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ON SOME PROPERTIES OF THE PSEUDOSPECTRAL RADIUS∗

G. KRISHNA KUMAR† AND S.H. LUI‡

Abstract. Pseudospectra provide an analytical and graphical alternative for investigating non-

normal matrices and operators, give a quantitative estimate of departure from non-normality and

give information about stability. In this paper, we prove that pseudospectral radius is sub-additive

and sub-multiplicative for a commuting pair of matrices over the complex field, extending the same

result for spectral radius. We discuss the same result for a non-commutative pair of matrices. We

also give an analogue of the spectral radius formula for pseudospectrum.
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1. Introduction. Let A ∈ CN×N . Denote the spectrum of A by Λ(A) and the

spectral radius of A by r(A). Let ‖ · ‖ denote the matrix 2-norm. For ǫ ≥ 0, the

ǫ-pseudospectrum of A is defined as

Λǫ(A) := {λ ∈ Λ(A+ E) : ‖E‖ ≤ ǫ},

while the ǫ-pseudospectral radius of A is defined as

rǫ(A) := sup{|λ| : λ ∈ Λǫ(A)}.

The goal of this paper is to extend some of the properties of r to rǫ. Let A and B be

any square matrices. Three well-known properties of r are

1. r(AB) = r(BA),

2. r(A) = lim
k→∞

‖Ak‖1/k,
3. r(A) = r1/k(Ak) for all k ∈ N.

We shall see that corresponding results for the pseudospectral radius are

1. rǫ(AB) ≤ rǫ+δ(BA), where δ = ‖BA−AB‖,
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2. rǫ(A) = lim
k→∞

sup
‖E‖≤ǫ

‖(A+ E)k‖1/k,

3. max{1, r(A)} ≤ lim
k→∞

r1/kǫ (Ak).

Suppose AB = BA for some A,B ∈ CN×N . Then it is well-known that r is sub-

additive and sub-multiplicative, namely,

r(A +B) ≤ r(A) + r(B) and r(AB) ≤ r(A)r(B).

We shall show that rǫ is also sub-additive and sub-multiplicative, with the latter

requiring some additional restrictions. A similar result in case of condition spectrum

and condition spectral radius can be proved ([3]).

In Section 2, we prove the three properties of the pseudospectral radius mentioned

above. In Section 3, we show sub-additivity and sub-multiplicativity of the pseu-

dospectral radius for commuting matrices, to be followed by those for non-commuting

matrices in the final section.

2. Some properties of pseudsospectral radius.

Theorem 2.1. Let A,B ∈ CN×N , δ = ‖BA−AB‖ and ǫ ≥ 0. Then

rǫ(AB) ≤ rǫ+δ(BA).

Proof. Let z ∈ C so that |z| = rǫ(AB). Then there is some E ∈ CN×N with

‖E‖ ≤ ǫ so that z ∈ Λ(AB + E) = Λ(BA + (AB − BA) + E). This implies that

z ∈ Λǫ+δ(BA) and so rǫ(AB) ≤ rǫ+δ(BA).

Let A ∈ CN×N , α, β ∈ C with β 6= 0, and ǫ ≥ 0. The following properties ([7])

will be used in this paper:

r(A) ≤ rǫ(A)− ǫ ≤ ‖A‖ and Λǫ(α+ βA) = α+ β Λ ǫ
|β|

(A).

Theorem 2.2. Let A ∈ CN×N and ǫ ≥ 0. Then

lim
k→∞

sup
‖E‖≤ǫ

‖(A+ E)k‖1/k = rǫ(A).

Proof. Let rǫ(A) = |z| for some z ∈ Λǫ(A) = Λ(A+E), where E ∈ CN×N so that

‖E‖ ≤ ǫ. Let (A+ E)u = zu for some eigenvector u with |u| = 1. Then

‖(A+ E)k‖ ≥ |(A+ E)ku| = |z|k = rkǫ (A),
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and so,

lim
k→∞

sup
‖E‖≤ǫ

‖(A+ E)k‖1/k ≥ rǫ(A).

Let δ > 0. For each k ∈ N, there is some Ek ∈ CN×N so that ‖Ek‖ ≤ ǫ, and

‖(A+ Ek)
k‖1/k > Lk − δ and Lk = sup

‖E‖≤ǫ

‖(A+ E)k‖1/k.

Since ‖Ek‖ ≤ ǫ for every k, there is some E∞ ∈ CN×N so that ‖E∞‖ ≤ ǫ and some

subsequence Enj
so that Enj

→ E∞. Now

lim
k→∞

sup
‖E‖≤ǫ

‖(A+ E)k‖1/k < lim
k→∞

lim
j→∞

‖(A+ Enj
)k‖1/k + δ

= lim
k→∞

‖(A+ E∞)k‖1/k + δ

= rǫ(A) + δ.

Since δ is arbitrary, we have

lim
k→∞

sup
‖E‖≤ǫ

‖(A+ E)k‖1/k ≤ rǫ(A).

This completes the proof of the theorem.

Theorem 2.3. Let A ∈ CN×N . Then

lim
k→∞

r1/kǫ (Ak) ≥ max{r(A), 1}.

Proof. For any ǫ ≥ 0, since rǫ(A) ≥ r(A) + ǫ, we have that for every k > 0,

rǫ(A
k) ≥ r(Ak) + ǫ = rk(A) + ǫ.

Suppose r(A) ≥ 1. Then

r1/kǫ (Ak) ≥ (rk(A) + ǫ)1/k = r(A)

(

1 +
ǫ

rk(A)

)1/k

→ r(A)

as k → ∞.

Suppose r(A) < 1. Then

r1/kǫ (Ak) ≥ ǫ1/k
(

1 +
rk(A)

ǫ

)1/k

→ 1

as k → ∞.

Combine the results of the above two paragraphs to obtain

lim
k→∞

r1/kǫ (Ak) ≥ max{r(A), 1}.
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3. Sub-additivity and sub-multiplicativity for commuting matrices. Let

I be the identity matrix and I = {αI, α ∈ C}. The following result is a modification

of one on page 18 in [1].

Lemma 3.1. Let Γ denote a bounded semigroup of CN×N containing I, and Γ

contains no other scalar multiples of I. Let ǫ ≥ 0. Then there exists a function

p : CN×N → R+ satisfying the following conditions:

1. rǫ(A) − ǫ ≤ p(A) for all A ∈ CN×N .

2. p(S) ≤ 1 for all S ∈ Γ.

3. p(A+B) ≤ p(A) + p(B) for all A,B ∈ CN×N \ I.
4. p(AB) ≤ p(A)p(B) for all A,B ∈ CN×N .

Proof. Define q : CN×N → R+ by,

q(A) =

{

sup{‖SA‖ : S ∈ Γ} if A 6∈ I;
|α| if A = αI, some α ∈ C.

Then q satisfies

‖A‖ ≤ q(A) ≤ K‖A‖ for all A ∈ C
N×N , (3.1)

where K = sup{‖S‖ : S ∈ Γ}. Since I ∈ Γ,

q(αA) = |α|q(A) for all α ∈ C and A ∈ C
N×N , (3.2)

q(AB) ≤ q(A)q(B) for all A,B ∈ C
N×N . (3.3)

Define p : CN×N → R+ as

p(A) = sup{q(AX) : X ∈ C
N×N and q(X) ≤ 1}.

Claim: p(A) = q(A) for all A ∈ C
N×N . Since q(I) = 1, q(A) ≤ p(A) for all A ∈

CN×N . Also

p(A) = sup{q(AX) : X ∈ C
N×N and q(X) ≤ 1}

≤ sup{q(A)q(X) : X ∈ C
N×N and q(X) ≤ 1}

= q(A).

This shows the claim. Now we are ready to prove the four conditions of p.

1. From the above results, it follows that rǫ(A) − ǫ ≤ ‖A‖ ≤ q(A) = p(A).

2. Recall p(I) = q(I) = 1. For S0 ∈ Γr {I},

q(S0A) = sup{‖SS0A‖ : S ∈ Γ}
≤ sup{‖SA‖ : S ∈ Γ} (since Γ is a semigroup)

= q(A).
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From the definition of p(S0) it follows that

p(S0) = sup
q(X)≤1

q(S0X) ≤ sup
q(X)≤1

q(X) ≤ 1.

3. Let A,B ∈ CN×N \ I. Since p(A) = q(A) for all A ∈ CN×N , it is sufficient

to prove that q(A + B) ≤ q(A) + q(B). There are two cases to consider,

depending on whether A+B is a scalar multiple of I or not.

Case 1: A+B is a scalar multiple of I.

q(A+B) = ‖A+B‖
≤ ‖A‖+ ‖B‖
≤ q(A) + q(B) by (3.1).

Case 2: A+B is not a scalar multiple of I.

q(A+B) = sup{‖S(A+B)‖ : S ∈ Γ}
≤ sup{‖SA‖ : S ∈ Γ}+ sup{‖SB‖ : S ∈ Γ}
= q(A) + q(B).

4. Using (3.3) and p(A) = q(A) for all A ∈ CN×N , it follows q(AB) ≤ q(A)q(B),

and consequently, p(AB) ≤ p(A)p(B).

Theorem 3.2. Let A,B ∈ C
N×N such that AB = BA. Then for ǫ ≥ 0,

rǫ(A+B) ≤ rǫ(A) + rǫ(B).

Proof. If ǫ = 0, the result is well known. See [1], for instance. Henceforth, assume

ǫ > 0. If both A and B are scalar multiples of I, then the result of the theorem holds

trivially. Suppose A or B is a scalar multiple of I. Without loss of generality, assume

that A = αI for some α ∈ C. Then

Λǫ(A+B) = Λǫ(αI +B) = α+ Λǫ(B) ⊆ Λǫ(A) + Λǫ(B).

Consequently,

rǫ(A+B) ≤ rǫ(A) + rǫ(B).

Consider the case where both A and B are not scalar multiples of I. For any δ > 0,

let

U =
A

rǫ(A) − ǫ+ δ
and V =

B

rǫ(B)− ǫ+ δ
.
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Then both U, V are not scalar multiples of I and r(U) < 1, r(V ) < 1 and UV = V U .

Thus, the set {U iV j : i, j ≥ 0} is a semigroup under multiplication. We now show

that it is bounded.

Since r(U) < 1, there is some s so that r(U) < s < 1. Given any t satisfying

0 < t < 1− s, since r(U) = limn→∞ ‖Un‖1/n, there is some N so that for all n ≥ N ,

‖Un‖1/n < r(U) + t.

This implies that

‖Un‖ < (s+ t)n < 1, n ≥ N.

This shows that {‖Un‖ : n ≥ 0} is bounded. Similarly, {‖V n‖ : n ≥ 0} is bounded.

Since U and V commute, {U iV j : i, j ≥ 0} is bounded.

From Lemma 3.1, it follows that there exists a function p : CN×N → R+ satisfying

all four conditions of the lemma. In particular,

p

(

A

rǫ(A)− ǫ+ δ

)

≤ 1 and p

(

B

rǫ(B) − ǫ+ δ

)

≤ 1.

This gives

p(A) ≤ rǫ(A)− ǫ+ δ and p(B) ≤ rǫ(B)− ǫ+ δ.

Thus,

rǫ(A+B)− ǫ ≤ p(A+B) ≤ p(A) + p(B) ≤ (rǫ(A) − ǫ+ δ) + (rǫ(B)− ǫ+ δ).

Choosing δ = ǫ/2,

rǫ(A+B) ≤ rǫ(A) + rǫ(B).

Next, we show the sub-multiplicativity of rǫ. We first examine some trivial cases.

The case ǫ = 0 is the classical case. Henceforth, assume ǫ > 0.

1. Suppose A = αI, B = βI, α, β ∈ C. A simple calculation yields rǫ(AB) =

|αβ|+ ǫ, rǫ(A)rǫ(B) = |αβ|+ ǫ(|α|+ |β|) + ǫ2. Thus, rǫ is sub-multiplicative

iff |α|+ |β|+ ǫ ≥ 1 iff rǫ(A) + rǫ(B)− 1 ≥ ǫ.

2. Suppose A = 0. Then for any B ∈ CN×N ,

rǫ(AB) = rǫ(0) = ǫ and rǫ(A)rǫ(B) = rǫ(B)ǫ.

Hence, in this case, rǫ is sub-multiplicative iff rǫ(B) ≥ 1 iff rǫ(A)+rǫ(B)−1 ≥
ǫ.
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3. Suppose A = αI, α ∈ C\{0} and B is arbitrary. Then rǫ(AB) = |α| rǫ/|α|(B),

rǫ(A)rǫ(B) = (|α|+ ǫ)rǫ(B). Thus, rǫ is multiplicative iff

rǫ/|α|(B) ≤
(

1 +
ǫ

|α|

)

rǫ(B).

Now we proceed to the non-trivial case.

Theorem 3.3. Let A,B ∈ CN×N \ I such that AB = BA. For 0 ≤ ǫ ≤
rǫ(A) + rǫ(B)− 1,

rǫ(AB) ≤ rǫ(A) rǫ(B).

Proof. For δ > 0, argue as in the previous theorem to obtain a function p :

CN×N → R+ satisfying the four conditions in Lemma 3.1. In particular,

p(A) ≤ rǫ(A)− ǫ+ δ and p(B) ≤ rǫ(B)− ǫ+ δ.

Thus,

rǫ(AB) − ǫ ≤ p(AB) ≤ p(A)p(B) ≤ (rǫ(A)− ǫ+ δ)(rǫ(B)− ǫ + δ).

Since δ > 0 is arbitrary,

rǫ(AB) ≤ (rǫ(A)− ǫ)(rǫ(B)− ǫ) + ǫ.

= rǫ(A)rǫ(B)− ǫ(rǫ(A) + rǫ(B)− 1) + ǫ2.

≤ rǫ(A)rǫ(B),

because rǫ(A) + rǫ(B)− 1 ≥ ǫ.

Using the property r(A) + ǫ ≤ rǫ(A), a simple sufficient condition for the restric-

tion ǫ ≤ rǫ(A) + rǫ(B)− 1 in the above theorem is 1− r(A) − r(B) ≤ ǫ.

Let α ∈ C and A =

[

1 α

0 1

]

. It is shown in [6] that for ǫ ≥ 0, Λǫ(A) =

D(1,
√

|α|ǫ+ ǫ2), where D(z, r) is the closed disk of radius r with center at z. Thus,

rǫ(A) = 1 +
√

|α|ǫ + ǫ2. We now show an example where rǫ is not sub-multiplicative

for all ǫ sufficiently small.

Example 3.1. Let A = 1
3

[

1 α

0 1

]

. Then A2 = 1
9

[

1 2α

0 1

]

. We have

Λǫ(A) =
Λ3ǫ(3A)

3
and Λǫ(A

2) =
Λ9ǫ(9A

2)

9
,
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and so,

rǫ(A) =
1

3

(

1 +
√

3|α|ǫ+ 9ǫ2
)

and rǫ(A
2) =

1

9

(

1 +
√

18|α|ǫ+ 81ǫ2
)

.

With B = A, the above theorem says that rǫ(A
2) ≤ r2ǫ (A) provided 2rǫ(A) − 1 ≥ ǫ.

A calculation shows that the latter condition is equivalent to

|α| ≥ 1

12ǫ
+

1

2
− 9ǫ

4
.

This suggests that sub-multiplicativity may not hold for ǫ small. Indeed, choosing

α = 1, we find that

rǫ(A
2) =

1 + 3
√
2ǫ+ 9ǫ2

9
=

1 + 3
√
2
√
ǫ+O(ǫ)

9
,

while

r2ǫ (A) =
1 + 2

√
3ǫ+ 9ǫ2 + 3ǫ+ 9ǫ2

9
=

1 + 2
√
3
√
ǫ+O(ǫ)

9
.

Since 3
√
2 ≈ 4.24 . . . and 2

√
3 ≈ 3.46 . . . , it follows that rǫ is not sub-multiplicative

for all ǫ sufficiently small.

Next, we show that the results of the above theorems do not hold if the matrices

are not commutative.

Example 3.2. Let A =

[

0 0

1 0

]

and B =

[

0 1

0 0

]

. It is easy to check that

AB 6= BA and

rǫ(A+B) = 1 + ǫ

and so rǫ(A+B) ≤ rǫ(A) + rǫ(B) iff ǫ ≥ 1/3.

Example 3.3. Take A and B as in the above example. Then

rǫ(A) =
√

ǫ+ ǫ2 = rǫ(B), rǫ(AB) = 1 + ǫ.

Hence rǫ(AB) ≤ rǫ(A)rǫ(B) iff ǫ ≥ 1. The condition for sub-multiplicativity in

Theorem 3.3 is ǫ ≥ 1/3.

Remark 3.1. Consider Example 3.2. We have

rǫ(A+B) ≤ rǫ(A) + rǫ(B) for all ǫ ≥ 1/3,

and

rǫ(AB) ≤ rǫ(A)rǫ(B) for all ǫ ≥ 1.
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Thus, the converse of the result is not true: The matrices need not be commutative

to satisfy sub-additivity (Theorem 3.2) and sub-multiplicativity (Theorem 3.3) if ǫ is

suitably chosen.

Remark 3.2. The results proved in this section are also true for a pair of

commuting elements from a complex unital Banach algebra.

4. Sub-multiplicativity and sub-additivity for non-commuting matri-

ces. The goal of the present section is to extend the results of the previous section

to matrices which do not commute.

Let A,B ∈ CN×N such that A,B are non-commutative. In this case, we need to

look for a pair (A′, B′) which is not a scalar multiple of I and close to (A,B) such

that the pair (A′, B′) is commutative. Define

ρ := min
A′,B′ 6/∈ I

A′B′=B′A′

max {‖A−A′‖, ‖B −B′‖} .

Since the map A 7→ Λǫ(A) is upper semi-continuous, A 7→ rǫ(A) is a continuous map,

we have

|rǫ(A) − rǫ(A
′)| ≤ f(A,A′, ǫ, ρ), (4.1)

|rǫ(B) − rǫ(B
′)| ≤ g(B,B′, ǫ, ρ), (4.2)

|rǫ(A+B)− rǫ(A
′ +B′)| ≤ h(A,A′, B,B′, ǫ, ρ), (4.3)

|rǫ(AB)− rǫ(A
′B′)| ≤ k(A,A′, B,B′, ǫ, ρ) (4.4)

for some continuous functions f, g, h, k. Consider an arbitrary δ > 0 and let

U :=
A′

rǫ(A′)− ǫ+ δ
and V :=

B′

rǫ(B′)− ǫ+ δ
.

Then both U, V are not scalar multiples of I and r(U) < 1, r(V ) < 1 and UV = V U .

Thus, the set {U iV j : i, j ≥ 0} is a bounded semigroup under multiplication. From

Lemma 3.1, it follows that there exists a function p : CN×N → R+ satisfying all four

conditions of the lemma. In particular,

p

(

A′

rǫ(A′)− ǫ+ δ

)

≤ 1 and p

(

B′

rǫ(B′)− ǫ+ δ

)

≤ 1.

This gives

p(A′) ≤ rǫ(A
′)− ǫ+ δ and p(B′) ≤ rǫ(B

′)− ǫ+ δ.
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Thus,

rǫ(A+B)− ǫ ≤ rǫ(A
′ +B′)− ǫ+ h ≤ p(A′ +B′) + h ≤ p(A′) + p(B′) + h

≤ (rǫ(A
′)− ǫ+ δ) + (rǫ(B

′)− ǫ+ δ) + h

≤ (rǫ(A) + f − ǫ+ δ) + (rǫ(B) + g − ǫ+ δ) + h

= rǫ(A) + rǫ(B) + f + g + h− ǫ. (4.5)

In the last equality, we have taken δ = ǫ/2. Whenever A,B commute, we have

f = g = h = 0 and we end up with the result proved in Theorem 3.2.

We also have

rǫ(AB)− ǫ ≤ rǫ(A
′B′) + k − ǫ ≤ p(A′B′) + k

≤ p(A′)p(B′) + k ≤ (rǫ(A
′)− ǫ+ δ)(rǫ(B

′)− ǫ+ δ) + k

≤ (rǫ(A) + f − ǫ+ δ)(rǫ(B) + g − ǫ+ δ) + k

= (rǫ(A) + f − ǫ)(rǫ(B) + g − ǫ) + k. (4.6)

The last equality follows from setting δ = 0. Again, whenever A,B commute, we have

f = g = k = 0 and recover the result proved in Theorem 3.3.

We now look into the case where A,B ∈ CN×N are almost commutative, i.e.,

‖AB −BA‖ ≤ θ for some sufficiently small θ > 0. The following results are available

in the literature for almost commuting matrices.

1. In [5], the author find A,B ∈ C
N×N such that ‖AB − BA‖ ≤ θ for some

θ ≥ 0 and A,B may not be near to any commuting pair.

2. Let A,B ∈ CN×N such that ‖A‖ ≤ 1, ‖B‖ ≤ 1 and ‖AB −BA‖ ≤ θ for some

θ ≥ 0. Using non-standard analysis, the authors in [4] proved that there exists

a commuting pair A′, B′ with ‖A′‖ ≤ 1, ‖B′‖ ≤ 1 such that ‖A−A′‖ ≤ fN (θ)

and ‖B − B′‖ ≤ fN(θ). It is shown that the constant fN (θ) is dependent

on the pair A,B and N , the order of the matrices, such that fN (θ) → 0 as

θ → 0.

Thus, (1), (2) together show that finding a quantity independent of the order

of the matrix and depending only on the constant θ is not possible. In case

A is self-adjoint, it is possible to find a constant which is independent of the

order of the matrices.

3. In [2], the authors proved the following result. Let A,B ∈ CN×N with A = A∗

and ‖AB −BA‖ ≤ 2θ2

N − 1
for some small θ ≥ 0. Then there exist A′, B′ ∈

CN×N with A′∗ = A′ such that A′B′ = B′A′, ‖A−A′‖ ≤ θ and ‖B−B′‖ ≤ θ.

Lemma 4.1. Let A be a square matrix and ǫ, c be non-negative reals. Then

rǫ(A) + c ≤ rǫ+c(A).
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Proof. Let z = αeiθ with α ≥ 0 and θ ∈ R so that |z| = rǫ(A). Then there is

some non-zero vector u and matrix E with ‖E‖ ≤ ǫ so that (A+ E)u = zu. Thus,

(A+ E + ceiθI)u = (α+ c)eiθu,

meaning that (α+ c)eiθ ∈ Λ(A+ E + ceiθI), or α+ c ≤ rǫ+c(A).

The following theorem extends the result proved in Section 3 to almost commuting

matrices. We make use of the above results available in the literature.

Theorem 4.2. Let A,B ∈ CN×N such that ‖A‖ ≤ 1, ‖B‖ ≤ 1 and ‖AB −BA‖ ≤
θ for some θ ≥ 0. Then there exist functions g, h such that for ǫ fixed, both g(θ, ǫ)

and h(θ, ǫ) go to zero whenever θ goes to zero and

rǫ(A+B) ≤ rǫ+g(θ,ǫ)(A) + rǫ+g(θ,ǫ)(B), ǫ ≥ 0.

For all ǫ > 0 satisfying rǫ+h(θ,ǫ)(A) + rǫ+h(θ,ǫ)(B) ≥ ǫ+ 1 + h(θ, ǫ)/ǫ, then

rǫ(AB) ≤ rǫ+h(θ,ǫ)(A) rǫ+h(θ,ǫ)(B).

Proof. From [4], there exists f(θ) such that ‖A−A′‖ ≤ f(θ), ‖B−B′‖ ≤ f(θ) and

f(θ) goes to zero as θ goes to zero. (To simplify the notation, we have suppressed the

dependence of all functions on N .) Since the map A 7→ rǫ(A) is continuous, equations

(4.1) to (4.4) imply

|rǫ(A)− rǫ(A
′)| ≤ g̃(θ, ǫ),

|rǫ(B) − rǫ(B
′)| ≤ g̃(θ, ǫ),

|rǫ(A+B)− rǫ(A
′ +B′)| ≤ g̃(θ, ǫ),

|rǫ(AB)− rǫ(A
′B′)| ≤ g̃(θ, ǫ)

for some g̃(θ, ǫ) with g̃(θ, ǫ) going to zero whenever θ goes to zero for ǫ fixed. The

last two assertions follow from the fact that matrix addition and multiplication are

continuous operations. From (4.5),

rǫ(A+B) ≤ rǫ(A) + rǫ(B) + 3g̃(θ, ǫ).

By Lemma 4.1,

rǫ(A+B) ≤ rǫ+g(θ,ǫ)(A) + rǫ+g(θ,ǫ)(B),

where g = 3g̃/2. Of course, g(θ, ǫ) goes to zero whenever θ goes to zero with ǫ fixed.
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Using (4.6) and Lemma 4.1, there is some function h, with the property that for

any fixed ǫ, h(θ, ǫ) → 0 whenever θ → 0, so that

rǫ(AB) ≤ (rǫ(A) + h(θ, ǫ)− ǫ) (rǫ(B) + h(θ, ǫ)− ǫ) + h(θ, ǫ) + ǫ

≤ (rǫ+h(θ,ǫ)(A) − ǫ) (rǫ+h(θ,ǫ)(B) − ǫ) + h(θ, ǫ) + ǫ

= rǫ+h(θ,ǫ)(A) rǫ+h(θ,ǫ)(B) − ǫ(rǫ+h(θ,ǫ)(A) + rǫ+h(θ,ǫ)(B) − ǫ− 1− h(θ, ǫ)/ǫ)

≤ rǫ+h(θ,ǫ)(A) rǫ+h(θ,ǫ)(B),

since rǫ+h(θ,ǫ)(A) + rǫ+h(θ,ǫ)(B)− ǫ − 1− h(θ, ǫ)/ǫ ≥ 0.
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