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1. Introduction. Let H be a subgroup of Sn, the permutation group on n

letters, and let χ be an irreducible character of H . For any n × n complex matrix

A = (aij), we define

dHχ (A) =
∑

σ∈H

χ(σ)

n
∏

i=1

aiσ(i)

and call the mapping dHχ from the matrix space to the complex number field a gen-

eralized matrix function (also known as immanant) associated with the subgroup H

and the irreducible character χ.

Specifying the subgroup H and the character χ gives some familiar functions on

matrices. IfH = Sn and χ is the signum function with values ±1, then the generalized

matrix function becomes the usual matrix determinant; setting χ(σ) = 1 for each

σ ∈ H = Sn defines the permanent of the matrix; and by taking H = {e} ⊆ Sn,

we have the product of the main diagonal entries of the matrix (also known as the

Hadamard matrix function). We write A ≥ 0 if A is a positive semidefinite matrix. It

is known that A ≥ 0 implies dHχ (A) ≥ 0. One may refer to, e.g., [2], [3], [5], and [8] for

definitions, available techniques, and existing results on generalized matrix functions.
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Let A and B be n×n positive semidefinite matrices (which are necessarily Hermi-

tian over the complex number field [9, p. 80]). A classical result (see, e.g., [5, p. 228])

states that

dHχ (A+B) ≥ dHχ (A) + dHχ (B).(1.1)

Recall the fact (see, e.g., [1, p. 441]) that every positive semidefinite matrix is

a Gram matrix. By embedding the vectors of Gram matrices into a “sufficiently

large” inner product space and by using tensor products, we extend (1.1) to multiple

matrices (in a stronger form). We first show that for three n×n positive semidefinite

matrices A, B, and C,

dHχ (A+B + C) + dHχ (A) ≥ dHχ (A+B) + dHχ (A+ C).(1.2)

We then generalize this to any finite number of positive semidefinite matrices. Never-

theless, our main effort is to prove (1.2), as the general case of more matrices reduces

to that of triple matrices. Our approach to establish (1.2) is algebraic as well as

combinatorial.

We organize the paper as follows: In Section 2, we evolve our idea of embedding,

with which we present a direct proof for (1.1). In Section 3, we decompose a tensor

product TA+B+C of 1-forms (linear functionals) into a sum of tensor products TA+B,

TA+C , and TA. Carefully examining each term in the summation, we conclude (1.2)

and obtain some existing results as its special cases. In Section 4, we extend (1.2) to

any finite number of positive semidefinite matrices.

2. Some preliminaries. Let A = (aij) and B = (bij) be n×n positive semidef-

inite matrices, n ≥ 2. Since every positive semidefinite matrix is a Gram matrix, we

can write

aij = 〈xj , xi〉 and bij = 〈yj , yi〉 , 1 ≤ i, j ≤ n,

where xi = (xi1, . . . , xinA
) ∈ CnA , yi = (yi1, . . . , yinB

) ∈ CnB , 〈·, ·〉 is the standard

inner product, and nA and nB are the ranks of A and B, respectively. We can also

embed the vectors xi, yj of the Gram matrices into C
nA+nB in such a way that

xi = (xi1, . . . , xinA
, 0, . . . , 0), yi = (0, . . . , 0, yi1, . . . , yinB

)

with the appropriate number of zero coordinates for each. As a result of this embed-

ding, we have 〈xi, yj〉 = 0 for all i, j = 1, . . . , n, i.e., vectors xi and yj (or simply x

and y) are orthogonal for all i, j. In what follows, we assume xi, yj ∈ C
nA+nB (or

even in a “larger” space in Section 3).

Lemma 2.1. In the set-up above, for the (i, j)-entry of A+B, we have

(A+B)ij = aij + bij = 〈zj , zi〉 ,
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where zi = xi + yi = (xi1, . . . , xinA
, yi1, . . . , yinB

), i = 1, . . . , n.

Proof. Using the orthogonality of xi and yj, we compute

〈zj , zi〉 = 〈xj + yj , xi + yi〉

= 〈xj , xi〉+ 〈xj , yi〉+ 〈yj , xi〉+ 〈yj , yi〉

= 〈xj , xi〉+ 〈yj, yi〉 = aij + bij .

As usual, if x is a vector in a vector space V , the associated 1-form x∗ of x in

the dual space V ∗ is defined as x∗(y) = 〈y, x〉 for any y ∈ V . Moreover, the dualizing

operation ∗ is additive. That is, (x+ y)∗ = x∗ + y∗.

For n× n positive semidefinite matrices A and B given as before, we obtain the

elements (tensors) TA, TB ∈ V ∗ ⊗ · · · ⊗ V ∗ with V = CnA+nB as

TA = x∗
1 ⊗ · · · ⊗ x∗

n, TB = y∗1 ⊗ · · · ⊗ y∗n.

Similarly, by Lemma 2.1, we also have

TA+B = z∗1 ⊗ · · · ⊗ z∗n =
n

⊗

i=1

(x∗
i + y∗i ) = TA + TB +

2n−2
∑

i=1

Θi,(2.1)

in which each Θi is a tensor product containing both x∗ and y∗ vectors. More explic-

itly, if we let X = {x∗
1, . . . , x

∗
n}, Y = {y∗1 , . . . , y

∗
n}, and Θi = ω∗

1 ⊗ · · ·⊗ω∗
n, then there

exist distinct 1 ≤ i, j ≤ n such that ω∗
i ∈ X and ω∗

j ∈ Y. We denote

Θxy =

2n−2
∑

i=1

Θi.

Let H be any subgroup of Sn and χ be any irreducible character of H . Let χ act

on the space of ∗-tensor products as

χ · w∗
1 ⊗ · · · ⊗ w∗

n =
∑

σ∈H

χ(σ)w∗
σ−1(1) ⊗ · · · ⊗ w∗

σ−1(n) = T (w∗
1 ⊗ · · · ⊗ w∗

n),

where T is actually the (linear) “symmetry operator” defined in [2, p. 317] (see also,

e.g., [3, p. 77] or “symmetrizer” in [5, p. 153] for any degree χ(e) of the character). It

is known that T ∗ = T and T 2 = hT . Here h is the order of the subgroup H . Observe

that the action permutes the vectors within the tensor product. Additionally, let

u1, . . . , un, v1, . . . , vn be vectors in an inner product spaceW . Then the space (W ∗)⊗n

of tensor products is naturally equipped with the inner product

〈u∗
1 ⊗ · · · ⊗ u∗

n, v
∗
1 ⊗ · · · ⊗ v∗n〉 =

n
∏

i=1

〈u∗
i , v

∗
i 〉 =

n
∏

i=1

〈vi, ui〉 .
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Let A be an n× n positive semidefinite matrix and χ be an irreducible character

of H . Then

dHχ (A) = 〈χ · TA, TA〉 (see the proof of Lemma 1 in [6, p. 878] or see [5, p. 226])

Our idea of embedding gives a direct proof for (1.1). We demonstrate the proof

here. This approach will also be used in the next section for three positive semidefinite

matrices.

Proposition 2.2. ([5, p. 228]) Let A,B ≥ 0. Then dHχ (A + B) ≥ dHχ (A) +

dHχ (B).

Proof. With TA+B = TA + TB +Θxy, letting M = dHχ (A+B), we have

M = 〈χ · TA+B, TA+B〉

= 〈χ · (TA + TB +Θxy) , TA + TB +Θxy〉

= 〈χ · TA, TA〉+ 〈χ · TA, TB〉+ 〈χ · TA,Θxy〉

+ 〈χ · TB, TA〉+ 〈χ · TB, TB〉+ 〈χ · TB,Θxy〉

+ 〈χ ·Θxy, TA〉+ 〈χ ·Θxy, TB〉+ 〈χ ·Θxy,Θxy〉 .

There are nine terms in the last equality. We study each of them. First, we have

〈χ · TA, TA〉 = dHχ (A) and 〈χ · TB, TB〉 = dHχ (B). Note that TA = x∗
1 ⊗ · · · ⊗ x∗

n and

TB = y∗1 ⊗ · · · ⊗ y∗n. Observe that when χ acts on a tensor product, it only permutes

the vectors in the tensor product. By the orthogonality of x∗ and y∗ vectors, we have

〈χ · TA, TB〉 = 〈χ · TB, TA〉 = 0.

Θxy is a sum of tensor products each of which contains at least one component

from {x∗
1, . . . , x

∗
n} and at least one component from {y∗1 , . . . , y

∗
n}. χ · TA consists

solely of x∗ vectors. Hence, in the expanded product 〈χ · TA,Θxy〉, there is always a

y∗ vector that will be paired with some x∗ vector coming from χ · TA. Once again,

by the orthogonality of x∗ and y∗, the product 〈χ · TA,Θxy〉 vanishes. A similar

reasoning can be applied to the other mixed inner products. Namely, we have

〈χ · TA,Θxy〉 = 〈χ · TB,Θxy〉 = 〈χ ·Θxy, TA〉 = 〈χ ·Θxy, TB〉 = 0.

So, we can write

dHχ (A+B) = dHχ (A) + dHχ (B) + 〈χ ·Θxy,Θxy〉 .

Now it suffices to show that the last term is nonnegative. Since χ ·Θxy = T (Θxy), we

compute

〈χ ·Θxy,Θxy〉 = 〈T (Θxy),Θxy〉 =
1

h
〈hT (Θxy),Θxy〉
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=
1

h

〈

T 2(Θxy),Θxy

〉

=
1

h
〈T (Θxy), T

∗(Θxy)〉

=
1

h
〈T (Θxy), T (Θxy)〉 ≥ 0.

We point out that our results in the paper are presented for linear characters,

i.e., χ(e) = 1. They are in fact true for irreducible characters of any degree χ(e). The

proofs are essentially the same up to a positive multiple (see [5, p. 153]).

3. Main theorem (for three matrices). Let A, B, and C be n × n positive

semidefinite matrices. We write

A = (aij) = 〈xj , xi〉 , B = (bij) = 〈yj , yi〉 , C = (cij) = 〈zj, zi〉 , 1 ≤ i, j ≤ n,

where x, y, and z are mutually orthogonal vectors in some CK . (One may take K to

be the sum of the ranks of A, B, and C.) Let X = {x∗
1, . . . , x

∗
n}, Y = {y∗1 , . . . , y

∗
n},

and Z = {z∗1 , . . . , z
∗
n}.

Lemma 3.1. With the set-up above, we can write TA+B+C as

TA+B+C = TA+B + TA+C − TA + Γyz,

where Γyz is the sum of tensor products each of which contains at least one vector

from the set Y and at least one vector from the set Z.

Proof. Using the distributive property of tensor products, we can write

TA+B+C =
∑

wi∈X∪Y∪Z

w1 ⊗ w2 ⊗ · · · ⊗ wn,

TA+B =
∑

wi∈X∪Y

w1 ⊗ w2 ⊗ · · · ⊗ wn,

TA+C =
∑

wi∈X∪Z

w1 ⊗ w2 ⊗ · · · ⊗ wn,

TA =
∑

wi∈X

w1 ⊗ w2 ⊗ · · · ⊗ wn.

For each w1⊗w2⊗· · ·⊗wn, the following chart gives its coefficient in the expres-

sions above. The left hand side exploits all possible appearances of individual wi’s

within the tensor product w1 ⊗ w2 ⊗ · · · ⊗ wn and the numerical values on the right

hand side are the coefficients of w1⊗w2⊗· · ·⊗wn (in TA+B+C , TA+B, etc) with these

choices of wi’s.
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Type of wi TA+B+C TA+B TA+C TA Γyz

wi ∈ X for all i 1 1 1 1 0

wi ∈ Y for all i 1 1 0 0 0

wi ∈ Z for all i 1 0 1 0 0

wi ∈ X ∪ Y for all i, but not all

in X nor in Y 1 1 0 0 0

wi ∈ X ∪ Z for all i, but not all

in X nor in Z 1 0 1 0 0

wi ∈ Y ∪ Z for all i, but not all

in Y nor in Z 1 0 0 0 1

∃i, j, k with wi ∈ X , wj ∈ Y and,

wk ∈ Z 1 0 0 0 1

One can obtain matrixW from the right hand side for each w1⊗w2⊗· · ·⊗wn. Namely,

W =























1 1 1 1 0

1 1 0 0 0

1 0 1 0 0

1 1 0 0 0

1 0 1 0 0

1 0 0 0 1

1 0 0 0 1























. Moreover, the vector given by















1

−1

−1

1

−1















is a null vector

for the matrix W . Therefore, considering the charts for all possible w1⊗w2⊗· · ·⊗wn,

we obtain TA+B+C = TA+B + TA+C − TA + Γyz as desired.

Now we are ready to show our main result.

Theorem 3.2. Let A, B, and C be n× n positive semidefinite matrices. Then

dHχ (A+B + C) + dHχ (A) ≥ dHχ (A+B) + dHχ (A+ C).

Proof. Let N = dHχ (A+B + C). Then by Lemma 3.1, we have

N = 〈χ · (TA+B + TA+C − TA + Γyz), TA+B + TA+C − TA + Γyz〉

= 〈χ · TA+B, TA+B〉+ 〈χ · TA+B, TA+C〉 − 〈χ · TA+B, TA〉+ 〈χ · TA+B,Γyz〉

+ 〈χ · TA+C , TA+B〉+ 〈χ · TA+C , TA+C〉 − 〈χ · TA+C , TA〉+ 〈χ · TA+C ,Γyz〉

− 〈χ · TA, TA+B〉 − 〈χ · TA, TA+C〉+ 〈χ · TA, TA〉 − 〈χ · TA,Γyz〉

+ 〈χ · Γyz, TA+B〉+ 〈χ · Γyz, TA+C〉 − 〈χ · Γyz, TA〉+ 〈χ · Γyz,Γyz〉 .

We inspect each of the above terms. Note that

〈χ · TA+B, TA+B〉 = dHχ (A+B),
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〈χ · TA+C , TA+C〉 = dHχ (A+ C),

〈χ · TA, TA〉 = dHχ (A).

We also know (by (2.1)) that TA+B = TA+TB+Θxy and TA+C = TA+TC+Θxz.

Thus,

〈χ · TA+B, TA+C〉 = 〈χ · TA + χ · TB + χ ·Θxy, TA + TC +Θxz〉

= dHχ (A) + 〈χ · TA, TC〉+ 〈χ · TA,Θxz〉

+ 〈χ · TB, TA〉+ 〈χ · TB, TC〉+ 〈χ · TB,Θxz〉

+ 〈χ ·Θxy, TA〉+ 〈χ ·Θxy, TC〉+ 〈χ ·Θxy,Θxz〉 .

By the orthogonality of the sets X,Y, Z and the reasoning elaborated in the proof

of Proposition 2.2, the identity above reduces to 〈χ · TA+B, TA+C〉 = dHχ (A). Note also

that

〈χ · TA+B, TA〉 = dHχ (A) + 〈χ · TB, TA〉+ 〈χ ·Θxy, TA〉 = dHχ (A).

Next, we have

〈χ · TA+B,Γyz〉 = 〈χ · TA,Γyz〉+ 〈χ · TB,Γyz〉+ 〈χ ·Θxy,Γyz〉 .

From Lemma 3.1 we know that Γyz is the sum of tensors containing at least one

vector from each set Y and Z. Considering the structure of TA, TB, Θxy and the fact

that χ action permutes the vectors within the tensor product, the orthogonality of

X, Y , and Z results in

〈χ · TA,Γyz〉 = 〈χ · TB,Γyz〉 = 〈χ ·Θxy,Γyz〉 = 0,

which, in turn, imply 〈χ · TA+B,Γyz〉 = 0.

In a similar way, 〈χ · TA+C , TA+B〉 = dHχ (A). In addition, we also have the fol-

lowing equalities:

〈χ · TA+C , TA〉 = 〈χ · TA, TA+B〉 = 〈χ · TA, TA+C〉 = dHχ (A),

〈χ · TA+C ,Γyz〉 = 〈χ · TA,Γyz〉 = 0,

〈χ · Γyz, TA+B〉 = 〈χ · Γyz, TA+C〉 = 〈χ · Γyz, TA〉 = 0.
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By a similar argument as in the proof of Proposition 2.2, we have 〈χ · Γyz,Γyz〉 ≥

0. Combining all of the above computations, we arrive at

dHχ (A+B + C) = dHχ (A+B) + dHχ (A)− dHχ (A) + dHχ (A) + dHχ (A+ C)− dHχ (A)

− dHχ (A)− dHχ (A) + dHχ (A) + 〈χ · Γyz,Γyz〉

= dHχ (A+B) + dHχ (A+ C)− dHχ (A) + 〈χ · Γyz,Γyz〉

≥ dHχ (A+B) + dHχ (A+ C)− dHχ (A).

A special case of the above inequality is the well known determinant inequality

det(A+B) ≥ det(A)+det(B) for positive semidefinite matrices A and B (see, e.g., [4,

p. 117] or [1, p. 490]). The following inequalities on determinant (det) and permanent

(per) that have appeared in [7] are also immediate consequences of our theorem.

Corollary 3.3. Let A, B, and C be n×n positive semidefinite matrices. Then

det(A+B + C) + det(A) ≥ det(A+B) + det(A+ C);

per(A+B + C) + per(A) ≥ per(A+B) + per(A+ C).

Proof. Put H = Sn. We specify χ = sgn, the signum function, for the determi-

nant and χ = 1 for the permanent, respectively, then apply Theorem 3.2.

4. The inequality for more positive semidefinite matrices. Now we ex-

tend Theorem 3.2 to any finite number of positive semidefinite matrices.

Theorem 4.1. Let A1, . . . , Am, m ≥ 3, be n× n positive semidefinite matrices.

Then

dHχ

(

m
∑

j=1

Aj

)

≥

m
∑

j 6=i

dHχ (Ai +Aj)− (m− 2)dHχ (Ai), i = 1, . . . ,m.

Proof. We use induction on m. For m = 3, it is Theorem 3.2. Assume that the

assertion holds true for m (≥ 3) matrices. We show that it holds true for m + 1

matrices. Without loss of generality, we take Ai = A1.

Case I: m is even. Letm = 2k, k ≥ 2. For simplicity, setB1 = A2+A3, B2 = A4+A5,

. . . , Bk = Am +Am+1. Then

dHχ (A1 +A2 +A3 + · · ·+Am +Am+1) = dHχ (A1 +B1 + · · ·+Bk).
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By induction hypotheses, we obtain

dHχ (A1 +B1 + · · ·+Bk) ≥

k
∑

j=1

dHχ (A1 +Bj)− (k − 1)dHχ (A1).

It follows that

dHχ (A1 +B1 + · · ·+Bk) + (m− 1)dHχ (A1)

≥
k

∑

j=1

dHχ (A1 +Bj)− (k − 1)dHχ (A1) + (m− 1)dHχ (A1)

= dHχ (A1 +A2 +A3) + · · ·+ dHχ (A1 +Am +Am+1) + (m− k)dHχ (A1)

≥ dHχ (A1 +A2) + dHχ (A1 +A3) + · · ·+ dHχ (A1 +Am+1)− kdHχ (A1)

+ (m− k)dHχ (A1)

= dHχ (A1 +A2) + dHχ (A1 +A3) + · · ·+ dHχ (A1 +Am+1) + (m− 2k)dHχ (A1)

= dHχ (A1 +A2) + dHχ (A1 +A3) + · · ·+ dHχ (A1 +Am+1).

Therefore,

dHχ (A1 +A2 + · · ·+Am + Am+1) ≥

m+1
∑

j=2

dHχ (A1 +Aj)− (m− 1)dHχ (A1).

Case II: m is odd. Let m = 2k − 1 with k ≥ 3. Put A = A1 +A2. Then

dHχ (A1 +A2 + · · ·+Am+1) + (m− 1)dHχ (A1)

= dHχ (A+A3 + · · ·+Am+1) + (m− 1)dHχ (A1)

≥ dHχ (A+A3) + · · ·+ dHχ (A+Am+1)− (m− 2)dHχ (A) + (m− 1)dHχ (A1)

= dHχ (A1 +A2 +A3) + · · ·+ dHχ (A1 +A2 +Am+1)− (m− 2)dHχ (A)

+ (m− 1)dHχ (A1)

≥ dHχ (A) + dHχ (A1 +A3) + · · ·+ dHχ (A) + dHχ (A1 +Am+1)− (m− 1)dHχ (A1)

− (m− 2)dHχ (A) + (m− 1)dHχ (A1)

= (m− 1)dHχ (A) + dHχ (A1 +A3) + · · ·+ dHχ (A1 +Am+1)− (m− 2)dHχ (A)

= dHχ (A) + dHχ (A1 +A3) + · · ·+ dHχ (A1 +Am+1)

= dHχ (A1 +A2) + dHχ (A1 +A3) + · · ·+ dHχ (A1 +Am+1), as desired.
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