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Abstract. In this paper, the exact value for the norm of directional derivatives, of all orders,

for symmetric tensor powers of operators on finite dimensional vector spaces is presented. Using this

result, an upper bound for the norm of all directional derivatives of immanants is obtained.
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1. Introduction. Let V and U be finite-dimensional complex vector spaces,

and denote by L(V ) the vector space of linear operators from V to itself. The k-th

derivative of a map f : V → U is a multilinear map Dkf(T ) from (L(V ))k to L(U)

defined as

Dkf(T )(X1, . . . , Xk) =
∂k

∂t1 · · · ∂tk

∣∣∣
t1=···=tk=0

f(T + t1X
1 + · · ·+ tkX

k).

The norm of a multilinear operator Φ : (L(V ))k −→ L(U) is given by

‖Φ‖ = sup
‖X1‖=···=‖Xk‖=1

‖Φ(X1, . . . , Xk)‖.

Let T ∈ L(V ), with n = dimV . We will obtain exact values for the norm of k-th

derivative of the operator f(T ) = Kχ(T ), where Kχ(T ) represents the χ-symmetric

tensor power of the operator T , that is, the restriction of the operator ⊗mT to the

subspace of χ-symmetric tensors, which we will denote by Vχ.

Let ν1 ≥ · · · ≥ νn be the singular values of the operator T and denote by pt the

symmetric polynomial of degree t (the number of variables to be specified). In the
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papers [3], [6] and [7], the following values were obtained:

‖Dk ⊗m T ‖ = ‖Dk ∨m T ‖ =
m!

(m− k)!
‖T ‖m−k =

m!

(m− k)!
νm−k
1 ,

‖Dk ∧m T ‖ = k! pm−k(ν1, . . . , νm).

On the other hand, R. Bhatia and J. Dias da Silva established in [1] a formula for

the norm of the first derivative of the χ-symmetric tensor power of an operator. It is

again k! times of the value of the elementary symmetric polynomial of degree m− 1

taken on m singular values of the operator T , where k is the order of the derivative. In

all cases, we note that the norm is the value of the elementary symmetric polynomial

of degree m− k applied to a certain family of m singular values of T (eventually with

repetitions), multiplied by k!.

In this paper, we will present a result that generalizes all these cases. We use

techniques developed in [1] and [3], and a result from [5].

2. Results on χ-symmetric tensor powers. We now present some classic

facts and notation about χ-symmetric powers that can be found in [8, Chapter 6].

Let Sm be the symmetric group of degree m, χ an irreducible character of Sm and

define Kχ ∈ L(⊗mV ) as

Kχ =
χ(id)

m!

∑

σ∈Sm

χ(σ)P (σ),

where id stands for the identity element of Sm and P (σ)(v1 ⊗ · · · ⊗ vm) = vσ−1(1) ⊗

· · · ⊗ vσ−1(m). The range of Kχ is called the symmetry class of tensors associated

with the irreducible character χ and it is represented by Vχ = Kχ(⊗
mV ). We denote

v1 ∗ v2 ∗ · · · ∗ vm = Kχ(v1 ⊗ v2 ⊗ · · · ⊗ vm).

These vectors belong to Vχ and are called decomposable symmetrised tensors.

Given T ∈ L(V ), it is known that Vχ is an invariant subspace for ⊗mT . We define

the χ-symmetric tensor power of T as the restriction of ⊗mT to Vχ, and denote it by

Kχ(T ).

Let Γm,n be the set of all maps from the set {1, . . . ,m} into the set {1, . . . , n}.

This set can also be identified with the collection of multi-indices {(i1, . . . , im) : ij ≤

n}. If α ∈ Γm,n, this correspondence associates to α, the m-tuple (α(1), . . . , α(m)).

We will consider the lexicographic order in the set Γm,n. The group Sm acts on Γm,n

by the action (σ, α) −→ ασ−1 where σ ∈ Sm and α ∈ Γm,n. The set

{ασ : σ ∈ Sm} ⊆ Γm,n
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is then the orbit of α and the stabilizer of α is the following subgroup of Sm:

Gα = {σ ∈ Sm : ασ = α}.

Now suppose that V is a Hilbert space and let {e1, . . . , en} be an orthonormal basis

of V . Then

{e⊗α = eα(1) ⊗ eα(2) ⊗ · · · ⊗ eα(m) : α ∈ Γm,n}

is a basis of the m-th tensor power of V . So, by the definition of the space Vχ, the set

{e∗α = Kχ(e
⊗
α ) : α ∈ Γm,n}

spans Vχ. However, this set need not be a basis of Vχ, because its elements might not

be linearly independent, some of them may even be zero. Let

(2.1) Ω = Ωχ = {α ∈ Γm,n :
∑

σ∈Gα

χ(σ) 6= 0}.

With simple calculations, we can conclude that

(2.2) ‖e∗α‖
2 =

χ(id)

m!

∑

σ∈Gα

χ(σ).

So the nonzero decomposable symmetrised tensors are {e∗α : α ∈ Ω}. Now, let ∆ be

the system of distinct representatives for the quotient set Γm,n/Sm, constructed by

choosing the first element in each orbit, for the lexicographic order of indices. It is

easy to check that ∆ ⊆ Gm,n, where Gm,n is the set of all increasing sequences of

Γm,n. Let

∆ = ∆ ∩ Ω.

It can be proved that the set {e∗α : α ∈ ∆} is linearly independent. We have already

seen that the set {e∗α : α ∈ Ω}, spans Vχ, so there is a set ∆̂, such that ∆ ⊆ ∆̂ ⊆ Ω

and

{e∗α : α ∈ ∆̂}

is a basis for Vχ. It is also known that this basis is orthogonal if χ is a linear character,

i.e., if χ ≡ 1 or χ = sgn. If χ is the principal character, ∆̂ = ∆ = Gm,n and if χ is

the alternating character, ∆̂ = ∆ = Qm,n. In both cases the corresponding bases are

orthogonal for the induced inner product in ⊗mV .

A partition π of m is an r-tuple of positive integers π = (π1, . . . , πr), such that

• π1 ≥ · · · ≥ πr,
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• π1 + · · ·+ πr = m.

Sometimes it is useful to consider a partition of m with exactly m entries, so

we complete the list with zeros. The number of nonzero entries in the partition π is

called the length of π and is represented by l(π).

Given an n-tuple of real numbers x = (x1, . . . , xn) and α ∈ Γm,n, we define the

m-tuple

xα := (xα(1), xα(2), . . . , xα(m)).

It is known from representation theory that there is a canonical correspondence

between the irreducible characters of Sm and the partitions of m, it is usual to use the

same notation to represent both of them. Recall that if χ = (1, . . . , 1) then χ = sgn

and Vχ = ∧mV is the Grassmann space, and if χ = (m, 0, . . . , 0), then χ ≡ 1 and

Vχ = ∨mV .

For every partition π = (π1, π2, . . . , πl(π)) of m, we define ω(π) as

ω(π) := (1, . . . , 1︸ ︷︷ ︸
π1 times

, 2, . . . , 2︸ ︷︷ ︸
π2 times

, . . . , l(π), . . . , l(π)︸ ︷︷ ︸
πl(π) times

) ∈ Gm,n ⊆ Γm,n.

For each α ∈ Γm,n, let Imα = {i1, . . . , il}, suppose that |α−1(i1)| ≥ · · · ≥

|α−1(il)|. The partition of m

(2.3) µ(α) := (|α−1(i1)|, . . . , |α
−1(il)|)

is called the multiplicity partition of α.

Remark 1. The multiplicity partition of ω(π) is equal to the partition π:

µ(ω(π)) = π.

We have that Imω(π) = {1, 2, . . . , l(π)} and that |α−1(i)| = πi, for every i =

1, 2, . . . l(π). So

µ(ω(π)) = (|α−1(1)|, |α−1(2)|, . . . , |α−1(l(π))|) = (π1, π2, . . . , πl(π)) = π.

We recall a well known order defined on the set of partitions of m. A partition µ

precedes λ, written µ � λ, if for all 1 ≤ s ≤ m,

s∑

j=1

µj ≤

s∑

j=1

λj .
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We will also need the following classical result that characterizes the set Ωχ and

is [8, Theorem 6.3.7].

Theorem 2.1. Let χ be a partition of m and α ∈ Γm,n. Let Ωχ and µ(α) be as

defined in (2.1) and (2.3). Then α ∈ Ωχ if and only if χ majorizes µ(α).

3. Formulas for k-th derivatives. We now present a formula for higher or-

der derivatives that generalizes formulas in [2] and [3]. It is known that, given

X1, . . . , Xm ∈ L(V ), the space Vχ is invariant for the map defined as

X1⊗̃X2⊗̃ · · · ⊗̃Xm :=
1

m!

∑

σ∈Sm

Xσ(1) ⊗ · · · ⊗Xσ(m).

See for instance [8, p. 184]. We will denote the restriction of this map to Vχ by

X1 ∗· · ·∗Xm and call it the symmetrized χ-symmetric tensor product of the operators

X1, . . . , Xm. We remark that this notation does not convey the fact that the product

depends on the character χ. In [3], the following formula is deduced:

(3.1) Dk(⊗mT )(X1, . . . , Xk) =
m!

(m− k)!
T ⊗̃ · · · ⊗̃T︸ ︷︷ ︸
m−k copies

⊗̃X1⊗̃ · · · ⊗̃Xk.

If k > m all derivatives are zero. From this we can deduce a formula for the derivative

DkKχ(T )(X
1, . . . , Xk), using the same techniques.

If L is a linear map, it is known that the derivative of L is L at each point. Then,

applying the chain rule, we have that

D(L ◦ f)(a)(x) = L ◦D(f(a)(x)).

If the map f is k times differentiable then

(3.2) Dk(L ◦ f)(a)(x1, . . . , xk) = L ◦Dkf(a)(x1, . . . , xk).

Theorem 3.1. Using the notation we have established, we have

DkKχ(T )(X
1, . . . , Xk) =

m!

(m− k)!
T ∗ · · · ∗ T ∗X1 ∗ · · · ∗Xk.

If m = k this formula does not depend on T , and if k > m all derivatives are zero.

Proof. Let Q be the inclusion map defined as Q : Vχ −→ ⊗mV , so its adjoint

operator Q∗ is the projection of ⊗mV onto Vχ. We have

T1 ∗ · · · ∗ Tm = Q∗(T1⊗̃ · · · ⊗̃Tm)Q.
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Both maps L 7→ Q∗L and L 7→ LQ are linear, so we can apply formulas (3.1) and

(3.2) and get

DkKχ(T )(X
1, . . . , Xn) = Dk(Q∗(⊗mT )Q)(X1, . . . , Xk)

= Q∗Dk(⊗mT )(X1, . . . , Xk)Q

=
m!

(m− k)!
Q∗(T ⊗̃ · · · ⊗̃T︸ ︷︷ ︸

m−k times

⊗̃X1⊗̃ · · · ⊗̃Xk)Q

=
m!

(m− k)!
T ∗ · · · ∗ T ∗X1 ∗ · · · ∗Xk.

This concludes the proof.

4. Norm of the k-th derivative of Kχ(T ). We recall that the norm of a

multilinear operator Φ : (L(V ))k −→ L(U) is given by

‖Φ‖ = sup
‖X1‖=···=‖Xk‖=1

‖Φ(X1, . . . , Xk)‖.

The main result of this section is the following theorem.

Theorem 4.1. Let V be an n-dimensional Hilbert space. Let m and k be positive

integers such that 1 ≤ k ≤ m ≤ n, and let χ be a partition of m. Let T → Kχ(T ) be

the map that associates to each element of L(V ) the induced operator Kχ(T ) on the

symmetry class Vχ. Then the norm of the derivative of order k of this map is given

by the formula

‖DkKχ(T )‖ = k! pm−k(νω(χ)),

where pm−k is the symmetric polynomial of degree m − k in m variables and ν1 ≥

· · · ≥ νn are the singular values of T .

The proof of our main result is inspired in the techniques used in [1]. We will

now highlight the most important features of the proof of our main theorem.

First we will use the polar decomposition of the operator T , in the following

form: P = TW , with P positive semidefinite and W unitary. We will see that

‖DkKχ(T )‖ = ‖DkKχ(P )‖. This allows us to replace T by P . After that we observe

that the multilinear map DkKχ(P ) is positive between the two algebras in question,

so it is possible to use a multilinear version of the famous Russo-Dye theorem that

states that the norm for a positive multilinear map is attained in (I, I, . . . , I), where

I is the identity operator. This result considerably simplifies the calculations needed

to obtain the expression stated in our theorem.

The second part of our proof consists in finding the largest singular value of

DkKχ(P )(I, I, . . . , I), which coincides with the value of the norm of DkKχ(T ).
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First we will need some properties of the operator Kχ. They all follow from the

definitions.

Proposition 4.2. Let χ be an irreducible character of Sm and suppose that S

and T are in L(V ) and v1, . . . vm ∈ V . Then

1. Kχ(ST ) = Kχ(S)Kχ(T ),

2. Kχ(T )(v1 ∗ · · · ∗ vm) = T (v1) ∗ · · · ∗ T (vm),

3. Kχ(T )
∗ = Kχ(T

∗), where T ∗ is the adjoint operator of T ,

4. Kχ(T ) is invertible for all invertible T and in this case Kχ(T )
−1 = Kχ(T

−1).

By the polar decomposition, we know that for every T ∈ L(V ) there are a positive

semidefinite operator P and a unitary operator W such that P = TW . Moreover,

the eigenvalues of P are the singular values of T .

Proposition 4.3. With the above notation, we have

‖DkKχ(T )‖ = ‖DkKχ(P )‖.

Proof. Let P = TW , with W unitary. Then Kχ(W ) is also unitary , because

[Kχ(W )]
−1

= Kχ(W
−1) = Kχ(W

∗) = [Kχ(W )]
∗
.

So, we have

‖DkKχ(T )(X
1, . . . , Xk)‖ =

= ‖DkKχ(T )(X
1, . . . , Xk)Kχ(W )‖

= ‖

(
∂k

∂t1 · · · ∂tk

∣∣∣
t1=···=tk=0

Kχ(T + t1X
1 + · · ·+ tkX

k)

)
Kχ(W )‖

= ‖
∂k

∂t1 · · · ∂tk

∣∣∣
t1=···=tk=0

Kχ(T + t1X
1 + · · ·+ tkX

k)Kχ(W )‖

= ‖
∂k

∂t1 · · · ∂tk

∣∣∣
t1=···=tk=0

Kχ(P + t1X
1W + · · ·+ tkX

kW )‖.

= ‖DkKχ(P )(X1W, . . . ,XkW )‖

We have ‖X iW‖ = ‖X i‖, and moreover, {XW : ‖X‖ = 1} is the set of all operators

of norm 1, so

‖DkKχ(T )‖ = sup
‖X1‖=···=‖Xk‖=1

‖DkKχ(T )(X
1, . . . , Xk)‖

= sup
‖X1‖=···=‖Xk‖=1

‖DkKχ(P )(X1W, . . . ,XkW )‖

= ‖DkKχ(P )‖.
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This concludes the proof.

Now we need to estimate the norm of the operator DkKχ(P ). For this, we use

a result from [3], a multilinear version of the Russo-Dye theorem, which we quote

here. A multilinear operator Φ is said to be positive if Φ(X1, . . . , Xk) is a positive

semidefinite operator whenever X1, . . . , Xk are so.

Theorem 4.4 (Russo-Dye multilinear version). Let Φ : L(V )k −→ L(U) be a

positive multilinear operator. Then

‖Φ‖ = ‖Φ(I, I, . . . , I)‖.

We have that DkKχ(P ) is a positive multilinear operator, since if X1, . . . , Xk are

positive semidefinite, then by the formula in Theorem 3.1, Dk(P )(X1, . . . , Xk) is the

restriction of a positive semidefinite operator to an invariant subspace, and thus is

positive semidefinite.

Therefore,

‖DkKχ(T )‖ = ‖DkKχ(P )‖ = ‖DkKχ(P )(I, I, . . . , I)‖.

Now we have to find the maximum eigenvalue of DkKχ(P )(I, I, . . . , I). This will

be done by finding a basis of Vχ formed by eigenvectors for DkKχ(P )(I, I, . . . , I). If

E = {e1, . . . , en} is an orthonormal basis of eigenvectors for P , then {e∗α : α ∈ ∆̂}

will be a basis of eigenvectors for DkKχ(P )(I, I, . . . , I) (in general, it will not be

orthonormal).

For β ∈ Qm−k,m, define ⊗m
β P as the tensor X1 ⊗ · · · ⊗Xm, in which X i = P if

i ∈ Imβ and X i = I otherwise.

Lemma 4.5. We refer to the notation we have established so far.

1. We have

P ⊗̃ · · · ⊗̃P︸ ︷︷ ︸
m−k times

⊗̃I⊗̃ · · · ⊗̃I =
k!(m− k)!

m!

∑

β∈Qm−k,m

⊗m
β P.

2. Let v1, . . . , vm be eigenvectors for P with eigenvalues λ1, . . . , λm. Then
∑

β∈Qm−k,m

⊗m
β P (v1 ⊗ · · · ⊗ vm) = pm−k(λ1, . . . , λm)v1 ⊗ · · · ⊗ vm.

Proof.

1. It is a matter of carrying out the computations. The factors k! and (m − k)!

account for the permutations of I and P , respectively, in each summand. We note
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that the final factor is exactly the inverse of the number of summands, as in the

definition of P ⊗̃ · · · ⊗̃P ⊗̃I⊗̃ · · · ⊗̃I.

2. For each β ∈ Qm−k,m we have that

⊗m
β P (v1 ⊗ · · · ⊗ vm) =

m−k∏

i=1

λβ(i)(v1 ⊗ · · · ⊗ vm).

So,

∑

β∈Qm−k,m

⊗m
β P (v1 ⊗ · · · ⊗ vm) =

∑

β∈Qm−k,m

m−k∏

i=1

λβ(i)(v1 ⊗ · · · ⊗ vm)

= pm−k(λ1, . . . , λm)v1 ⊗ · · · ⊗ vm.

This concludes the proof.

The following proposition gives the expression for the eigenvalues of the derivative

DkKχ(P )(I, I, . . . , I).

Proposition 4.6. Let α ∈ ∆̂ and define

λ(α) := k! pm−k(να).

Then λ(α) is the eigenvalue of DkKχ(P )(I, I, . . . , I) associated with the eigenvector

e∗α.

Proof. Recall that E = {e1, . . . , en} is an orthonormal basis of eigenvectors for

P , with eigenvalues ν1, . . . , νn. For every α ∈ ∆̂ we have

e∗α =
χ(id)

m!

∑

σ∈Sm

χ(σ)e⊗ασ.

Then

DkKχ(P )(I, . . . , I)(e∗α) =
m!

(m− k)!
(P ⊗̃ · · · ⊗̃P︸ ︷︷ ︸

m−k times

⊗̃I⊗̃ · · · ⊗̃I)(e∗α)

=
m!

(m− k)!

k!(m− k)!

m!

∑

β∈Qm−k,m

⊗m
β P (e∗α)

= k!
∑

σ∈Sm

χ(σ)
∑

β∈Qm−k,m

⊗m
β P (e⊗ασ)

= k!
∑

σ∈Sm

χ(σ)pm−k(νασ)e
⊗
ασ

= k!
∑

σ∈Sm

χ(σ)pm−k(να)e
⊗
ασ

= k!pm−k(να)e
∗
α.
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In the last equations, we used the previous lemma and the symmetry of the polynomial

pm−k. So, the eigenvalue associated with e∗α is λ(α).

We have obtained the expression for all the eigenvalues of DkKχ(P )(I, . . . , I),

now we have to find the largest one.

Lemma 4.7. If α, β ∈ ∆̂ are in the same orbit, then λ(α) = λ(β).

Proof. If α and β are in the same orbit, then there is σ ∈ Sm such that ασ = β.

So by the definition of the symmetric elementary polynomials, we have

pm−k(νβ) = pm−k(νασ) = pm−k(να).

This concludes the proof.

According to the results in section 2, every orbit has a representative in Gm,n,

and this is the first element in each orbit (for the lexicographic order). Therefore, the

norm of the k-th derivative of Kχ(T ) is attained at some λ(α) with α ∈ ∆ ⊆ Gm,n.

We now compare eigenvalues coming from different elements of ∆.

Lemma 4.8. Let α, β be elements of ∆ ⊆ Gm,n. Then λ(α) ≥ λ(β) if and only if

α precedes β in the lexicographic order.

Proof. The result follows directly from the expression of the eigenvalues of

DkKχ(P )(I, . . . , I) given in Proposition 4.6.

We are now ready to complete the proof of the main theorem. From now on we

will also write χ to represent also the partition of m associated with the irreducible

character χ.

Proof of Theorem 4.1. We have that ω(χ) ∈ ∆, so we must have

‖DkKχ(P )(I, . . . , I)‖ ≥ λ(ω(χ)).

Now let α ∈ ∆. Using the results from Theorem 2.1 and Remark 1, we have that

χ = µ(ω(χ)) majorizes µ(α). By the definition of multiplicity partition, we have that

ω(χ) precedes α in the lexicographic order. By Lemma 4.8, we then have λ(ω(χ)) ≥

λ(α) and

‖DkKχ(T )‖ = ‖DkKχ(P )(I, . . . , I)‖ = λ(ω(χ)) = k! pm−k(νω(χ)).

This concludes the proof of the theorem.

Now we will see that the formulas obtained by Jain [7] and Grover [6] are partic-

ular cases of this last formula.

If χ = (m, 0, . . . , 0) then Kχ(T ) = ∨mT . In this case νω(χ) = (ν1, . . . , ν1). So, we
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have

‖Dk ∨m T ‖ = k!pm−k(νω(χ))

= k!pm−k(ν1, ν1, . . . , ν1)

= k!

(
m

k

)
νm−k
1 =

m!

(m− k)!
νm−k
1

=
m!

(m− k)!
‖T ‖m−k.

Also, if χ = (1, 1, . . . , 1), then Kχ(T ) = ∧mT and νω(χ) = (ν1, ν2, . . . , νm). In this

case we have that

‖Dk ∧m T ‖ = k! pm−k(ν1, ν2, . . . , νm),

where pm−k(ν1, ν2, . . . , νm) is the symmetric elementary polynomial of degree m− k

calculated on the top m singular values of T .

Our main formula also generalizes the result for the norm of the first derivative

of Kχ(T ) obtained by R. Bhatia and J. Dias da Silva in [1]. Just notice that if k = 1,

we have that Q1,m = {1, 2, . . . ,m}, so

‖DKχ(T )‖ = pm−1(νω(χ))

= νω(χ)(2)νω(χ)(3) · · · νω(χ)(m) + νω(χ)(1)νω(χ)(3) · · · νω(χ)(m) + · · ·

· · ·+ νω(χ)(1)νω(χ)(2) · · · νω(χ)(m−1)

=

m∑

j=1

m∏

i=1
i6=j

νω(χ)(i).

5. Norm of the k-th derivative of the immanant. We now wish to establish

an upper bound for the k-th derivative of the immanant, which is defined as

dχ(A) =
∑

σ∈Sn

χ(σ)
n∏

i=1

aiσ(i),

where A is a complex n× n matrix and χ is an irreducible character of Sn.

The mixed immanant of X1, . . . , Xn ∈ Mn(C) is defined as

∆χ(X
1, . . . , Xn) :=

1

n!

∑

σ∈Sn

dχ(X
σ(1)
[1] , . . . , X

σ(n)
[n] ),

where X i
[j] denotes the j-th column of the matrix X i. If X1 = · · · = Xt = A, for some

t ≤ n and A ∈ Mn(C), we denote the mixed immanant by ∆χ(A;X
t+1, . . . , Xn).
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Now, we recall the definition of Kχ(A), the m-th χ-symmetric tensor power of the

matrix A — from now on, we take χ to be a character of Sm. We find this definition

in [5], along with other results we will now use.

A natural way to define this matrix is to fix an orthonormal basis E in V , and con-

sider the linear endomorphism T such that A = M(T,E). Define E ′ = (e∗α : α ∈ ∆̂).

Let E = (vα : α ∈ ∆̂) be the orthonormal basis of the m-th χ-symmetric tensor power

of the vector space V obtained by applying the Gram-Schmidt orthonormalization

procedure to E ′. We define

Kχ(A) := M(Kχ(T ), E).

The matrix Kχ(A) has rows and columns indexed in ∆̂, with Qm,n ⊆ ∆̂. This

definition admits, as special cases, the m-th compound and the m-th induced power

of a matrix, as defined in [8, p. 236].

Since the basis chosen in Vχ is orthonormal, the result for the norm of the operator

applies to this matrix:

‖Kχ(A)‖ ≤ k! pm−k(νω(χ)),

where ν1 ≥ · · · ≥ νn are the singular values of A. This upper bound is what we will

need for the main result in this section.

Before that, we present an explicit formula for Kχ(A), from [5], and show a simi-

larity between the formulas forDkKχ(T ), obtained in Theorem 3.1, and forDkKχ(A),

obtained in [5].

Denote by immχ(A) the square matrix with rows and columns indexed by ∆̂,

whose (γ, δ) entry is dχ(A[γ|δ]), where A[γ|δ] is the matrix obtained from A, picking

rows γ(1), . . . , γ(m) and columns δ(1), . . . , δ(m). Let B = (bαβ) be the change of

basis matrix from E to E ′. This means that for each α ∈ ∆̂,

vα =
∑

γ∈∆̂

bγαe
∗
γ .

This matrix B does not depend on the choice of the basisE as long as it is orthonormal

(it encodes the Gram-Schmidt procedure applied to E ′).

With these matrices, we can write

(5.1) Kχ(A) =
χ(id)

m!
B∗ immχ(A)B.

For X1, . . . , Xm ∈ Mn(C), denote by miximmχ(X
1, . . . , Xm) the square matrix

with rows and columns indexed by ∆̂, whose (γ, δ) entry is ∆χ(X
1[γ|δ], . . . , Xm[γ|δ]),
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so that

miximmχ(A, . . . , A) = immχ(A).

We use the same shorthand as with the mixed immanant: For k ≤ m,

miximmχ(A;X
1, . . . , Xk) := miximmχ(A, . . . , A,X

1, . . .Xk).

We have

DkKχ(A)(X
1, . . . , Xk) =

χ(id)

(m− k)!
B∗ miximmχ(A;X

1, . . . , Xk)B.

Notice the similarity with the formula in Theorem 3.1. In fact, one can check

that if X i is the matrix of the operator Si ∈ L(V ) with respect to the orthonormal

basis {e1, . . . , en}, then the previous matrix is the matrix of DkKχ(T )(S
1, . . . , Sk)

with respect to the basis E .

We now use the results on the norm in order to get an upper bound for the norm

of the k-th derivative of the immanant.

Theorem 5.1. Keeping with the notation established, we have that, for k ≤ n,

‖Dkdχ(A)‖ ≤ k! pn−k(νω(χ)).

Proof. We always have Qm,n ⊆ ∆̂. We now take m = n and denote γ :=

(1, 2, . . . , n) ∈ Qn,n ⊆ ∆̂ (this is the only element in Qn,n). By definition, dχ(A) is

the (γ, γ) entry of immχ(A), and, according to formula (5.1), we have

immχ(A) =
n!

χ(id)
(B∗)−1Kχ(A)B

−1.

Since multiplication by a constant matrix is a linear map, we have

Dk((B∗)−1Kχ(A)B
−1)(X1, . . . , Xk) = (B∗)−1DkKχ(A)(X

1, . . . , Xk)B−1.

We denote by C the column γ of the matrix B−1:

C = (B−1)[γ] = (b′αγ), α ∈ ∆̂.

Then

Dkdχ(A)(X
1, . . . , Xk) =

n!

χ(id)
C∗DkKχ(A)(X

1, . . . , Xk)C.
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By formula (2.2), we have that

‖e∗γ‖
2 =

χ(id)

n!
.

By definition of the matrix B, we have

e∗γ =
∑

β∈∆̂

b′βγvβ

with C = [b′βγ : β ∈ ∆̂]. Since the basis (vα : α ∈ ∆̂) is orthonormal, we have

‖C‖2 = ‖C‖22 = ‖e∗γ‖
2 =

χ(id)

n!
,

where ‖C‖2 is the Euclidean norm of C. Therefore,

‖Dkdχ(A)‖ =
n!

χ(id)
‖CDkKχ(A)C

∗‖

≤
n!

χ(id)
‖C‖2‖DkKχ(A)‖

= k! pn−k(νω(χ)).

This concludes the proof.

In [4], it is proved that this upper bound coincides with the norm of the derivative

of the determinant. In [3], when dχ = per, the upper bound presented in formula

(52) is, using our notation, (n!/(n− k)!)‖A‖n−k. Using our formula, we get the same

value: For ω(χ) = (1, 1, . . . , 1),

k! pn−k(νω(χ)) = k!

(
n

n− k

)
νn−k
1 =

n!

(n− k)!
‖A‖n−k.

It is also shown that for

A =

(
1 0

0 0

)

we have strict inequality, for dχ = per.

One of the purposes of having upper bounds for norms is the possibility of esti-

mating the magnitude of perturbations. Taylor’s formula states that if f is a p times

differentiable function between two normed spaces, then

f(a+ x)− f(a) =

p∑

k=1

1

k!
Dkf(a)(x, . . . , x) +O(‖x‖p+1).
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Therefore,

‖f(a+ x)− f(a)‖ ≤

p∑

k=1

1

k!
‖Dkf(a)‖‖x‖k.

Using our formulas, we get the following result.

Corollary 5.2. According to our notation, we have, for T,X ∈ L(V ) and

A, Y ∈ Mn(C):

‖Kχ(T )−Kχ(T +X)‖ ≤
m∑

k=1

pm−k(νω(χ))‖X‖k,

|dχ(A)− dχ(A+ Y )| ≤

n∑

k=1

pn−k(νω(χ))‖Y ‖k.
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