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Abstract. The possible numbers of nonzero entries in a matrix with a given term rank are

determined respectively in the generic case, the symmetric case and the symmetric case with 0’s

on the main diagonal. The matrices that attain the largest number of nonzero entries are also

determined.
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1. Introduction. Let A be a matrix. We call a row or a column of A a line.

The maximal number of nonzero entries of A with no two of these entries on a line

is the term rank of A, and denoted by τ(A). This concept is important in matrix

theory [6]. A set of lines of A is said to cover A if the lines in the set contain all

the nonzero entries of A. If a set of lines covers A, then this set is called a covering

of A. The minimal number of lines in a covering of A is called the line rank of A,

denoted by δ(A). A covering of A with δ(A) lines is called a minimal covering. A

(0, 1)-matrix is a matrix whose entries are either 0 or 1. Such matrices arise frequently

in combinatorics and graph theory. Clearly, to study term rank or line rank we need

only consider (0, 1)-matrices.

In [5], Hu, Li, and Zhan determined the possible numbers of ones in a (0, 1)-

matrix with a given rank in the generic case and in the symmetric case. In this

paper, we consider a parallel problem: What are the possible numbers of ones in a

(0, 1)-matrix with a given term rank? We will answer this question in three cases:

The generic case, the symmetric case, and the symmetric case with 0’s on the main

diagonal. Although the term rank is a purely combinatorial concept which is related
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to the matching number of a bipartite graph, it is also related to the classical rank

(see [1], [2] and [4]).

Let m and n be positive integers. For two m× n nonnegative matrices A = (aij)

and B = (bij), the notation A ≤ B means that aij ≤ bij for all i = 1, 2, . . . ,m,

j = 1, 2, . . . , n. We denote by Am,n the set of all m × n (0, 1)-matrices and An the

set of all square (0, 1)-matrices of order n. Let Jm,n be the m × n matrix of all 1’s,

Jn = Jn,n and let Ei,j be the m×n matrix with its entry in (i, j) being 1 and all other

entries being 0. Let Ik be the identity matrix of order k. Denote by |S| the cardinality

of a set S and ∅ the empty set. Let α be a subset of the set M := {1, 2, . . . ,m} and

let β be a subset of N := {1, 2, . . . , n}. We denote by A[α|β] the submatrix of A with

rows indexed by α and columns indexed by β. Also, αc = M\α and βc = N\β. Then

we denote A(α|β) = A[αc|βc].

2. Main results. For A ∈ Am,n, let ♯(A) denote the number of ones in A. Let

k be a positive integer with k ≤ min{m,n}. Denote by Ω(m,n, k) the set of all m×n

(0, 1)-matrices of term rank k. Denote by Os, t the s × t zero matrix. The following

lemma is well known [3].

Lemma 2.1. For every matrix A, δ(A) = τ(A).

By the definition of the term rank, we immediately have the following lemma.

Lemma 2.2. Let A,B,C ∈ Am,n. If A ≤ B, then τ(A) ≤ τ(B). In particular, if

A ≤ B ≤ C and τ(A) = τ(C), then τ(A) = τ(B) = τ(C).

Now, we give the following theorem, which determines

Θ(m,n, k) := max{♯(A) | A ∈ Ω(m,n, k)}

and the (0, 1)-matrices that attain Θ(m,n, k). Since the proof is trivial, it is left as

an exercise.

Theorem 2.3. Let m,n, k be positive integers with k ≤ m ≤ n. Then

Θ(m,n, k) = kn.

If m < n and A ∈ Ω(m,n, k), then ♯(A) = kn if and only if there exists a permutation

matrix P such that PA =

[

Jk,n

O

]

; if m = n and A ∈ Ω(n, n, k), then ♯(A) = kn if

and only if there exists a permutation matrix P such that PA =

[

Jk,n

O

]

or AP =

[

Jn,k O
]

.

Next, we determine the possible numbers of ones in the general (0, 1)-matrices
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with a given term rank.

Theorem 2.4. Let k,m, n, d be positive integers with k ≤ m ≤ n. Then there

exists a matrix A ∈ Ω(m,n, k) with exactly d 1’s if and only if k ≤ d ≤ kn.

Proof. Suppose there exists a matrix A ∈ Ω(m,n, k) with exactly d 1’s. By

Theorem 3.3, we have k ≤ d ≤ kn. Hence, we need only show the “if” part.

Let A1 = Ik⊕Om−k,n−k and A2 =

[

Jk,n

Om−k,n

]

. It is clear that A1, A2 ∈ Ω(m,n, k)

and ♯(A1) = k, ♯(A2) = kn.

Let Γ = {(i, j)|i ∈ {1, 2, . . . , k}, j ∈ {1, 2, . . . , n} and i 6= j}. Then |Γ| = kn− k.

For any given positive integer d with k < d < kn, we construct a matrix

A0 := A1 +
∑

(i,j)∈Γ1

Ei,j ,

where Γ1 ⊆ Γ and |Γ1| = d− k.

It is clear that A1 ≤ A0 ≤ A2. Hence, by Lemma 2.2, A0 ∈ Ω(m,n, k) and

♯(A) = ♯(A1) +
∑

(i,j)∈Γ1
♯(Ei,j) = d.

Next we turn to the study of symmetric (0, 1)-matrices. Let

S(n) = {A ∈ An|A
T = A}

and

∆(n, k) = {A ∈ S(n)|τ(A) = k}.

In the following theorem, we will determine

Φ(n, k) = max{♯(A)|A ∈ ∆(n, k)}

and the symmetric (0, 1)-matrices that attain the maximum.

Theorem 2.5.

Φ(n, k) =











nk − k2

4 , if 2 ≤ k ≤ 4n
5 and k is even,

(k − 1)(n− k−1
4 ) + 1, if 2 ≤ k ≤ 4n−3

5 and k is odd,

k2, otherwise .

Furthermore, a matrix A ∈ ∆(n, k) has exactly Φ(n, k) 1’s if and only if A is permu-

tation similar to one of the following matrices:

(1)
[

J k

2
J k

2
, n− k

2

Jn− k

2
, k

2
O

]

,
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where k is even;

(2)

[

J k−1

2

J k−1

2
, n− k−1

2

Jn− k−1

2
, k−1

2

O

]

+ E k+1

2
, k+1

2

,

where k is odd;

(3)

[

Jk Ok, n−k

On−k, k O

]

.

Proof. For A ∈ ∆(n, k), let RN1
∪CN2

be a minimal covering of A, where N1, N2

are two subsets of N := {1, 2, . . . , n} with |N1|+ |N2| = k, Ri and Cj are the i-th row

and the j-th column of A, RN1
= {Ri|i ∈ N1}, CN2

= {Cj |j ∈ N2}.

We distinguish the following two cases.

Case 1. N1 ∩N2 = ∅.

Subcase 1.1. N1 = ∅, or N2 = ∅. We only consider the case N1 = ∅, since

the case N2 = ∅ can be proved similarly. Now A has a minimal covering CN2
with

|N2| = k. Thus, A[N |N c
2 ] = O. By symmetry, we also have A[N c

2 |N ] = O. Therefore,

A is permutation similar to a matrix of the form

[

A0 O

O O

]

,

where A0 ∈ S(k). It is obvious that ♯(A) = ♯(A0) ≤ k2.

Subcase 1.2. N1 6= ∅ and N2 6= ∅. In this subcase, we have A(N1|N2) = O. Since

A is symmetric, we also have A(N2|N1) = O. Suppose |N1| = t, 1 ≤ t ≤ k − 1. Then

|N2| = k − t. Therefore, A is permutation similar to a matrix of the form





A1 O O

O A2 O

O O O



 ,

where A1 ∈ S(t) and A2 ∈ S(k − t). Now we have ♯(A) = ♯(A1) + ♯(A2) and

♯(A) ≤ t2 + (k − t)2 < k2.

Case 2. N1 ∩N2 6= ∅. We also consider two subcases.
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Subcase 2.1. N1 ∩ N2 = N1, or N1 ∩ N2 = N2. By symmetry, we need only

consider the case N1 ∩ N2 = N1, i.e., N1 ⊆ N2. Then A(N1|N2) = O. Since A is

symmetric, we have A(N2|N1) = O. Suppose |N1| = t, 1 ≤ t ≤ k
2 . Then |N2| = k− t.

Therefore, A is permutation similar to a matrix of the form





A1 UT V T

U A2 O

V O O



 ,

where A1 ∈ S(t) and A2 ∈ S(k − 2t). Thus, ♯(A) = ♯(A1) + ♯(A2) + 2 (♯(U) + ♯(V ))

and

♯(A) ≤ g(t) := k2 + 3t2 + (2n− 4k)t.

A direct computation shows that

max
1≤t≤ k

2

g(t) =

{

g
(

k
2

)

= nk − k2

4 , if k is even,

g
(

k−1
2

)

= (k − 1)(n− k−1
4 ) + 1, if k is odd.

Moreover, if k is even, a matrix A ∈ ∆(n, k) attains the largest number of ones

with ♯(A) = nk− k2

4 if and only if N1 = N2. If k is odd, a matrix A ∈ ∆(n, k) attains

the largest number of ones with ♯(A) = (k − 1)(n− k−1
4 ) + 1 if and only if N1 ⊆ N2

and |N2\N1| = 1.

Subcase 2.2. N1∩N2 6= N1 and N1∩N2 6= N2. Suppose |N1| = t and |N1∩N2| =

m. Then,

|N1\(N1 ∩N2)| = t−m > 0, |N2\(N1 ∩N2)| = k − t−m > 0.

It is not difficult to see that A is permutation similar to a matrix of the form









A1 U V W

UT A2 O O

V T O A3 O

WT O O O









,

where A1 ∈ S(m), A2 ∈ S(t−m) and A3 ∈ S(k − t−m).

It follows that

♯(A) = ♯(A1) + ♯(A2) + ♯(A3) + 2(♯(U) + ♯(V ) + ♯(W ))

< k2 + 3m2 + (2n− 4k)m := g(m).
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Comparing g(m) with g(t) in Subcase 2.1 and noting that 1 ≤ m ≤ k
2 − 1, we have

♯(A) <

{

nk − k2

4 , if k is even,

(k − 1)(n− k−1
4 ) + 1, if k is odd.

Now we can conclude that if k is even, then the possible value of Φ(n, k) is nk− k2

4

or k2. Similarly, if k is odd, then the possible value of Φ(n, k) is (k− 1)(n− k−1
4 ) + 1

or k2. After comparing these two pairs of numbers we have

Φ(n, k) =











nk − k2

4 , if 2 ≤ k ≤ 4n
5 and k is even,

(k − 1)(n− k−1
4 ) + 1, if 2 ≤ k ≤ 4n−3

5 and k is odd,

k2, otherwise.

Furthermore, if k is even with 2 ≤ k ≤ 4n
5 and ♯(A) = nk − k2

4 , then we can see

from Subcase 2.1 that A is permutation similar to the matrix

[

J k

2
J k

2
, n− k

2

Jn− k

2
, k

2
O

]

.

If k is odd with 2 ≤ k ≤ 4n−3
5 and ♯(A) = (k − 1)(n − k−1

4 ) + 1, then there exists a

permutation matrix P such that

PAPT =

[

J k−1

2

J k−1

2
, n− k−1

2

Jn− k−1

2
, k−1

2

O

]

+ E k+1

2
, k+1

2

.

Finally, if ♯(A) = k2, then there exists a permutation matrix P such that

PAPT =

[

Jk Ok, n−k

On−k,k O

]

.

Theorem 2.6. Let k, n, d be positive integers with k ≤ n. Then there exists a

symmetric (0, 1)-matrix A of term rank k with exactly d 1’s if and only if k ≤ d ≤

Φ(n, k).

Proof. Suppose that A is a symmetric (0, 1)-matrix of term rank k with exactly

d 1’s. By Theorem 2.5, we have k ≤ d ≤ Φ(n, k). Hence, we need only show the “if”

part.

We only prove that if k ≤ d ≤ nk − k2

4 , where 2 ≤ k ≤ 4n
5 and k is even, then

there exists A
′

∈ ∆(n, k) with d ones. The proofs of the other two cases are similar.
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In this case, Φ(n, k) = nk − k2

4 . Furthermore, the maximum is attained if and

only if A is permutation similar to A k

2
:=

[

J k

2
J k

2
, n− k

2

Jn− k

2
, k

2
On− k

2

]

. Setting

A1 =







O k

2
O C

O On−k O

C O O k

2






∈ ∆(n, k)

and constructing the following matrices recursively,

Am = Am−1 + Em, m +
∑

m<j≤n,m+j 6=n+1

(Em, j + Ej, m), m = 2, . . . ,
k

2
,

where C is the matrix of order k
2 with each entry on the cross diagonal being 1 and

all other entries being 0. Note that for any m ∈ {1, 2, . . . , k
2 − 1}, we have

Am ≤ Am+1, ♯(Am) = k + (2n−m)m− 2m.

It is obvious that ♯(Am) is a monotonically increasing function in m and

A1 ≤ A2 ≤ · · · ≤ A k

2
.

By Lemma 2.2, we have Ai ∈ ∆(n, k), for i ∈ {1, 2, . . . , k
2}. It is clear that

k = ♯(A1) < ♯(A2) < · · · < ♯
(

A k

2

)

= nk −
k2

4
.

Thus, for any given positive integer d, there exists some s ∈ {1, 2, . . . , k
2 −1} such that

d ∈ [♯(As), ♯(As+1)]. For any given w ∈ {1, 2, . . . , k
2 − 1}, we need only show that if d

is a positive integer with ♯(Aw) < d < ♯(Aw+1), then there exists some A
′

∈ ∆(n, k)

with ♯(A
′

) = d.

It is easily seen that ♯(Aw+1) = ♯(Aw) + 1 + 2(n− 2− w). Thus,

1 ≤ d− ♯(Aw) ≤ 1 + 2(n− 2− w).

Let p = d− ♯(Aw) and denote Ψw+1 := {(m+ 1, j) | m+ 1 < j ≤ n, j + w = n+ 1}.

We distinguish two cases by considering the parity of p.

If p is even, then p
2 ≤ |Ψw+1|. Hence, there exists a subset Ψ0 of Ψw+1 with

|Ψ0| =
p
2 such that

A
′

= Aw +
∑

(i,j)∈Ψ0

(Ei,j + Ej,i).

Thus, Aw ≤ A
′

≤ Aw+1 and ♯(A
′

) = d. By Lemma 2.2, we have A
′

∈ ∆(n, k).
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Similarly, if p is odd, then p−1
2 ≤ |Ψw+1| and there exists a subset Ψ1 of Ψw+1

with |Ψ1| =
p−1
2 such that

A
′

= Aw +
∑

(i,j)∈Ψ1

(Ei,j + Ej,i) + Em+1,m+1.

Thus, Aw ≤ A
′

≤ Aw+1 and ♯(A
′

) = d. By Lemma 2.2, we have A
′

∈ ∆(n, k).

Let G be a simple undirected graph. Note that the adjacency matrix of G is a

symmetric (0, 1)-matrix with 0’s on the main diagonal. Clearly, the adjacency matrix

is just another way of specifying the graph. Finally, we consider the class of symmetric

(0, 1)-matrices with 0’s on the main diagonal. This class is also of interest from the

point of view of graph theory.

Denote by Γ(n) the set of all n × n symmetric (0, 1)-matrices with each main

diagonal entry being 0 and

∆0(n, k) = {A ∈ Γ(n)|τ(A) = k}.

It is clear that if A ∈ Γ(n), then τ(A) 6= 1. Thus, we may assume that k > 1.

Let

Φ0(n, k) = max{♯(A)|A ∈ ∆0(n, k)}.

We will determine Φ0(n, k) and the matrices in ∆0(n, k) that attain it. Denote J
′

t =

Jt − It.

Theorem 2.7.

Φ0(n, k) =







nk − (k2 )
2 − k

2 , if 2 ≤ k ≤ 4n+2
5 and k is even ,

n(k − 3)− (k−3
2 )2 − k−3

2 + 6, if 2 ≤ k ≤ 4n−7
5 and k is odd ,

k2 − k, otherwise .

Furthermore, a matrix A ∈ ∆0(n, k) has exactly Φ0(n, k) 1’s if and only if A is

permutation similar to one of the following forms:

(4)
[

J
′

k

2

J k

2
, n− k

2

Jn− k

2
, k

2
O

]

,

where k is even;

(5)







J
′

k−3

2

JT
3, k−3

2

JT
n− k+3

2
, k−3

2

J3, k−3

2

J
′

3 O

Jn− k+3

2
, k−3

2

O O






,
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where k is odd;

(6)

[

J
′

k Ok, n−k

On−k, k O

]

.

Proof. Use the notation and argument in the proof of Theorem 5. We distinguish

the following two cases.

Case 1. N1

⋂

N2 = ∅. We consider two subcases.

Subcase 1.1. N1 = ∅ or N2 = ∅. Therefore, A is permutation similar to a matrix

of the form
[

A0 O

O O

]

,

where A0 ∈ Γ(k). It is obvious that ♯(A) = ♯(A0) ≤ k2 − k. The equality holds with

A0 = J
′

k.

Subcase 1.2. N1 6= ∅ and N2 6= ∅. Suppose | N1 |= t. Then | N2 |= k − t with

1 ≤ t ≤ k − 1. Therefore, A is permutation similar to a matrix of the form





A1 O O

O A2 O

O O O



 ,

where A1 ∈ Γ(t) and A2 ∈ Γ(k − t). We have ♯(A) = ♯(A1) + ♯(A2) and

♯(A) < k2 − k.

Case 2. N1

⋂

N2 6= ∅. We also consider two subcases.

Subcase 2.1. N1

⋂

N2 = N1, or N1

⋂

N2 = N2. Suppose | N1 |= t. Then

| N2 |= k − t with 1 ≤ t ≤ k
2 . Therefore, A is permutation similar to a matrix of the

form





A1 UT V T

U A2 O

V O O



 ,

where A1 ∈ Γ(t) and A2 ∈ Γ(k−2t). Therefore, ♯(A) = ♯(A1)+♯(A2)+2(♯(U)+♯(V ))

and

♯(A) ≤ g(t) := k2 − k + 3t2 + (2n− 4k + 1)t.
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First assume that k is odd. Then the order of A2 is odd with k − 2t ≥ 3 and so

1 ≤ t ≤ k−3
2 .

(a) Suppose 2n− 4k + 1 ≥ 0, i.e., 2 ≤ k ≤ n
2 + 1

4 . We have g(t) ≥ k2 − k and

max
1≤t≤k−3

2

g(t) = g

(

k − 3

2

)

= n(k − 3)−

(

k − 3

2

)2

−
k − 3

2
+ 6.

(b) Suppose 2n− 4k + 1 < 0, i.e., n
2 + 1

4 < k ≤ n. If g(t) ≥ k2 − k, then by the

monotonicity of the quadratic polynomial g(t), we have

4k − 2n− 1

3
≤

k − 3

2
, i.e., k ≤

4n

5
−

7

5
.

and

max
1≤t≤k−3

2

g(t) = g

(

k − 3

2

)

= n(k − 3)−

(

k − 3

2

)2

−
k − 3

2
+ 6.

Combining (a) and (b), it follows that if 2 ≤ k ≤ 4n−7
5 and k is odd, then

♯(A) ≤ max
1≤t≤ k

2

g(t) = g

(

k − 3

2

)

= n(k − 3)−

(

k − 3

2

)2

−
k − 3

2
+ 6.

Moreover, A attains the largest number of ones with

♯(A) = g

(

k

2

)

= n(k − 3)−

(

k − 3

2

)2

−
k − 3

2
+ 6

if and only if N1 ⊆ N2, | N2\N1 |= 3. If 4n−7
5 < k ≤ n and k is odd, then

♯(A) < k2 − k.

Now assume that k is even.

(c) Suppose 2n− 4k + 1 ≥ 0, i.e., 2 ≤ k ≤ n
2 + 1

4 . We have g(t) ≥ k2 − k and

max
1≤t≤ k

2

g(t) = g

(

k

2

)

= nk −
k2

4
−

k

2
.

(d) Suppose 2n− 4k + 1 < 0, i.e., n
2 + 1

4 < k ≤ n. If g(t) ≥ k2 − k, then by the

monotonicity of the quadratic polynomial g(t), we have

4k − 2n− 1

3
≤

k

2
, i.e., k ≤

4n

5
+

2

5
.
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and

max
1≤t≤ k

2

g(t) = g

(

k

2

)

= nk −
k2

4
−

k

2
.

Combining (c) and (d), it follows that if 2 ≤ k ≤ 4n+2
5 and k is even, then

♯(A) ≤ max
1≤t≤k

2

g(t) = g

(

k

2

)

= nk −
k2

4
.

Moreover, A attains the largest number of ones with ♯(A) = g
(

k
2

)

= nk − k2

4 if and

only if N1 = N2. If
4n+2

5 < k ≤ n and k is even, then

♯(A) < k2 − k.

In Subcase 2.1, we have

♯(A) ≤ max
1≤t≤ k

2

g(t) =











nk − k
2

4
− k

2
, if 2 ≤ k ≤ 4n+2

5
and k is even,

n(k − 3)−
(

k−3

2

)2
− k−3

2
+ 6, if 2 ≤ k ≤ 4n−7

5
and k is odd,

< k2
− k, otherwise .

Subcase 2.2. N1

⋂

N2 6= N1 and N1

⋂

N2 6= N2. Suppose | N1 | = t and

| N1

⋂

N2 | = m. Then

| N1\(N1

⋂

N2) | = t−m > 0, | N2\(N1

⋂

N2) | = k − t−m > 0.

Now A is permutation similar to a matrix of the form





J
′

m Jm,t−m Jm, k−t−m

Jt−m, m A1 O

Jk−t−m, m O A2



 ,

where A1 ∈ Γ(t−m) and A2 ∈ Γ(k − t−m).

Then we can show that ♯(A) < g(m) = k2+3m2+(2n−4k)m with 1 ≤ m ≤ k
2−1.

Comparing this g(m) with g(t) in Subcase 2.1, we have

♯(A) <











nk − k2

4 − k
2 , if 2 ≤ k ≤ 4n+2

5 and k is even,

n(k − 3)−
(

k−3
2

)2
− k−3

2 + 6, if 2 ≤ k ≤ 4n−7
5 and k is odd,

k2 − k, otherwise .

Now from the above proof, we can conclude that

Φ0(n, k) =











nk − k2

4 − k
2 , if 2 ≤ k ≤ 4n+2

5 and k is even,

n(k − 3)− (k−3
2 )2 − k−3

2 + 6, if 2 ≤ k ≤ 4n−7
5 and k is odd,

k2 − k, otherwise .
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First, observe from Subcase 2.1 that if ♯(A) = Φ0(n, k) and k is even with 2 ≤

k ≤ 4n+2
5 , then there exists a permutation matrix P such that

PAPT =

[

J
′

k

2

J k

2
, n− k

2

Jn− k

2
, k

2
O

]

.

Second, if ♯(A) = Φ0(n, k) and k is odd with 2 ≤ k ≤ 4n−7
5 , then there exists a

permutation matrix P such that

PAPT =







J
′

k−3

2

JT
3, k−3

2

JT
n− k+3

2
, k−3

2

J3, k−3

2

J
′

3 O

Jn− k+3

2
, k−3

2

O O






.

Otherwise, if ♯(A) = Φ0(n, k) = k2 − k, then there exists a permutation matrix P

such that

PAPT =

[

J
′

k 0k, n−k

0n−k,k O

]

.

Next, we will determine the possible numbers of nonzero entries of matrices in

∆0(n, k). To this end, we need determine the minimal number of nonzero entries of

matrices in ∆0(n, k). Denote

φ0(n, k) = min{♯(A) | A ∈ ∆0(n, k)}.

Lemma 2.8.

φ0(n, k) =

{

k, if k is even,

k + 3, if k is odd .

Proof. First note that if A ∈ ∆0(n, k), then ♯(A) ≥ k and ♯(A) is even. We

consider the following two cases according to the parity of k.

If k is even, we need only show that there exists a matrix A ∈ ∆0(n, k) such that

♯(A) = k. Let A = (⊕
k/2
i=1)J

′

2 ⊕On−k, then A ∈ ∆0(n, k) and ♯(A) = k. Thus, in this

case, φ0(n, k) = k.

If k is odd and A ∈ ∆0(n, k), then A has exactly k nonzero entries with no two

of these entries on a line. Since ♯(A) is even, A has at least k + 1 nonzero entries. If

♯(A) = k+1, then there are k+1
2 pairs of nonzero entries which are pairwise symmetric.

Without loss of generality, let a1, a2, . . . , ak, ak+1 be the k + 1 nonzero entries of A
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and ai, ai+1 be symmetric in A, i = 1, 3, . . . , k. We may assume that a1, a2, . . . , ak

are k nonzero entries with no two on a line. Since τ(A) = k, there exists a positive

integer i, 1 ≤ i ≤ k−1, such that ai and ak+1 are on a line. This can not be true since

ak and ai are not on a line. Hence, if k is odd and A ∈ ∆0(n, k), then ♯(A) > k + 1,

i.e., ♯(A) ≥ k+3. Moreover, let A = (⊕
k−3

2

i=1 J
′

2)⊕ J
′

3 ⊕On−k. Then, A ∈ ∆0(n, k) and

♯(A) = k + 3. Therefore, if k is odd, then φ0(n, k) = k + 3.

Theorem 2.9. Let k, n, d be positive integers with k ≤ n. Then there exists

A ∈ ∆0(n, k) with exactly d 1’s if and only if φ0(n, k) ≤ d ≤ Φ0(n, k) and d is even.

Proof. Suppose A ∈ ∆0(n, k) has exactly d 1’s. By Theorem 2.7 and Lemma 2.8,

φ0(n, k) ≤ d ≤ Φ0(n, k) and d is even. Hence, we need only show the “if” part.

According to the parity of k, we consider the following two cases: k is even; k is

odd. Next, we only show the case: k is even, while the left case is similar.

Let k be even. If 2 ≤ k ≤ 4n+2
5 , then Φ0(n, k) = nk − k2

4 − k
2 . Without loss of

generality, we can set

A1 =

[

J
′

k

2

J

J On− k

2

]

=







J
′

k

2

J J

J On−k O

J O O k

2






.

Taking

A0 =







O k

2
O C

O On−k O

C O O k

2






,

where C is the matrix of order k
2 with each entry on the cross diagonal being 1 and

all other entries being 0. Then A0 ∈ ∆0(n, k) and A0 ≤ A1. By Lemma 2.2, for any

symmetric matrix B with A0 ≤ B ≤ A1 we have B ∈ ∆0(n, k). Hence, for any given

even number d with k ≤ d ≤ Φ0(n, k), there exists B0 ∈ ∆0(n, k) such that ♯(B0) = d.

Otherwise, Φ0(n, k) = k2 − k. Without loss of generality, we can set

A3 =

[

J
′

k O

O On−k

]

.

Taking

A2 =

[

Ck O

O On−k

]

,

where Ck is the matrix of order k with each entry on the cross diagonal being 1 and

all other entries being 0. Then A2 ∈ ∆0(n, k) and A2 ≤ A3, By Lemma 2.2, for any
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symmetric matrix B with A2 ≤ B ≤ A3 we have B ∈ ∆0(n, k). Thus, for any given

even number d with k ≤ d ≤ Φ0(n, k), there exists B0 ∈ ∆0(n, k) such that ♯(B0) = d.

This completes the proof.
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