = 29–38; q = 6, n = 45–48.

The patterns of the following digraphs have P0-completion because every strongly
connected nonseparable induced subdigraph has P0-completion [5, Theorem 5.8].
(This includes the cases when each component is complete or is block-clique. This
list does not include those digraphs that fall under this rule but were already listed in
the previous list, although the technique of completing an asymmetric part first may
be used, as in q = 5, n = 25): q = 0; q = 2, n = 1; q = 3, n = 1, 2, 3; q = 4, n =
1–12, 14, 15; q = 5, n = 1–5, 8–10, 14–17, 21–28; q = 6, n = 1–3, 5, 6, 8, 13, 15, 17,
19, 23, 26, 27, 32, 35, 38–40, 43; q = 7, n = 4, 5, 9, 14, 24, 29, 34, 36; q = 8, n = 1,
10, 12, 18; q = 9, n = 8, 11; q = 12.

The patterns of the following digraphs have P0-completion, by Lemma 3.2: q =
5, n = 7; q = 6, n = 4, 7; q = 7, n = 2.

Part 2. No Completion.

The patterns of the following digraphs do not have P0-completion because each
contains [5, Example 9.6], (equation (1.2) within) as an induced subdigraph: q = 5,
n = 6; q = 6, n = 9, 10, 12, 18, 20, 21; q = 7, n = 1, 3, 6, 11, 12, 15, 16, 18, 19, 22,
23, 25–28; q = 8, n = 3–9, 13–15, 20–27; q = 9, n = 1–7, 12, 13; q = 10, n = 2–5; q
= 11.

The patterns of the following digraphs do not have P0-completion because each
contains Example 3.1 as an induced subdigraph (this list does not include those
digraphs that fall under this rule but were already listed in the previous list): q = 4,
n = 13; q = 5, n = 11, 12, 13, 18, 19, 20; q = 6, n = 11, 14, 16, 24, 25, 28–31, 33, 34,
36, 41, 42, 44; q = 7, n = 7, 8, 10, 13, 17, 20, 21, 30–33, 37, 38; q = 8, n = 11, 16,
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17, 19; q = 9, n = 9, 10.
The pattern of the digraph q = 8, n = 2 does not have P0-completion because it

is [5, Example 9.7], (equation (1.3) within).
The pattern of the digraph q = 10, n = 1 does not have P0-completion because

it corresponds to the example in [8], (equation (1.1)).
By examination of the partial P0-matrices below, it can be seen that the pat-

terns of the digraphs q = 6, n = 22; q = 6, n = 37 and q = 7, n = 35 do
not have P0-completion (the digraphs are numbered as shown in Figure 3.3). For
q = 6, n = 22, det A({1, 3}) = −x13, and det A({1, 3, 4}) = x13, so x13 = 0. But then
det A({1, 2, 3}) = −1+x13x21x32 = −1. The pattern of q = 6, n = 37 is the transpose
of the pattern of q = 6, n = 22, and thus the transpose of the previous partial matrix
shows this pattern lacks completion also. For q = 7, n = 35, det A({1, 2}) = x21,
det A({1, 2, 4}) = −x21 and det A({1, 2, 3}) = −1 + x21x13x32.

q = 6, n = 22 :




0 1 x13 x14

x21 0 −1 x24

1 x32 0 1
1 x42 0 0


 ,

q = 6, n = 37 :




0 x12 1 1
1 0 x23 x24

x31 −1 0 0
x41 x42 1 0


 ,

q = 7, n = 35 :




0 −1 x13 1
x21 0 1 0
1 x32 0 x34

x41 −1 −1 0


 .

Fig. 3.3. Digraphs not having P0-completion (identified as per [4]).

The techniques and examples used in this section also show that all digraphs of
order 2 have P0-completion and all digraphs of order 3, except Example 3.1 and [5,
Example 9.6], have P0-completion.

4. Symmetric n-cycle. Recall that a pattern has P -completion if and only if
the principal subpattern determined by the diagonal positions included in the pattern
has P -completion [8], but the situation is different for P0-completion: If a positionally
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symmetric pattern has P0-completion, then each principal subpattern associated with
a component of the digraph either includes all diagonal positions or omits all diagonal
positions [6]. Any pattern that omits all diagonal positions has completion for any of
the classes discussed in this paper. Thus, to determine which positionally symmetric
patterns have completion, we need to discuss only patterns that include all diagonal
positions.

Cycles often play an important role in the study of the matrix completion problem
for a particular class of matrices. We call a pattern that includes the diagonal a cycle
(or n-cycle) pattern if its digraph is a symmetric n-cycle. For example, an n-cycle pat-
tern does not have positive definite completion for n ≥ 4 [3]. Since every positionally
symmetric pattern has P -completion [8], every cycle pattern has P -completion. In [2],
induction on the length of the cycle was used to show that every cycle pattern has
positive P -completion. In [5, Theorem 8.4] the same method was used to show that
every cycle pattern has Π-completion, where Π is any of the classes: P0,1-matrices,
nonnegative P0,1-matrices, nonnegative P0,1-matrices. In [2] it was also shown that an
n-cycle pattern does not have sign-symmetric P0,1- or sign-symmetric P0-completion
for n ≥ 4. An example was given of a partial sign-symmetric P -matrix specifying
a 4-cycle pattern that cannot be completed to a sign-symmetric P -matrix, but the
example does not naturally extend to longer cycles. The issue of whether an n-cycle
pattern has sign-symmetric P -completion is unresolved for n ≥ 5. However, it was ob-
served that if for some k, a k-cycle pattern has completion then so does every n-cycle
pattern for n ≥ k, by an induction argument. We find that this situation actually
arises for P0-matrices: It was shown in [5, Example 9.7] that a 4-cycle pattern does
not have P0-completion, but we show in this section that a 5-cycle pattern does have
P0-completion, and by induction, an n-cycle pattern has P0-completion for all n ≥ 5.

Lemma 4.1. Let A be a partial P0-matrix that includes all diagonal entries with
at least four of these nonzero and let A specify a pattern whose digraph is a symmetric
5-cycle. Then A can be completed to a P0-matrix.

Proof. Let A be such a partial P0-matrix. Without loss of generality, by use of a
permutation similarity, and then by multiplication by a positive diagonal matrix, we
can assume that the cycle is 1, 2, 3, 4, 5, 1, and d1 = d2 = d3 = d4 = 1. Furthermore,
either (1) det A({3, 4}) > 0 or (2) det A({3, 4}) = 0. In case (2), by use of a diagonal
similarity, without loss of generality we can assume a34 = 1, which implies a43 = 1.

The completion is done by the same method used for completions of position-
ally symmetric partial P -matrices: Choose the unspecified entries in pairs xij = t,
xji = −t, in order from the top left to lower right, ensuring that every newly com-
pleted principal submatrix has nonnegative determinant. The values of these principal
minors are listed in Table 2.

• Choose x13 = u, x31 = −u, u sufficiently large to ensure det A({1, 3}),
det A({1, 2, 3}) > 0. This can be done because each determinant is the
sum of u2 and a linear function of u. The value of u is now fixed.

• Choose x14 = v, x41 = −v, with the sign of v such that (−a45a51+a54a15)v ≥
0 and |v| sufficiently large to ensure that det A({1, 4}), det A({1, 3, 4}) > 0,
and det A({1, 4, 5}) ≥ 0. This can be done because each of the first two
determinants is the sum of v2 and a linear function of v and det A({1, 4, 5}) =
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−a45a54 +d5−a15a51 +(−a45a51 +a54a15)v+d5v
2. If d5 > 0, this expression

can be made greater than zero by choice of v; if d5 = 0, then −a45a54 −
a15a51 = det A({4, 5})+det A({1, 5}) ≥ 0, so det A({1, 4, 5}) ≥ 0. The
value of v is now fixed.

• Choose x24 = w, x42 = −w, with |w| sufficiently large to ensure det A({2, 4}),
det A({1, 2, 4}), det A({2, 3, 4}), det A({1, 2, 3, 4}) > 0. This can be done
because each of the first three determinants is the sum of w2 and a linear
function of w and the last determinant is the sum of w2(1 + u2) and a linear
function of w. The value of w is now fixed.

• Choose x35 = y, x53 = −y, with y > 0 and sufficiently large to ensure
det A({3, 5}), det A({1, 3, 5}), det A({3, 4, 5}), det A({1, 3, 4, 5}) > 0. This
can be done because each of the first three determinants is the sum of y2 and
a linear function of y and the last determinant is the sum of y2(1 + v2) and
a linear function of y. Furthermore, y can be chosen large enough to ensure
−a45a54 + a23a45a32a54 −a23a32d5−a23d5w+ a32d5w+ d5w

2 −a45y+ a54y+
a45a32wy + a23a54wy + y2 + w2y2 > 0. The value of y is now fixed.

• Choose x25 = z, x52 = −z, with the sign of z such that (−a23a45 + a32a54 +
a45w + a54w + a23y + a32y)z ≥ 0 and z of sufficiently large modulus to
ensure that det A({2, 5}), det A({1, 2, 5}), det A({2, 4, 5}), det A({2, 3, 5}),
det A({1, 2, 3, 5}), det A({1, 2, 4, 5}), det A({2, 3, 4, 5}), det A > 0. This
can be done because each of the first four determinants is the sum of z2

and a linear function of z, det A({1, 2, 3, 5}) is the sum of z2(1 + u2) term
and a linear function of z, det A({1, 2, 4, 5}) is the sum of z2(1 + v2) and a
linear function of z, and det A is the sum of z2·det A({1, 3, 4}) and a linear
function of z. For det A({2, 3, 4, 5}) we need to consider the two cases, (1)
det A({3, 4}) > 0 or (2) det A({3, 4}) = 0, separately: det A({2, 3, 4, 5}) is
the sum of z2·det A({3, 4}) and a linear function of z, so in case (1), z can
be chosen sufficiently large to ensure the determinant is positive. In case (2),
det A({2, 3, 4, 5}) = −a45a54 + a23a45a32a54 − a23a32d5 − a23d5w + a32d5w +
d5w

2 −a45y+a54y+a45a32wy +a23a54wy + y2 +w2y2 +(−a23a45 +a32a54 +
a45w+a54w+a23y+a32y)z > 0. Thus A has been completed to a P0-matrix.

Theorem 4.2. A pattern that includes all diagonal positions and whose digraph
is a symmetric 5-cycle has P0-completion.

Proof. Let A be a partial P0-matrix specifying the symmetric 5-cycle 1, 2, 3, 4, 5, 1.
By multiplication by a positive diagonal matrix, without loss of generality each diago-
nal element of A is 0 or 1. Two diagonal entries are called adjacent if the corresponding
vertices in the digraph are adjacent. The proof is by cases based on the composition
of the diagonal. For each case, the matrix is completed by assigning values to un-
specified entries. All minors are evaluated (see Table 3) to verify this results in a P0

matrix.

Case 1: No adjacent diagonal entries are 1.

By renumbering if necessary, we can assume that d1 = d2 = d4 = 0. If
a12a23a34a45a51 + a21a32a43a54a15 ≥ 0, set all unspecified entries to 0. All principal
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minors are clearly non-negative (see Table 3-1). If the product a12a23a34a45a51 +
a21a32a43a54a15 < 0, then either a12a23a34a45a51 < 0 or a21a32a43a54a15 < 0. With-
out loss of generality a21a32a43a54a15 < 0, and by use of a diagonal similarity, with-
out loss of generality a21 = a32 = a43 = a54 = −1 (which implies a15 < 0, and
a12, a23, a34, a45, a51 ≥ 0. See Table 3-1). Set the (i, i + 2)-entries all equal to a suf-
ficiently large positive number z and set the (i + 2, i)-entries equal to 0 (arithmetic
of indices modulo 5). All principal minors of size 3 × 3 or less are are non-negative.
Each 4 × 4 principal minor is a polynomial in z of degree three with positive leading
coefficient. det A is a monic polynomial in z of degree five.

Case 2: Two adjacent 1’s and two 0’s on the diagonal.

By renumbering if necessary, d1 = d2 = 1. Then d4 = d5 = 0, or d3 = d5 = 0 and
d4 = 1. Set the (3, 1)-entry equal to z and (1, 3)-entry equal to −z, where z is chosen
of sufficiently large magnitude. Choose the sign of z with sign z = sign (a34a45a51 −
a43a54a15). All principal minors are clearly nonnegative or can be made nonneg-
ative by choosing z of sufficiently large magnitude, except det A({1, 3, 4, 5}) and
det A. These determinants are polynomials in z of degree two with leading coeffi-
cient −a45a54. If a45a54 = 0, then each determinant is the sum of a constant and
(a34a45a51−a43a54a15)z. If (a34a45a51−a43a54a15)z is 0, the constant is nonnegative.

Case 3: Four diagonal entries are 1.

This is the preceding Lemma.
Theorem 4.3. A pattern that includes all diagonal positions and whose digraph

is a symmetric n-cycle has P0-completion for n ≥ 5.
Proof. The proof is by induction on n. Theorem 4.2 establishes the result for

n = 5. Assume true for n − 1. Let A be an n × n partial P0-matrix specifying the
pattern whose digraph is the symmetric n-cycle 1, 2, . . . , n, 1. The general strategy is
to complete A to a matrix Â in three steps, and then prove Â is a P0-matrix.

Step 1: Choose x2n = c2n and xn2 = cn2 in an appropriate way (“appropriate”
depends on A) so that Â({2, n}) is a P0-matrix. Then, the principal submatrix

C =




d2 a23 x24 · · · x2,n−1 c2n

a32 d3 a34 · · · x3,n−1 x3n

x42 a43 d4 · · · x4,n−1 x4n

...
...

...
. . .

...
...

xn−1,2 xn−1,3 xn−1,4 · · · dn−1 an−1,n

cn2 xn3 xn4 · · · an,n−1 dn



,

obtained by deleting row 1 and column 1, is a partial P0-matrix that specifies a pattern
whose digraph is a symmetric (n− 1)-cycle.

Step 2: By the induction hypothesis C can be completed to a P0-matrix, Ĉ.

The Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 9, pp. 1-20, February 2002



ELA

12 J.Y. Choi, L.M. DeAlba, L. Hogben, M.S. Maxwell, and A. Wangsness

Step 3: Finish Â by specifying the remaining unspecified entries of A in an
appropriate way.

Step 4: Show Â is a P0-matrix, i.e., show that det Â(α) ≥ 0 for any α ⊆ {1, . . . , n}.

Note that all subscript numbering is mod n, so n + 1 means 1 and 0 means n.
Without loss of generality di = 0 or 1 for all i. The proof is now divided into cases.

Case 1: For some k, dk = dk+1 = 1 and ak,k+1 = 0 or ak+1,k = 0. Renumber
so that d1 = d2 = 1 and a12 = 0. By use of a diagonal similarity we may assume
a12 = 1.

Case 2: For some k, dk = 0, and ak−1,k = 0 or ak,k−1 = 0. Renumber so d2 = 0
and a12 = 0 (if a21 = 0 and a12 = 0, transpose the argument below). If d1 = 1 and
dn = 1, we may assume a1n = 0 (because if d1 = 1, dn = 1 and a1n = 0, renumber
to obtain Case 1). By use of a diagonal similarity, without loss of generality we may
assume a21 ≤ 0.

Case 3: For some k, dk = 0, and ak−1,k = 0 and ak,k−1 = 0. Renumber so that
d2 = 0 and a12 = 0 and a21 = 0. If d1 = 1 and dn = 1, we may assume a1n = 0
(because if d1 = 1 = dn and a1n = 0, renumber to obtain Case 1). Without loss of
generality assume a12 = 1 (note that this implies a21 < 0).

These cases cover all possibilities except a trivial one: If any two adjacent diag-
onal entries are 1 and either off-diagonal entry in the corresponding 2 × 2 principal
submatrix is nonzero, Case 1 applies. If Case 1 does not apply, then either there is a
zero in the diagonal, so Case 2 or Case 3 applies, or all diagonal entries are 1 and all
specified off-diagonal entries are 0, in which case, setting all unspecified entries to 0
completes A to the identity matrix.

Step 1: Choose c2n = a1n and

cn2 =
{

an1 Case 1 or 2
−an1

a21
Case 3

The only fully specified principal submatrices of C are 2 × 2, and all of these
are principal submatrices of A except C({2, n}). We show C({2, n}) is a P0-matrix:
For Case 1, C({2, n}) = A({1, n}). For Cases 2 and 3, d2 = 0, so det C({2, n}) =
−c2ncn2 = −a1ncn2, where cn2 = an1 or −an1

a21
. If d1 = dn = 1 and Case 1 does

not apply, then a1n = 0, so det C({2, n}) = 0. If d1 = 0 or dn = 0, then 0 ≤
det A({1, n}) = −a1nan1. Since cn2 has the same sign as an1, det C({2, n}) ≥ 0. So
in all cases det C({2, n}) ≥ 0 and C is a partial P0-matrix.

Step 2: Use the induction hypothesis to complete C to Ĉ.

Step 3: For 2 < i, j < n, choose x1j = c2j and
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xi1 =
{

ci2 Case 1 or 2
−ci2a21 Case 3

to obtain the completion Â of A.

Step 4: Show Â is a P0-matrix. We must show that det Â(α) ≥ 0 for any
α ⊆ {1, . . . , n}. For all cases, if 1 /∈ α, Â(α) is a principal submatrix of the P0-matrix
Ĉ, so det Â(α) ≥ 0. Thus, assume 1 ∈ α.

Case 1: d1 = d2 = 1 and a12 = 1. The proof of this case is the same as [2,
Lemma 3.5].

Case 2: d2 = a12 = 0, and a21 ≤ 0.

Â =




d1 0 a23 c24 · · · c2,n−1 a1n

a21 0 a23 c24 · · · c2,n−1 a1n

a32 a32 d3 a34 · · · c3,n−1 c3n

c42 c42 a43 d4 · · · c4,n−1 c4n

...
...

...
...

. . .
...

...
cn−1,2 cn−1,2 cn−1,3 cn−1,4 · · · dn−1 an−1,n

an1 an1 cn3 cn4 · · · an,n−1 dn



.

For 2 /∈ α, Â(α) = Ĉ((α − {1}) ∪ {2}) + diag (d1, 0, . . . , 0), so det Â(α) ≥ 0. For
2 ∈ α, subtract row 2 from row 1 (which does not change the determinant) so the first
row is (d1 − a21, 0, . . . , 0). It follows that det Â(α) = (d1 − a21) · det Ĉ(α−{1}) ≥ 0.

Case 3: d2 = 0, a12 = 1 and a21 < 0.

Â =




d1 1 a23 c24 · · · c2,n−1 a1n

a21 0 a23 c24 · · · c2,n−1 a1n

−a32a21 a32 d3 a34 · · · c3,n−1 c3n

−c42a21 c42 a43 d4 · · · c4,n−1 c4n

...
...

...
...

. . .
...

...
−cn−1,2a21 cn−1,2 cn−1,3 cn−1,4 · · · dn−1 an−1,n

an1 −an1
a21

cn3 cn4 · · · an,n−1 dn



.

For 2 /∈ α, Â(α) can be obtained from Ĉ((α−{1})∪{2}) by multiplying the first
column by −a21 > 0, and adding diag (d1, 0, . . . , 0), so det Â(α) ≥ (−a21)· det Ĉ((α−
{1})∪{2}) ≥ 0. For 2 ∈ α, subtract row 2 from row 1 and then add a21 times column
2 to column 1 (which does not change the determinant) to obtain
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d1 1 0 0 · · · 0 0
a21 0 a23 c24 · · · c2,n−1 a1n

0 a32 d3 a34 · · · c3,n−1 c3n

0 c42 a43 d4 · · · c4,n−1 c4n

...
...

...
...

. . .
...

...
0 cn−1,2 cn−1,3 cn−1,4 · · · dn−1 an−1,n

0 −an1
a21

cn3 cn4 · · · an,n−1 dn



.

det Â(α) = d1· det Ĉ(α − {1}) + (−a21)· det Ĉ(α− {1, 2}) ≥ 0.

5. Tables. The following tables are support for the results in Sections 3 and 4.
Table 1 is referenced in Lemma 3.2, Table 2 is referenced in Lemma 4.1, and Table 3
is referenced in Theorem 4.2. For those α marked with *, A(α) is a fully specified
principal submatrix, and so det A(α) is assumed to be nonnegative. Note that di ≥ 0
for all i.

Table 1
Case 1: d1 = d3 = 1

Table 1-1 a14a43 = 0 a14a43 = 0
α x23 = x13 = x31 = 0

x42 = w, x24 = −w
x23 = x13 = 0, x31 = d4

a14a43
x42 = w, x24 = −w

{1, 2}∗ −a12a21 + d2 −a12a21 + d2

{1, 4}∗ −a14a41 + d4 −a14a41 + d4

{3, 4}∗ −a34a43 + d4 −a34a43 + d4

{1, 3} 1 1
{2, 3} d2 d2

{2, 4} d2d4 + w2 d2d4 + w2

{1, 2, 3} −a12a21 + d2 −a12a21 + d2

{1, 2, 4} −a14a41d2−a12a21d4+d2d4+
a14a21w − a12a41w + w2

−a14a41d2−a12a21d4+d2d4+
a14a21w − a12a41w + w2

{1, 3, 4} −a14a41 − a34a43 + d4 −a14a41 − a34a43 + 2d4

{2, 3, 4} −a34a43d2 +d2d4−a32a43w+
w2

−a34a43d2 +d2d4−a32a34w+
w2

{1, 2, 3, 4} −a14a21a32a43 +
a12a21a34a43 − a14a41d2 −
a34a43d2 − a12a21d4 +
d2d4 + a14a21w − a12a41w −
a32a43w + w2

−a14a21a32a43 +
a12a21a34a43 − a14a41d2 −
a34a43d2 − a12a21d4 +
2d2d4 + a14a21w − a12a41w −
a32a43w + a12d4

a14
w + w2
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Case 2: d1 = 0
Table 1-2 −a43a32a21a14 ≥ 0 −a43a32a21a14 < 0, a32 = 1

α xij = 0 x23 = −1, x13 = x24 = 0,
x42 = a43

d3
if d3 �= 0

x42 = a43 if d3 = 0
x31 = w, signw = sign a21

{1, 2}∗ −a12a21 −a12a21

{1, 4}∗ −a14a41 −a14a41

{3, 4}∗ −a34a43 + d3d4 −a34a43 + d3d4

{1, 3} 0 0

{2, 3} d2d3 1 + d2d3

{2, 4} d2d4 d2d4

{1, 2, 3} −a12a21d3 −a12a21d3 − a12w

{1, 2, 4} −a14a41d2 − a12a21d4 −a14a41d2−a12a21d4 +a14a21x42

{1, 3, 4} −a14a41d3 −a14a41d3 + a14a43w

{2, 3, 4} −a34a43d2 + d2d3d4 −a34a43d2 + d4 + d2d3d4 −a34x42

{1, 2, 3, 4} −a43a32a21a14 + a12a21a34a43 −
a14a41d2d3 − a12a21d3d4

−a14a41+a12a34a41−a14a21a43+
a12a21a34a43 − a14a41d2d3 −
a12a21d3d4 + a14a21d3x42 +
a14a43d2w − a12d4w + a14x42w

Case 3: d3 = 0
Table 1-3 −a43a32a21a14 ≥ 0 −a43a32a21a14 < 0, a32 = 1

α x42 = d1d2d4
a14a21

if a14a21 �= 0
x42 = 0 if a14a21 = 0
xij = 0 for others

x23 = −1, x13 = x24 = 0
x31 = a21

d2
if d2 �= 0

x31 = a21 if d2 = 0
x42 = w, sign w = sign a43

{1, 2}∗ −a12a21 + d1d2 −a12a21 + d1d2

{1, 4}∗ −a14a41 + d1d4 −a14a41 + d1d4

{3, 4}∗ −a34a43 −a34a43

{1, 3} 0 0

{2, 3} 0 1

{2, 4} d2d4 d2d4

{1, 2, 3} 0 d1 − a12x31

{1, 2, 4} −a14a41d2 − a12a21d4 + d1d2d4 +
a14a21x42

−a14a41d2 − a12a21d4 + d1d2d4 +
a14a21w

{1, 3, 4} −a34a43d1 −a34a43d1 + a14a43x31

{2, 3, 4} −a34a43d2 −a34a43d2 + d4 − a34w

{1, 2, 3, 4} −a14a21a32a43 + a12a21a34a43 −
a34a43d1d2

−a14a41+a12a34a41−a14a21a43+
a12a21a34a43 − a34a43d1d2 +
d1d4 − a34d1w + a14a43d2x31 −
a12d4x31 + a14wx31
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Table 2
d1 = d2 = d3 = d4 = 1

Table 2 a34a43 < 1 a34 = a43 = 1
α x13 = u,x41 = v,x24 = w,x35 = y,x52 = z

x31 = −u,x14 = −v,x42 = −w,x53 = −y,x25 = −z

{1, 2}∗ 1 − a12a21

{2, 3}∗ 1 − a23a32

{3, 4}∗ 1 − a34a43

{4, 5}∗ d5 − a45a54

{1, 5}∗ d5 − a15a51

{1,3} 1 + u2

{1,4} 1 + v2

{2,4} 1 + w2

{2,5} d5 + z2

{3,5} d5 + y2

{1,2,3} 1 − a12a21 − a23a32 − a12a23u + a21a32u + u2

{1,2,4} 1 − a12a21 + v2 + a12vw + a21vw + w2

{1,2,5} −a15a51 + d5 − a12a21d5 − a12a51z + a21a15z + z2

{1,3,4} 1 − a34a43 + u2 + a34uv + a43uv + v2

{1,3,5} −a15a51 + d5 + d5u
2 + a15uy + a51uy + y2

{1,4,5} −a45a54 − a15a51 + d5 − a45a51v + a54a15v + d5v
2

{2,3,4} 1 − a23a32 − a34a43 − a23a34w + a32a43w + w2

{2,3,5} d5 − a23a32d5 + y2 + a23yz + a32yz + z2

{2,4,5} −a45a54 + d5 + d5w
2 + a45wz + a54wz + z2

{3,4,5} −a45a54 + d5 − a34a43d5 − a34a45y + a43a54y + y2

{1,2,3,4} 1− a12a21 − a23a32 − a34a43 + a12a21a34a43 − a12a23u+ a21a32u+
u2 − a12a23a34v + a21a32a43v + a34uv + a43uv + v2 − a23a32v

2 −
a23a34w + a32a43w + a34a21uw + a12a43uw + a12vw + a21vw +
a23uvw − a32uvw + w2 + u2w2

{1,2,3,5} −a15a51 + a23a32a15a51 + d5 − a12a21d5 − a23a32d5 − a12a23d5u +
a21a32d5u+d5u

2−a12a23a51y+a21a32a15y+a51uy+a15uy+y2−
a12a21y

2−a12a51z+a21a15z+a51a32uz+a23a15uz+a23yz+a32yz+
a12uyz − a21uyz + z2 + u2z2

{1,2,4,5} −a45a54+a12a21a45a54−a15a51+d5−a12a21d5−a45a51v+a54a15v+
d5v

2−a12a45a51w+a21a54a15w+a12d5vw+a21d5vw−a15a51w
2 +

d5w
2 −a12a51z+a21a15z+a45a21vz+a12a54vz+a45wz+a54wz+

a51vwz − a15vwz + z2 + v2z2
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d1 = d2 = d3 = d4 = 1
Table 2 a34a43 < 1 a34 = a43 = 1
{1,3,4,5} −a45a54 − a15a51 + a34a43a15a51 + d5 − a34a43d5 − a34a45a51u +

a43a54a15u − a45a54u
2 + d5u

2 − a45a51v + a15a54v + a34d5uv +
a43d5uv+ d5v

2 −a34a45y + a43a54y + a15uy+ a51uy+ a51a43vy +
a34a15vy + a45uvy − a54uvy + y2 + v2y2

{2,3,4,5}

−a45a54 + a23a32a45a54 +
d5 − a23a32d5 − a34a43d5 −
a23a34d5w + a32a43d5w +
d5w

2 − a34a45y + a43a54y +
a45a32wy + a23a54wy +
y2 + w2y2 − a23a34a45z +
a32a43a54z+a45wz+a54wz+
a23yz + a32yz + a34wyz −
a43wyz + z2 − a34a43z

2

−a45a54 + a23a32a45a54 −
a23a32d5−a23d5w+a32d5w+
d5w

2 − a45y + a54y +
a45a32wy + a23a54wy + y2 +
w2y2 − a23a45z + a32a54z +
a45wz+a54wz+a23yz+a32yz

{1,2,3,4,5} −a15a51 + a15a23a32a51 + a15a34a43a51 + a12a23a34a45a51 +
a15a21a32a43a54 − a45a54 + a12a21a45a54 + a23a32a45a54 + d5 −
a12a21d5 − a23a32d5 − a34a43d5 + a12a21a34a43d5 − a34a45a51u +
a15a43a54u + a12a23a45a54u − a21a32a45a54u − a12a23d5u +
a21a32d5u − a45a54u

2 + d5u
2 − a45a51v + a23a32a45a51v +

a15a54v−a15a23a32a54v−a12a23a34d5v+a21a32a43d5v+a34d5uv+
a43d5uv + d5v

2 − a23a32d5v
2 + a15a23a34a51w− a15a32a43a51w−

a12a45a51w+a15a21a54w−a23a34d5w+a32a43d5w+a32a45a51uw+
a15a23a54uw+ a21a34d5uw + a12a43d5uw + a12d5vw + a21d5vw +
a23d5uvw−a32d5uvw−a15a51w

2 +d5w
2 +d5u

2w2 +a15a21a32y−
a34a45y+a12a21a34a45y−a12a23a51y+a43a54y−a12a21a43a54y+
a15uy+a51uy+a15a34vy+a21a32a45vy+a43a51vy+a12a23a54vy+
a45uvy − a54uvy + a15a21a34wy + a32a45wy + a12a43a51wy +
a23a54wy + a12a45uwy − a21a54uwy − a15a32vwy + a23a51vwy +
a15uw

2y + a51uw
2y + y2 − a12a21y

2 + v2y2 + a12vwy2 +
a21vwy2+w2y2+a15a21z−a15a21a34a43z−a23a34a45z−a12a51z+
a12a34a43a51z+a32a43a54z+a15a23uz+a21a34a45uz+a32a51uz+
a12a43a54uz+a15a23a34vz+a21a45vz+a32a43a51vz+a12a54vz+
a23a45uvz−a32a54uvz+a45wz+a54wz−a15a43uwz+a34a51uwz+
a45u

2wz+a54u
2wz−a15vwz+a51vwz+a23yz+a32yz+a12uyz−

a21uyz + a12a34vyz− a21a43vyz + a23v
2yz + a32v

2yz + a34wyz−
a43wyz + z2 − a34a43z

2 + u2z2 + a34uvz
2 + a43uvz

2 + v2z2
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Table 3
Case 1: d1 = d2 = d4 = 0

Table 3-1
a12a23a34a45a51 +
a21a32a43a54a15 ≥
0

a12a23a34a45a51 + a21a32a43a54a15 < 0
a21 = a32 = a43 = a54 = −1, a15 < 0

α
xij = 0 x14 = x25 = x31 = x42 = x53 = 0

x13 = x24 = x35 = x41 = x52 = z > 0

{1, 2}∗ −a12a21 a12

{2, 3}∗ −a23a32 a23

{3, 4}∗ −a34a43 a34

{4, 5}∗ −a45a54 a45

{1, 5}∗ −a15a51 −a15a51

{1,3} 0 0
{1,4} 0 0
{2,4} 0 0
{2,5} 0 0
{3,5} d3d5 d3d5

{1,2,3} −a12a21d3 a12d3 + z

{1,2,4} 0 a12z
2

{1,2,5} −a12a21d5 a12d5 − a15z

{1,3,4} 0 a34z
2

{1,3,5} −a15a51d3 −a15a51d3 + a51z
2

{1,4,5} 0 −a15z

{2,3,4} 0 z

{2,3,5} −a23a32d5 a23d5 + a23z
2

{2,4,5} 0 a45z2

{3,4,5} −a45a54d3 −
a34a43d5

a45d3 + a34d5 + z

{1,2,3,4} a12a21a34a43 a12a34 − a12a23a34z + a12d3z
2 + z3

{1,2,3,5} a15a51a23a32 −
a12a21d3d5

−a15a51a23 + a12d3d5 − a12a23a51z −
a15d3z + d5z + z3

{1,2,4,5} a12a21a45a54 a12a45−a12a45a51z+a12d5z
2−a15z

3

{1,3,4,5} a15a51a34a43 −a15a51a34 − a34a45a51z − a15d5z +
a34d5z

2 + z3

{2,3,4,5} a23a32a54a45 a23a45−a23a34a45z+d5z+a45d3z
2+

z3

{1,2,3,4,5}

a12a23a34a45a51 +
a15a21a32a43a54 +
a12a21a45a54d3 +
a12a21a34a43d5

a15 + a12a23a34a45a51 + a12a45d3 +
a12a34d5 + a12z − a15a23z − a15a34z +
a45z − a15a51z − a12a45a51d3z −
a12a23a34d5z−a12a23z

2+a15a23a34z
2−

a34a45z
2 − a12a51z

2 − a45a51z
2 +

a12d3d5z
2 − a15d3z

3 + d5z
3 + z5
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Case 2: d1 = d2 = 1
Table 3-2 d4 = d5 = 0 d3 = d5 = 0, d4 = 1

α
x31 = z, x13 = −z, xij = 0 for others
sign z = sign (a34a45a51 − a43a54a51).

{1, 2}∗ 1 − a12a21 1 − a12a21

{2, 3}∗ −a23a32 + d3 −a23a32

{3, 4}∗ −a34a43 −a34a43

{4, 5}∗ −a45a54 −a45a54

{1, 5}∗ −a15a51 −a15a51

{1,3} d3 + z2 z2

{1,4} 0 1

{2,4} 0 1

{2,5} 0 0

{3,5} 0 0

{1,2,3} −a23a32 + d3 − a12a21d3 +
a12a23z − a21a32z + z2

−a23a32+a12a23z−a21a32z+
z2

{1,2,4} 0 1 − a12a21

{1,2,5} −a15a51 −a15a51

{1,3,4} −a34a43 −a34a43 + z2

{1,3,5} −a15a51d3 0

{1,4,5} −a45a54 −a45a54 − a15a51

{2,3,4} −a34a43 −a34a43 − a23a32

{2,3,5} 0 0

{2,4,5} −a45a54 −a45a54

{3,4,5} −a45a54d3 0

{1,2,3,4} −a34a43 + a12a21a34a43 −a34a43 + a12a21a34a43 −
a23a32+a12a23z−a21a32z+z2

{1,2,3,5} a15a51a23a32 − a15a51d3 a15a51a23a32

{1,2,4,5} −a45a54 + a12a21a45a54 −a45a54 + a12a21a45a54 −
a15a51

{1,3,4,5}
a15a51a34a43 − a45a54d3 +
a34a45a51z − a15a43a54z −
a45a54z

2

a15a51a34a43 + a34a45a51z −
a15a43a54z − a45a54z

2

{2,3,4,5} a23a32a45a54 − a45a54d3 a23a32a45a54

{1,2,3,4,5}

a15a51a34a43 +
a12a23a34a45a51 +
a15a21a32a43a54 +
a23a32a45a54 − a45a54d3 +
a12a21a45a54d3 +
a34a45a51z − a15a43a54z −
a12a23a45a54z +
a21a32a45a54z − a45a54z

2

a15a51a34a43 +
a12a23a34a45a51 +
a15a21a32a43a54 +
a23a32a45a54+a15a23a32a51+
a34a45a51z − a15a43a54z −
a12a23a45a54z +
a21a32a45a54z − a45a54z

2
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