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Abstract. In recent papers, formulas are obtained for directional derivatives, of all orders, of

the determinant, the permanent, the m-th compound map and the m-th induced power map. This

paper generalizes these results for immanants and for other symmetric powers of a matrix.
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1. Introduction. There is a formula for the derivative of the determinant map

on the space of the square matrices of order n, known as the Jacobi formula, which

has been well known for a long time. In recent work, T. Jain and R. Bhatia derived

formulas for higher order derivatives of the determinant ([2]) and T. Jain also had

derived formulas for all the orders of derivatives for the map ∧m that takes an n× n

matrix to its m-th compound ([5]). Later, P. Grover, in the same spirit of Jain’s work,

did the same for the permanent map and the for the map ∨m that takes an n × n

matrix to its m-th induced power. The mentioned authors extended the theory in [1].

This paper follows along the lines of this work. It is known that the determinant

map and the permanent map are special cases of a more generalized map, which is the

immanant, and the compound and the induced power of a matrix are also generalized

by other symmetric powers, related to symmetric classes of tensors. These will be our

objects of study.

2. Immanant. We will write Mn(C) to represent the vector space of the square

matrices of order n with complex entries. Let A ∈ Mn(C) and χ be an irreducible
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Departamento de Matemática da Faculdade de Ciências, Universidade de Lisboa, Campo Grande,

Edif́ıcio C6, piso 2, P-1749-016 Lisboa (pedro@ptmat.fc.ul.pt).

284

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 284-301, April 2014



ELA

The k-th Derivatives of the Immanant and the χ-Symmetric Power of an Operator 285

character of C. We define the immanant determined by χ as:

dχ(A) =
∑

σ∈Sn

χ(σ)
n∏

i=1

aiσ(i).

In other words, dχ : Mn(C) −→ C is a map taking an n× n matrix to its immanant.

This, being a polynomial map, is differentiable. For X ∈ Mn(C), we denote by

DdχA(X) the directional derivative of dχ at A in the direction of X .

We denote by An(i|j) the n×n square matrix that is obtained from A by replacing

the i-th row and j-th column with zero entries, except entry (i, j) which we set to 1.

We define the immanantal adjoint adjχ(A) as the n×nmatrix in which the entry (i, j)

is dχ(An(i|j)). This agrees with the definition of permanental adjoint in [7, p. 237],

but not with the usual adjugate matrix (we would need to consider the transpose in

that case). This is a matter of convention.

We obtain the following result similar to the Jacobi formula for the determinant.

Theorem 2.1. For each X ∈ Mn(C),

Ddχ(A)(X) = tr(adjχ(A)
TX).

Proof. For each 1 ≤ j ≤ n, let A(j;X) be the matrix obtained from A by replacing

the j-th column of A by the j-th column of X and keeping the rest of the columns

unchanged. Then the given equality can be restated as

(2.1) Ddχ(A)(X) =

n∑

j=1

dχ(A(j;X)).

On the other hand, we note that Ddχ(A)(X) is the coefficient of t in the polyno-

mial dχ(A + tX). Using the fact that the immanant is a multilinear function of the

columns we obtain the desired result.

Again using the fact that the immanant is a multilinear function, we notice that

for any 1 ≤ i ≤ n, we have

dχ(A) =

n∑

i=1

aijdχ(An(i|j)).

Using this and (2.1), we get that

(2.2) Ddχ(A)(X) =

n∑

i=1

n∑

j=1

xijdχ(An(i|j)).
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We will generalize the expressions (2.1) and (2.2) for the derivatives of all orders

of the immanant.

We now turn to derivatives. Let V1, . . . , Vn be n vector spaces over C, and let

φ : V1 × · · · × Vn −→ C be a multilinear form. For A,X1, . . . Xk ∈ V1, . . . , Vn, the

k-th derivative of φ at A in the direction of (X1, . . . , Xk) is given by the expression

Dkφ(A)(X1, . . . , Xk) :=
∂k

∂t1 · · · ∂tk

∣∣∣
t1=···=tk=0

φ(A + t1X
1 + · · ·+ tkX

k).

This is a multilinear function defined on Mn(C)
k. In particular, if we consider

φ = dχ we have the definition of the k-th derivative of the immanant.

3. First expression for the derivatives of the immanant. We start by

introducing some notation. Given a matrix A ∈ Mn(C), we will represent by A[i] the

i-th column of A, i = {1, . . . , n}.

Let k be a natural number, 1 ≤ k ≤ n. Take A,X1, . . . , Xk ∈ Mn(C), and

t1, . . . , tk k indeterminates. Let Qk,n be the set of strictly increasing maps {1, . . . , k}
→ {1, . . . , n} and Gk,n the set of increasing maps.

We will denote by A(α;X1, . . . , Xk) the matrix of order n obtained from A re-

placing the α(j) column of A by the α(j) column of Xj. The next theorem gives the

first expression for the higher order derivatives of the immanant.

Theorem 3.1. For every 1 ≤ k ≤ n,

Dkdχ(A)(X
1, . . . , Xk) =

∑

σ∈Sk

∑

α∈Qk,n

dχA(α;X
σ(1), . . . , Xσ(k)).

In particular,

Dkdχ(A)(X, . . . , X) = k!
∑

α∈Qk,n

dχA(α;X, . . . , X).

Proof. Just like in the case of the first derivative, Dkdχ(A)(X
1, . . . , Xk) is the

coefficient of t1 · · · tk in the expansion of the polynomial dχ(A+ t1X
1 + · · ·+ tkX

k).

Using the linearity of the immanant function in each column, we obtain the desired

equality.

We can re-write the last expression for the k-th derivative of the immanant map

using the concept of mixed immanant, generalizing the respective concepts for the

determinant and the permanent.
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Definition 3.2. Let X1, . . . , Xn be n matrices of order n. We define the mixed

immanant of X1, . . . , Xn as

∆χ(X
1, . . . , Xn) :=

1

n!

∑

σ∈Sn

dχ(X
σ(1)
[1] , . . . , X

σ(n)
[n] ).

If X1 = · · · = Xt = A, for some t ≤ n and A ∈ Mn(C), we denote the mixed

immanant by ∆χ(A;X
t+1, . . . , Xn).

If dχ = det, then the mixed immanant is called mixed discriminant, denoted by

∆(X1, . . . , Xn).

As with the permanent and the determinant, we have that ∆χ(A, . . . , A) = dχ(A).

This is consistent with the abbreviation we introduced in the definition.

Proposition 3.3. Let A ∈ Mn(C). We have that

∆χ(A;X
1, . . . , Xk) :=

(n− k)!

n!

∑

σ∈Sk

∑

α∈Qk,n

dχA(α;X
σ(1), . . . , Xσ(k)).

Proof. One simply has to observe that each summand in ∆χ(A;X
1, . . . , Xk)

appears (n− k)! times: Once we fix a permutation of the matrices X1, . . . , Xk, these

summands correspond to the possible permutations of the n − k matrices equal to

A.

As an immediate consequence of this result, we can obtain another formula for

the derivative of order k of the immanant map. This generalizes formula (26) in [2].

Proposition 3.4.

Dkdχ(A)(X
1, . . . , Xk) =

n!

(n− k)!
∆χ(A;X

1, . . . , Xk).(3.1)

4. Laplace expansion for immanants. We start by generalizing the Laplace

expansion, known for the determinant and the permanent, to all immanants. This

expansion was proved first for the determinant and the same arguments used can be

used to prove the corresponding expansion for the permanent. These classical Laplace

expansions can be found in [6] and in [8].

The similarity of proofs is due to the fact that the determinant and the permanent

of A ⊕ B is just the product of the determinants, or the permanents, of A and B.

However, if χ is any other irreducible character, there is no clear general relation

between the immanant of A and the immanant of any submatrix of A. So the Laplace

expansion formula for any immanant is a little more complicated.
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Let 1 ≤ k ≤ n, α, β ∈ Qk,n. We denote by Sα,β the subset of Sn defined as

Sα,β = {σ ∈ Sn : σ(Imα) = Imβ}.

Lemma 4.1. For every α ∈ Qk,n, the set {Sα,β : β ∈ Qk,n} is a partition of Sn.

Proof.

1. Let β, γ ∈ Qk,n, we prove that if β 6= γ then Sα,β ∩ Sα,γ = ∅.
Suppose σ ∈ Sα,β ∩ Sα,γ . Then σ(Imα) = Imβ = Im γ, and thus, Imβ =

Im γ. Since β, γ ∈ Qk,n, it follows that β = γ.

2. Sn =
⋃

β∈Qk,n

Sα,β .

Take π ∈ Sn with π(Imα) = {j1, . . . , jk} and suppose j1 < · · · < jk.

Let γ ∈ Qk,n such that γ(i) = ji, for i = 1, . . . , k. Therefore, π ∈ Sα,γ and

Sn ⊆
⋃

β∈Qk,n

Sα,β .

The other inclusion is trivial.

Now, for every α ∈ Qk,n denote by Imα the complement of Imα, that is,

Imα = {1, 2, . . . , n} \ Imα.

Lemma 4.2. Let 1 ≤ k ≤ n and α, β ∈ Qk,n. If σ ∈ Sα,β then

σ(Imα) = Imβ.

Proof. Suppose that l ∈ Imα and σ(l) = jl ∈ Imβ. We have σ ∈ Sα,β so we can

find i ∈ Imα such that σ(i) = jl = σ(l). But i 6= l. This is a contradiction, because

σ ∈ Sn, and therefore is injective.

Since {Sα,β : β ∈ Qk,n} is a partition of Sn we have

|{Sα,β : β ∈ Qk,n}| = |Qk,n| =
n!

k!(n− k)!
.

In an analogous way, we can prove the same results if we fix β instead of α. That is,

if we consider the set {Sα,β : α ∈ Qk,n}.

Now, we can conclude that for every α, β ∈ Qk,n the value

∑

σ∈Sα,β

χ(σ)

n∏

t=1

atσ(t)
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does not depend on the values of the following entries of the matrix A:

I. Entries aij with i ∈ Imα and j ∈ Imβ.

II. Entries aij with i ∈ Imα and j ∈ Imβ.

We now denote by A{α|β} = (a+ij) the matrix of order n obtained by replacing

in the matrix A every entry in I and II by zeros.

Lemma 4.3. With the previously established notation, we have that for each

α, β ∈ Qk,n,

∑

σ∈Sα,β

χ(σ)
n∏

t=1

atσ(t) = dχ(A{α|β}).

Proof. Using the definition of the immanant and the fact that Sn =
⋃

γ∈Qk,n

Sα,γ ,

we have that

dχ(A{α|β}) =
∑

σ∈Sn

χ(σ)

n∏

t=1

a+
tσ(t)

=
∑

σ∈∪γ∈Qk,n
Sα,γ

χ(σ)

n∏

t=1

a+
tσ(t)

=
∑

γ∈Qk,n

∑

σ∈Sα,γ

χ(σ)

n∏

t=1

a+
tσ(t).

Now take δ ∈ Qk,n such that δ 6= β and σ ∈ Sα,δ. Then

n∏

t=1

a+
tσ(t) = 0, because at

least one of the factors is zero, by definition of the matrix A{α|β}. Therefore,

∑

σ∈Sα,γ

χ(σ)

n∏

t=1

a+
tσ(t) = 0,

for every γ ∈ Qk,n \ {β}.

Moreover, for A{α|β}, if σ ∈ Sα,β then a+
tσ(t) = atσ(t). So

dχ(A{α|β}) =
∑

σ∈Sα,β

χ(σ)

n∏

t=1

atσ(t).

This concludes the proof.
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Proposition 4.4. Let A be an n × n complex matrix and suppose 1 ≤ k ≤ n.

Suppose α ∈ Qk,n. Then

dχ(A) =
∑

β∈Qk,n

dχ(A{α|β}).

Proof.

dχ(A) =
∑

σ∈Sn

χ(σ)
n∏

t=1

atσ(t)

=
∑

β∈Qk,n

∑

σ∈Sα,β

χ(σ)
n∏

t=1

atσ(t)

=
∑

β∈Qk,n

dχ(A{α|β}).

This concludes our proof.

Now we construct matrices of order n using matrices of order k and order n− k.

In general, this could be done by using the usual direct sum of matrices. We introduce

a generalization of this concept.

Let α, β ∈ Qk,n, and let A be a k × k matrix and let B be a (n − k) × (n − k)

matrix. Denote by ᾱ be the unique element of Qn−k,n with Imα = Imα.

We define

A
⊕

α|β

B = (xij),

as a n× n matrix such that

• xij = 0 if i ∈ Imα and j 6∈ Imβ;

• xij = 0 if i 6∈ Imα and j ∈ Imβ;

• xij = aα−1(i)β−1(j) if i ∈ Imα and j ∈ Imβ;

• xij = b
α−1(i)β

−1
(j)

if i 6∈ Imα and j 6∈ Imβ.

In a sense, we place A in rows α and columns β and we place B in rows ᾱ and

columns β̄.

If α = β = (1, . . . , k), this is the usual direct sum of A and B, that is

A
⊕

(1,...,k)|(1,...,k)

B =

(
A O

O B

)
.
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Checking the definitions, it is easy to see that

X{α|β} = X [α|β]
⊕

α|β

X(α|β).

Now we can state the Laplace expansion for immanants.

Theorem 4.5 (Generalized Laplace Expansion). Let X be an n × n complex

matrix, let 1 ≤ k ≤ n , and α a fixed element in Qk,n. Suppose χ is an irreducible

character of Sn. Then

(4.1) dχ(X) =
∑

β∈Qk,n

dχ(X [α|β]
⊕

α|β

X(α|β)) =
∑

β∈Qk,n

dχ(X{α|β}).

and

dχ(X) =
∑

β∈Qk,n

dχ(X [β|α]
⊕

β|α

X(β|α)) =
∑

β∈Qk,n

dχ(X{β|α}).

Example 4.6. Let A be a matrix of order 4. Let k = 2 and α = (1, 2). Then,

we have

dχ(A) = dχ




a11 a12 0 0

a12 a22 0 0

0 0 a33 a34
0 0 a43 a44


+ dχ




a11 0 a13 0

a12 0 a23 0

0 a32 0 a34
0 a42 0 a44




+ dχ




a11 0 0 a14
a12 0 0 a24
0 a32 a33 0

0 a42 a43 0


+ dχ




0 a12 a13 0

0 a22 a23 0

a31 0 0 a34
a41 0 0 a44




+ dχ




0 a12 0 a14
0 a22 0 a24
a31 0 a33 0

a41 0 a43 0


+ dχ




0 0 a13 a14
0 0 a23 a24
a31 a32 0 0

a41 a42 0 0


 .

We list some properties of the matrix X{α|β}.

Proposition 4.7. Let α, β, α′, β′ ∈ Qk,n. Then we have

X{α|β}[α|β] = X [α|β] and X{α|β}(α|β) = X(α|β).

If β 6= β′, then both matrices X{α|β}[α|β′] and X{α|β}(α|β′) have a zero column. If

α 6= α′, then both matrices X{α|β}[α′|β] and X{α|β}(α′|β) have a zero row.
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Proof. These are consequences of the definitions.

We can now check that this formula generalizes the known Laplace formulas for

the determinant and the permanent (see [6] and [8]). If χ = ε then dε = det. For

α ∈ Qk,n, denote |α| = α(1) + · · ·+ α(k). Fixing α ∈ Qk,n and applying the previous

properties we have:

detX =
∑

β∈Qk,n

det(X{α|β})

= (−1)|α|
∑

β∈Qk,n

∑

γ∈Qk,n

(−1)|γ| det(X{α|β}[α|γ]) det(X{α|β}(α|γ))

= (−1)|α|
∑

β∈Qk,n

(−1)|β| det(X{α|β}[α|β]) det(X{α|β}(α|β))

= (−1)|α|
∑

β∈Qk,n

(−1)|β| det(X [α|β]) det(X(α|β)).(4.2)

This is exactly the expression of the the Laplace expansion for determinants.

With similar arguments we can prove the same result for the Laplace expansion of

the permanent.

5. Second expression for the derivatives of the immanant. We now

present a formula where the entries of the matricesX1, . . . , Xk are, in a way, separated

from the entries of A.

It is easy to express the determinant of a direct sum in terms of determinants of

direct summands, and the same happens with the permanent. With immanants, the

best one can do is use formula (4.1), which is what we do in this second expression.

Take X1, . . . , Xk complex matrices of order n, and, for σ ∈ Sk, β ∈ Qk,n. Denot-

ing by 0 the zero matrix of order n, we define

Xσ
β = 0(β;Xσ(1), . . . , Xσ(k)),

the matrix whose β(p)-th column is equal to X
σ(p)
[β(p)] and the remaining columns are

zero, for 1 ≤ p ≤ k.

Theorem 5.1.

DkdχA(X
1, . . . , Xk) =

∑

σ∈Sk

∑

α,β∈Qk,n

dχ(X
σ
β [α|β]

⊕

α|β

A(α|β)),

in particular

DkdχA(X, . . . , X) = k!
∑

α,β∈Qk,n

dχ(X [α|β]
⊕

α|β

A(α|β)).
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Proof. We have proved that

DkdχA(X
1, . . . , Xk) =

∑

σ∈Sk

∑

β∈Qk,n

dχA(β;X
σ(1), . . . , Xσ(k)).

By the Laplace expansion for immanants, for every β ∈ Qk,n, we have that

dχA(β;X
σ(1), . . . , Xσ(k)) =

=
∑

α∈Qk,n

dχ(A(β;X
σ(1), . . . , Xσ(k)){α|β})

=
∑

α∈Qk,n

dχ(A(β;X
σ(1), . . . , Xσ(k))[α|β]

⊕

α|β

A(β;Xσ(1), . . . , Xσ(k))(α|β)).

Now notice that

A(β;Xσ(1), . . . , Xσ(k))[α|β] = Xσ
β [α|β]

and

A(β;Xσ(1), . . . , Xσ(k))(α|β) = A(α|β).

This concludes the proof.

6. Formulas for the k-th derivative for the m-th χ-symmetric tensor

power. In this section, we wish to establish a formula for the k-th derivative of the

χ-symmetric tensor power of a matrix. Before we can do this, we need quite a bit of

definitions, including the very definition of this matrix.

We start with some classical results that can be found in [7, Chapter 6]. Let χ

be an irreducible character of Sm and

Kχ =
χ(id)

m!

∑

σ∈Sm

χ(σ)P (σ),

where id stands for the identity element of Sm. The map Kχ is a linear operator on

⊗mV , and it is also an orthoprojector. It is called a symmetriser map. The range of

Kχ is called the symmetry class of tensors associated with the irreducible character

χ and it is represented by Vχ = Kχ(⊗mV ).

It is well known that the alternating character χ(σ) = εσ (sign of the permutation

σ) leads to the symmetry class ∧mV ; on the other hand the principal character

χ(σ) ≡ 1 leads to the symmetry class ∨mV .

Given a symmetriser map Kχ, we denote

v1 ∗ v2 ∗ · · · ∗ vm = Kχ(v1 ⊗ v2 ⊗ · · · ⊗ vm).
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These vectors belong to Vχ and are called decomposable symmetrised tensors.

Let Γm,n be the set of all maps from the set {1, . . . ,m} into the set {1, . . . , n}.
This set can also be identified with the collection of multi-indices {(i1, . . . , im) : ij ≤
n}. If α ∈ Γm,n, this correspondence associates to α the m-tuple (α(1), . . . , α(m)).

In the set Γm,n, we will consider the lexicographic order. The set

{ασ : σ ∈ Sm} ⊆ Γm,n

is the orbit of α. The group Sm acts on Γm,n by the action (σ, α) −→ ασ−1 where

σ ∈ Sm and α ∈ Γm,n. The stabiliser of α is the subgroup of Sm defined as

Gα = {σ ∈ Sm : ασ = α}.

Let {e1, . . . , en} be an orthonormal basis of the vector space V . Then

{e⊗α = eα(1) ⊗ eα(2) ⊗ · · · ⊗ eα(m) : α ∈ Γm,n}

is a basis of the m-th tensor power of V . So the set of all decomposable symmetrised

tensors spans Vχ. However, this set need not be a basis of Vχ, because its elements

might not be linearly independent, some of them may even be zero. Let

Ω = Ωχ = {α ∈ Γm,n :
∑

σ∈Gα

χ(σ) 6= 0}.

With simple calculations, we can conclude that

(6.1) ‖e∗α‖2 =
χ(id)

m!

∑

σ∈Gα

χ(σ).

So the nonzero decomposable symmetrised tensors are {e∗α : α ∈ Ω}. Now, let ∆ be

the system of distinct representatives for the quotient set Γm,n/Sm, constructed by

choosing the first element in each orbit, for the lexicographic order of indices. It is

easy to check that ∆ ⊆ Gm,n, where Gm,n is the set of all increasing sequences of

Γm,n. Let

∆ = ∆ ∩ Ω.

It can be proved that the set {e∗α : α ∈ ∆} is linearly independent. We have already

seen that the set {e∗α : α ∈ Ω}, spans Vχ, so there is a set ∆̂, such that ∆ ⊆ ∆̂ ⊆ Ω

and

{e∗α : α ∈ ∆̂},

is a basis for Vχ. It is also known that this basis is orthogonal if χ is a linear character

(see [7, p. 167]).
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In general, if χ does not have degree one, there are no known orthonormal bases

of Vχ(Sm) formed by decomposable symmetrised tensors. Let E = (vα : α ∈ ∆̂) be

the orthonormal basis of the m-th χ-symmetric tensor power of the vector space V

obtained by applying the Gram-Schmidt orthonormalization procedure to E . Let B

be the t× t change of basis matrix, from E to E ′ = (e∗α : α ∈ ∆̂). This means that for

each α ∈ ∆̂,

vα =
∑

γ∈∆̂

bγαe
∗
γ .

We note that this matrix B does not depend on the choice of the orthonormal

basis of V , since the set ∆̂ is independent of the vectors, and has a natural order

(the lexicographic order), which the basis E inherits. Moreover, the Gram-Schmidt

process only depends on the numbers 〈e∗α, e∗β〉, and, by [7, p. 163], these are given by

formula

〈e∗α, e∗β〉 =
χ(id)

m!

∑

σ∈Sm

χ(σ)
m∏

t=1

〈eα(t), eβσ(t)〉.

Hence, they only depend on the values of 〈ei, ej〉 = δij and thus are independent of

the vectors themselves.

It is known that if T is a linear operator on V, then Vχ is invariant for itsm-th fold

tensor power ⊗mT . Thus, the χ-symmetric power T , denoted by Kχ(T ) is defined

as the restriction of ⊗mT to Vχ. There is a close connection of this χ-symmetric

tensor power of T and the immanant, as the following result already shows (this is a

rephrasing of [7, p. 230]).

Theorem 6.1. Suppose χ is an irreducible character of the group Sm. Let E =

{e1, . . . , en} be an orthonormal basis of the inner product space V . Let T ∈ L(V, V )

be the unique linear operator such that M(T,E) = A.

If α, β ∈ Γm,n, then

(6.2) 〈Kχ(T )(e
∗
α), e

∗
β〉 =

χ(id)

m!
dχ(A

T [α|β]).
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As we came across the immanant of a transpose, we prove that dχ(A
T ) = dχ(A).

dχ(A
T ) =

∑

σ∈Sm

χ(σ)

m∏

i=1

(AT )iσ(i)

=
∑

σ∈Sm

χ(σ)

m∏

i=1

aσ(i)i (i = σ−1(j))

=
∑

σ∈Sm

χ(σ)

m∏

j=1

ajσ−1(j) (σ = τ−1)

=
∑

τ∈Sm

χ(τ−1)

m∏

j=1

ajτ(j) (τ is conjugate to τ−1)

=
∑

τ∈Sm

χ(τ)

m∏

j=1

ajτ(j)

= dχ(A).

Now we want to define Kχ(A), the m-th χ-symmetric tensor power of the matrix

A. A natural way to do this is to fix an orthonormal basis E in V , and consider the

linear endomorphism T such that A = M(T,E). Then the basis E is orthonormal

and one can define

Kχ(A) := M(Kχ(T ), E)

The matrix Kχ(A) has order t = |∆̂|, with |Qm,n| ≤ t.

It is important to notice that this matrix does not depend on the choice of the

orthonormal basis E of V . This is an immediate consequence of the formula (6.2):

For α, β ∈ ∆̂, the (α, β) entry of Kχ(A) is

〈Kχ(T )vβ , vα〉 =
∑

γ,δ∈∆̂

〈
bγβKχ(T )e

∗
γ , bδαe

∗
δ

〉

=
∑

γ,δ∈∆̂

bγβbδα
〈
Kχ(T )e

∗
γ , e

∗
δ

〉

=
χ(id)

m!

∑

γ,δ∈∆̂

bγβbδαdχ(A[δ|γ]T )

=
χ(id)

m!

∑

γ,δ∈∆̂

bγβbδαdχ(A[δ|γ]).

This definition admits, as special cases, the m-th compound and the m-th induced

power of a matrix, as defined in [7, p. 236]. The matrix Kχ(A) is called the induced

matrix in [7, p 235], in the case when the character has degree one.
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Denote by immχ(A) the square matrix with rows and columns indexed by ∆̂,

whose (γ, δ) entry is dχ(A[γ|δ]) (one could call the elements of this matrix immanantal

minors indexed by ∆̂, the usual minors are obtained by considering the alternating

character, in which case ∆̂ = Qm,n). With this definition, we can rewrite the previous

equation as

Kχ(A) =
χ(id)

m!
B∗ immχ(A)B.

Finally, denote by miximmχ(X
1, . . . , Xn) the square matrix having rows and

columns indexed by ∆̂, whose (γ, δ) entry is ∆χ(X
1[γ|δ], . . . , Xn[γ|δ]). With this

definition, miximmχ(A, . . . , A) = immχ(A). We use the same shorthand as with the

mixed immanant: For k ≤ n,

miximmχ(A;X
1, . . . , Xk) := miximmχ(A, . . . , A,X

1, . . . Xk)

Before our main formula, we recall a general result about derivatives which follows

from the definition.

Lemma 6.2. If f and g are k-differentiable maps between vector spaces such that

f ◦ g is well defined, and g is linear, then

Dk(f ◦ g)(A)(X1, . . . , Xk) = Dkf(g(A))(g(X1), . . . , g(Xk)).

Theorem 6.3. According to our previous notation, we have

DkKχ(A)(X
1, . . . , Xk) =

χ(id)

(m− k)!
B∗ miximmχ(A;X

1, . . . , Xk)B

and, using the notation we have already established, the (α, β) entry of this matrix is

χ(id)

m!

∑

γ,δ∈∆̂

bγβbδα
∑

σ∈Sk

∑

ρ,τ∈Qk,m

dχ(X [δ|γ]στ [ρ|τ ]
⊕

ρ|τ

A[δ|γ](ρ|τ)).

Proof. Notice that the map A 7→ A[δ|γ] is linear, so we can apply Lemma 6.2 to

compute the derivatives of the entries of the matrix Kχ(A). The (α, β) entry of the

k-th derivative of the m-th χ-symmetric tensor power of A, i.e., the (α, β) entry of

the matrix DkKχ(A)(X
1, . . . , Xk) is:

χ(id)

k!

∑

γ,δ∈∆̂

bγβbδαD
kdχ(A[δ|γ])(X1[δ|γ], . . . , Xk[δ|γ]).

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 284-301, April 2014



ELA

298 S. Carvalho and P.J. Freitas

To abbreviate notation, for fixed γ, δ ∈ ∆̂, we will write C := A[δ|γ], and Zi :=

X i[δ|γ], i = 1, . . . , k. Using formula (3.1), we get

Dkdχ(A[δ|γ])(X1[δ|γ], . . . , Xk[δ|γ]) = Dkdχ(C)(Z1, . . . , Zk)

=
m!

(m− k)!
∆χ(C;Z1, . . . , Zk).

So the (α, β) entry of DkKχ(A)(X
1, . . . , Xk) is

χ(id)

m!

∑

γ,δ∈∆̂

bγβbδα
m!

(m− k)!
∆χ(C;Z1, . . . , Zk) =

χ(id)

(m− k)!

∑

γ,δ∈∆̂

bγβbδα∆χ(A[δ|γ];X1[δ|γ], . . . , Xk[δ|γ]).

According to the definition of miximmχ(A;X
1, . . . , Xk), we have

DkKχ(A)(X
1, . . . , Xk) =

χ(id)

(m− k)!
B∗ miximmχ(A;X

1, . . . , Xk)B.

This establishes the first formula. For the entries of the matrix, we use the formula

in Theorem 5.1:

Dkdχ(C)(Z1, . . . , Zk) =
∑

σ∈Sk

∑

ρ,τ∈Qk,m

dχ(Z
σ
τ [ρ|τ ]

⊕

ρ|τ

C(ρ|τ)),

recalling that

Zσ
τ = 0(τ ;Zσ(1), . . . , Zσ(k)),

where 0 denotes the zero matrix of order m.

So, the (α, β) entry of the k-th derivative of Kχ(A) is:

χ(id)

m!

∑

γ,δ∈∆̂

bγβbδα
∑

σ∈Sk

∑

ρ,τ∈Qk,m

dχ(Z
σ
τ [ρ|τ ]

⊕

ρ|τ

C(ρ|τ)) =

χ(id)

m!

∑

γ,δ∈∆̂

bγβbδα
∑

σ∈Sk

∑

ρ,τ∈Qk,m

dχ(X [δ|γ]στ [ρ|τ ]
⊕

ρ|τ

A[δ|γ](ρ|τ)).

This concludes our proof.

The formula obtained for the higher order derivatives of Kχ(A)(X
1, . . . , Xk) gen-

eralizes the expressions obtained by Bhatia, Jain and Grover ([2], [3]). We will prove

this for the derivative of the m-th compound, establishing that, from the formula in
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Theorem 6.3, one can establish formula (2.5) in [5], from which the main formula for

the derivative of the m-th compound of A is obtained.

If we take χ = ε, the alternating character, then

Kχ(A)(X
1, . . . , Xk) = ∧m(A)(X1, . . . , Xk).

In this case, ∆̂ = Qm,n and the basis {e∧α : α ∈ Qm,n} is orthogonal and it is easy to

see (by direct computation or using formula (6.1)) that every vector has norm 1/
√
m!.

So the matrix B of order
(
n
m

)
is diagonal and its diagonal entries are equal to

√
m!.

We present two properties that we use in our computations.

I. For any square matrices X ∈ Mk(C), Y ∈ Mn−k(C) and functions α, β ∈ Qk,n,

detX
⊕

α|β

Y = (−1)|α|+|β| detX detY.

This is a consequence of formula (4.2). We again notice that if γ 6= β, the matrices

(X
⊕

α|β

Y )[α|γ] and (X
⊕

α|β

Y )(α|γ)

have a zero column. Now, using the Laplace expansion for the determinant along α,

detX
⊕

α|β

Y = (−1)|α|
∑

γ∈Qk,n

(−1)|γ| det((X
⊕

α|β

Y )[α|γ]) det((X
⊕

α|β

Y )(α|γ))

= (−1)|α|+|β| det((X
⊕

α|β

Y )[α|β]) det((X
⊕

α|β

Y )(α|β))

= (−1)|α|+|β| detX detY.

II. For α, β ∈ Qm,n and ρ, τ ∈ Qk,m, we have

∑

σ∈Sk

det(X [α|β]στ [ρ|τ ]) = k!∆(X1[α|β][ρ|τ ], . . . , Xk[α|β][ρ|τ ]).

To check this, consider the columns of the matrices involved. Remember that

X [α|β]στ = 0(τ,Xσ(1)[α|β], . . . , Xσ(k)[α|β]).

For given σ ∈ Sk and j ∈ [k], we have:

the (i, j) entry of X [α|β]στ [ρ|τ ] = the (ρ(i), τ(j)) entry of X [α|β]στ
= the (ρ(i), τ(j)) entry of Xσ(j)[α|β]τ(j)
= the (i, j) entry of Xσ(j)[α|β][ρ|τ ].
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Therefore,

X [α|β]στ [ρ|τ ] = (Xσ(1)[α|β][ρ|τ ][1] . . . Xσ(k)[α|β][ρ|τ ][k])

and the matrices that appear in the first sum are the same as the ones that appear

in the mixed discriminant.

We are now ready to prove the result. If we replace, in Theorem 6.3, dχ = det,

we have that that the (α, β) entry of Dk ∧m (A)(X1, . . . , Xk) is

1

m!

∑

γ,δ∈Qm,n

bγβbδα
∑

σ∈Sk

∑

ρ,τ∈Qk,m

det(X [δ|γ]στ [ρ|τ ]
⊕

ρ|τ

A[δ|γ](ρ|τ))

=
1

m!
m!

∑

σ∈Sk

∑

ρ,τ∈Qk,m

det(X [α|β]στ [ρ|τ ]
⊕

ρ|τ

A[α|β](ρ|τ))

=
∑

σ∈Sk

∑

ρ,τ∈Qk,m

(−1)|ρ|+|τ | det(A[α|β](ρ|τ)) det(X [α|β]στ [ρ|τ ])

= k!
∑

ρ,τ∈Qk,m

(−1)|ρ|+|τ | det(A[α|β](ρ|τ))∆(X1 [α|β][ρ|τ ], . . . , Xk[α|β][ρ|τ ])

Recall (Definition 3.2) that ∆(B1, . . . , Bn) is the mixed discriminant. The formula

we obtained is formula (2.5) in [5], if you take into account that in this paper the

roles of the letters k and m are interchanged.

Using similar arguments one can obtain the formula for the k-th derivative of

∨m(A)(X1, . . . , Xk) in [3].
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