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Abstract. A.M. Ostrowski in 1951 gave two well-known upper bounds for the spectral radius

of nonnegative matrices. However, the bounds are not of much practical use because they all involve

a parameter α in the interval [0, 1], and it is not easy to decide the optimum value of α. In this

paper, their equivalent forms which can be computed with the entries of matrix and without having

to minimize the expressions of the bounds over all possible values of α ∈ [0, 1], are given.
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1. Introduction. A matrix A = (aij) ∈ R
n×n is called nonnegative if aij ≥ 0 for

any i, j ∈ N = {1, 2, . . . , n}. The well-known Perron-Frobenius theorem [1, 6, 7, 15]

states that the spectral radius ρ(A) of a nonnegative matrix A is the eigenvalue of A

with a corresponding nonnegative eigenvector. One important problem in nonnegative

matrices is to estimate the spectral radius of a nonnegative matrix [2, 6, 8, 9, 10, 11,

12, 19].

In 1912, G. Frobenius [6] provided the following upper bound for the spectral

radius of nonnegative matrices.

Theorem 1.1. [6, 18] Let A = (aij) ∈ R
n×n be nonnegative. Then

ρ(A) ≤ max
i∈N

Ri(A),(1.1)

where Ri(A) =
∑

j∈N

aij.

Since a matrix A and its transpose AT have the same eigenvalue [1], we have

ρ(A) = ρ(AT ). Hence, for the nonnegative matrix A, we get from Theorem 1.1 that

ρ(A) ≤ max
i∈N

Ci(A),(1.2)
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where Ci(A) = Ri(A
T ). Combining inequality (1.1) with inequality (1.2) gives

ρ(A) ≤ min{max
i∈N

Ri(A),max
i∈N

Ci(A)}.(1.3)

Here, we call the bound in (1.3) the Frobenius upper bound for ρ(A).

To estimate ρ(A) more precisely, many researchers gave some upper bounds [8, 9,

10, 11, 12], which are smaller than the Frobenius upper bound. Particularly, in 1951

A.M. Ostrowski [13] gave the following well-known upper bound; also see [11].

Theorem 1.2. [11, 13] Let A = (aij) ∈ R
n×n be nonnegative. Then for any

α ∈ [0, 1],

ρ(A) ≤ max
i∈N

(Ri(A))
α(Ci(A))

1−α,

that is,

ρ(A) ≤ min
α∈[0,1]

max
i∈N

(Ri(A))
α(Ci(A))

1−α.(1.4)

Moreover, from the generalized arithmetic-geometric mean inequality [4]:

αa+ (1− α)b ≥ aαb1−α,

where a, b ≥ 0 and 0 ≤ α ≤ 1, another upper bound is obtained easily.

Theorem 1.3. [13] Let A = (aij) ∈ R
n×n be nonnegative. Then for any α ∈

[0, 1],

ρ(A) ≤ max
i∈N

{αRi(A) + (1− α)Ci(A)},

that is,

ρ(A) ≤ min
α∈[0,1]

max
i∈N

{αRi(A) + (1− α)Ci(A)}.(1.5)

Although Ostrowski gave many well-known results, such as the bounds in [14],

we here call the bounds in (1.4) and (1.5) the Ostrowski upper bounds for ρ(A). Note

that when α = 0,

max
i∈N

(Ri(A))
α(Ci(A))

1−α = max
i∈N

{αRi(A) + (1 − α)Ci(A)} = max
i∈N

Ci(A)},

and α = 1,

max
i∈N

(Ri(A))
α(Ci(A))

1−α = max
i∈N

{αRi(A) + (1 − α)Ci(A)} = max
i∈N

Ri(A).
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Therefore,

min
α∈[0,1]

max
i∈N

(Ri(A))
α(Ci(A))

1−α ≤ min
α∈[0,1]

max
i∈N

{αRi(A) + (1 − α)Ci(A)}

≤ min{max
i∈N

Ri(A),max
i∈N

Ci(A)},

which implies that the Ostrowski upper bounds are smaller than the Frobenius upper

bound. However, they are not of much practical use because they all involve a pa-

rameter α and it is not easy to decide the optimum value of α. Therefore, one often

take some special α in practical, such as α = 1
2 ,

1
4 ,

3
4 and so on, but this leads to

that the estimating is not good enough.

In this paper, we focus on the simplification problem of the Ostrowski upper

bounds, and give their equivalent forms which do not include a minimization over all

parameters α in the interval [0, 1]. Numerical examples are also given to verify the

corresponding results.

2. Main results. In this section, we give equivalent forms of the Ostrowski

upper bounds which do not include a minimization over all parameters α ∈ [0, 1].

First, we consider the Ostrowski upper bound min
α∈[0,1]

max
i∈N

{αRi(A) + (1 − α)Ci(A)},

and give a lemma as follows.

Lemma 2.1. Let A = (aij) ∈ R
n×n be nonnegative. Then there exists α ∈ [0, 1]

such that for all i ∈ N ,

ρ(A) > αRi(A) + (1− α)Ci(A),(2.1)

if and only if the following two conditions hold:

(i) for any i ∈ N ,

ρ(A) > min{Ri(A), Ci(A)},(2.2)

(ii) for any i ∈ Λ and any j ∈ ∆,

ρ(A) − Ci(A)

Ri(A)− Ci(A)
>

Cj(A)− ρ(A)

Cj(A)− Rj(A)
,(2.3)

where Λ = {i ∈ N : Ri(A) > Ci(A)} and ∆ = {j ∈ N : Cj(A) > Rj(A)}.

Proof. Let Ξ = {i ∈ N : Ri(A) = Ci(A)}. Then N = Ξ
⋃

Λ
⋃

∆.

First, suppose that there exists α ∈ [0, 1] such that inequality (2.1) holds for all

i ∈ N , then for any i ∈ Λ,

ρ(A) − Ci(A)

Ri(A)− Ci(A)
> α,
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and for any j ∈ ∆,

α >
Cj(A)− ρ(A)

Cj(A)−Rj(A)
.

Therefore, for any i ∈ Λ and any j ∈ ∆, inequality (2.3) holds. Furthermore, from

α ∈ [0, 1] it is easy to get that inequality (2.2) holds for any i ∈ N .

Conversely, suppose that the conditions (i) and (ii) hold. Obviously, inequality

(2.1) always holds for each i ∈ Ξ. Thus, it remains to prove that inequality (2.1)

holds for all i ∈ Λ and all j ∈ ∆.

For each i ∈ Λ, we have Ri(A)− Ci(A) > 0 and ρ(A)− Ci(A) > 0. Therefore,

ρ(A)− Ci(A)

Ri(A)− Ci(A)
> 0.(2.4)

And for each j ∈ ∆, we have Cj(A) −Rj(A) > 0, ρ(A) −Rj(A) > 0, and

Cj(A)−Rj(A) > Cj(A)− ρ(A),

which implies

Cj(A)− ρ(A)

Cj(A) −Rj(A)
< 1.(2.5)

Combining inequality (2.3), inequality (2.4) with inequality (2.5) gives that there

exists α ∈ [0, 1] such that for all i ∈ Λ and all j ∈ ∆,

max

{

0,
Cj(A)− ρ(A)

Cj(A)−Rj(A)

}

< α < min

{

ρ(A)− Ci(A)

Ri(A)− Ci(A)
, 1

}

.(2.6)

By inequality (2.6), we have that for any i ∈ Λ,

α <
ρ(A) − Ci(A)

Ri(A) − Ci(A)
,

that is, ρ(A) > αRi(A) + (1 − α)Ci(A), and that for any j ∈ ∆,

Cj(A)− ρ(A)

Cj(A) −Rj(A)
< α,

that is, ρ(A) > αRj(A) + (1 − α)Cj(A). Therefore, there exists α ∈ [0, 1] such that

inequality (2.1) holds for all i ∈ N . The proof is completed.

According to Lemma 2.1, we can obtain the equivalent form of the Ostrowski

upper bound min
α∈[0,1]

max
i∈N

{αRi(A) + (1 − α)Ci(A)}.

Theorem 2.2. Let A = (aij) ∈ R
n×n be nonnegative. Then

ρ(A) ≤ max
i∈N

{min{Ri(A), Ci(A)}},
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or

ρ(A) ≤ max
i∈Λ,
j∈∆

Ri(A)Cj(A)− Ci(A)Rj(A)

Ri(A)− Ci(A) + Cj(A)−Rj(A)
.

That is,

ρ(A) ≤ max

{

max
i∈N

{min{Ri(A), Ci(A)}},max
i∈Λ,
j∈∆

Ri(A)Cj(A)−Ci(A)Rj(A)

Ri(A)− Ci(A) +Cj(A)−Rj(A)

}

.(2.7)

Proof. Suppose on the contrary that

ρ(A) > max

{

max
i∈N

{min{Ri(A), Ci(A)}},max
i∈Λ,

j∈∆

Ri(A)Cj(A)− Ci(A)Rj(A)

Ri(A) − Ci(A) + Cj(A) −Rj(A)

}

,

or equivalently,

ρ(A) > max
i∈N

{min{Ri(A), Ci(A)}}

and

ρ(A) > max
i∈Λ,

j∈∆

Ri(A)Cj(A)− Ci(A)Rj(A)

Ri(A)− Ci(A) + Cj(A)−Rj(A)
.

This implies respectively that for any i ∈ N ,

ρ(A) > min{Ri(A), Ci(A)},

and that for any i ∈ Λ and any j ∈ ∆,

ρ(A) >
Ri(A)Cj(A)− Ci(A)Rj(A)

Ri(A)− Ci(A) + Cj(A)−Rj(A)
.

Furthermore, by Lemma 2.1, there exists α ∈ [0, 1] such that for all i ∈ N ,

ρ(A) > αRi(A) + (1− α)Ci(A),

that is,

ρ(A) > max
i∈N

{αRi(A) + (1− α)Ci(A)}

which contradicts to Theorem 1.3. The conclusions follows.

Next, we prove that the bound in inequality (2.7) is equivalent to the Ostrowski

upper bound min
α∈[0,1]

max
i∈N

{αRi(A) + (1 − α)Ci(A)}.

Theorem 2.3. Let A = (aij) ∈ R
n×n be nonnegative. Then

min
α∈[0,1]

max
i∈N

{αRi(A) + (1 − α)Ci(A)}

=max

{

max
i∈N

{min{Ri(A), Ci(A)}},max
i∈Λ,

j∈∆

Ri(A)Cj(A)− Ci(A)Rj(A)

Ri(A) − Ci(A) + Cj(A) −Rj(A)

}

.
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Proof. First we prove that if inequality (1.5) holds, then inequality (2.7) holds.

This implies that

min
α∈[0,1]

max
i∈N

{αRi(A) + (1− α)Ci(A)}(2.8)

≤max

{

max
i∈N

{min{Ri(A), Ci(A)}},max
i∈Λ,

j∈∆

Ri(A)Cj(A)− Ci(A)Rj(A)

Ri(A) − Ci(A) + Cj(A) −Rj(A)

}

.

In fact, if

ρ(A) > max

{

max
i∈N

{min{Ri(A), Ci(A)}},max
i∈Λ,
j∈∆

Ri(A)Cj(A)− Ci(A)Rj(A)

Ri(A) − Ci(A) + Cj(A) −Rj(A)

}

,

then by the proof of Theorem 2.2, there exists α ∈ [0, 1] such that for all i ∈ N ,

ρ(A) > max
i∈N

{αRi(A) + (1− α)Ci(A)}.

This gives

ρ(A) > min
α∈[0,1]

max
i∈N

{αRi(A) + (1− α)Ci(A)}.

This is a contradiction to inequality (1.5). Hence, inequality (2.8) holds.

We now prove that if inequality (2.7) holds, then inequality (1.5) holds, which

implies that

max

{

max
i∈N

{min{Ri(A), Ci(A)}},max
i∈Λ,
j∈∆

Ri(A)Cj(A)− Ci(A)Rj(A)

Ri(A) − Ci(A) + Cj(A) −Rj(A)

}

(2.9)

≤ min
α∈[0,1]

max
i∈N

{αRi(A) + (1− α)Ci(A)}.

In fact, if

ρ(A) > min
α∈[0,1]

max
i∈N

{αRi(A) + (1− α)Ci(A)},

that is, there exists α ∈ [0, 1] such that for all i ∈ N ,

ρ(A) > max
i∈N

{αRi(A) + (1− α)Ci(A)} ≥ αRi(A) + (1− α)Ci(A),

then by Lemma 2.1 and the proof of Theorem 2.2, we have

ρ(A) > max

{

max
i∈N

{min{Ri(A), Ci(A)}},max
i∈Λ,

j∈∆

Ri(A)Cj(A)− Ci(A)Rj(A)

Ri(A) − Ci(A) + Cj(A) −Rj(A)

}

.
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This is a contradiction to inequality (2.7). Hence, inequality (2.9) holds. The conclu-

sion follows from inequality (2.8) and inequality (2.9).

Remark 2.4. From Theorem 2.3, we know that Theorem 2.2 provides an equiv-

alent form of the Ostrowski upper bound min
α∈[0,1]

max
i∈N

{αRi(A) + (1 − α)Ci(A)}. Ob-

viously, this form only relates to the entries of A and has nothing to do with α, and

hence, it is much easier to estimate the spectral radius of nonnegative matrices.

Similarly, we can obtain easily the equivalent form of the Ostrowski upper bound

min
α∈[0,1]

max
i∈N

(Ri(A))
α(Ci(A))

1−α.

Lemma 2.5. Let A = (aij) ∈ R
n×n be nonnegative. Then there exists α ∈ [0, 1]

such that for all i ∈ N ,

ρ(A) > (Ri(A))
α(Ci(A))

1−α,

if and only if the following two conditions hold:

(i) for any i ∈ N ,

ρ(A) > min{Ri(A), Ci(A)},

(ii) for any i ∈ Λ, Ci(A) 6= 0 and any j ∈ ∆, Rj(A) 6= 0,

logRi(A)

Ci(A)

ρ(A)

Ci(A)
> logCj(A)

Rj(A)

Cj(A)

ρ(A)
.(2.10)

Proof. Similar to the proof of Lemma 2.1, the conclusion follows easily.

Lemma 2.6. Let A = (aij) ∈ R
n×n be nonnegative. Then for any i ∈ Λ,

Ci(A) 6= 0 and any j ∈ ∆, Rj(A) 6= 0, inequality (2.10) holds if and only if

ρ(A) >

(

Cj(A) ∗

(

Cj(A)

Rj(A)

)logRi(A)
Ci(A)

Ci(A)
)

1

1+logRi(A)
Ci(A)

Cj(A)

Rj(A)

.

Proof. Inequality (2.10) is equivalent to

logRi(A)

Ci(A)

ρ(A)− logRi(A)

Ci(A)

Ci(A) > logCj(A)

Rj(A)

Cj(A) − logCj(A)

Rj(A)

ρ(A),

that is,

logRi(A)

Ci(A)

ρ(A) + logCj(A)

Rj(A)

ρ(A) > logRi(A)

Ci(A)

Ci(A) + logCj(A)

Rj(A)

Cj(A).(2.11)
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Note that i ∈ Λ and j ∈ ∆, then Ri(A)
Ci(A) > 1,

Cj(A)
Rj(A) > 1 and logRi(A)

Ci(A)

Cj(A)
Rj(A) > 0.

Therefore, inequality (2.11) holds if and only if

logRi(A)

Ci(A)

ρ(A) +
logRi(A)

Ci(A)

ρ(A)

logRi(A)

Ci(A)

Cj(A)
Rj(A)

> logRi(A)

Ci(A)

Ci(A) +
logRi(A)

Ci(A)

Cj(A)

logRi(A)

Ci(A)

Cj(A)
Rj(A)

,

or equivalently,

logRi(A)

Ci(A)

ρ(A)

(

1 + logRi(A)

Ci(A)

Cj(A)

Rj(A)

)

> logRi(A)

Ci(A)

Ci(A) ∗ logRi(A)

Ci(A)

Cj(A)

Rj(A)
+ logRi(A)

Ci(A)

Cj(A)

= logRi(A)

Ci(A)

(

Cj(A)

Rj(A)

)logRi(A)
Ci(A)

Ci(A)

+ logRi(A)

Ci(A)

Cj(A)

= logRi(A)

Ci(A)

(

Cj(A) ∗

(

Cj(A)

Rj(A)

)logRi(A)
Ci(A)

Ci(A)
)

,

that is,

logRi(A)

Ci(A)

ρ(A) >

logRi(A)

Ci(A)

(

Cj(A) ∗
(

Cj(A)
Rj(A)

)logRi(A)
Ci(A)

Ci(A)
)

(

1 + logRi(A)

Ci(A)

Cj(A)
Rj(A)

)

= logRi(A)

Ci(A)

(

Cj(A) ∗

(

Cj(A)

Rj(A)

)logRi(A)
Ci(A)

Ci(A)
)

(

1+logRi(A)
Ci(A)

Cj (A)

Rj(A)

)−1

.(2.12)

Since Ri(A)
Ci(A) > 1, Then inequality (2.12) is equivalent to

ρ(A) >

(

Cj(A) ∗

(

Cj(A)

Rj(A)

)logRi(A)
Ci(A)

Ci(A)
)

(

1+logRi(A)
Ci(A)

Cj(A)

Rj(A)

)−1

.

The proof is completed.

Similar to the proof of Theorems 2.2 and 2.3, we can obtain easily the following

theorems from Lemmas 2.5 and 2.6.

Theorem 2.7. Let A = (aij) ∈ R
n×n be nonnegative. Then

ρ(A) ≤ max
i∈N

{min{Ri(A), Ci(A)}},

or

ρ(A) ≤ ρ1 = max
i∈Λ,Ci(A)6=0,

j∈∆,Rj (A)6=0

(

Cj(A) ∗

(

Cj(A)

Rj(A)

)logRi(A)
Ci(A)

Ci(A)
)

(

1+logRi(A)
Ci(A)

Cj(A)

Rj(A)

)−1

.
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That is,

ρ(A) ≤ max

{

max
i∈N

{min{Ri(A), Ci(A)}}, ρ1

}

.(2.13)

Theorem 2.8. Let A = (aij) ∈ R
n×n be nonnegative. Then

min
α∈[0,1]

max
i∈N

(Ri(A))
α(Ci(A))

1−α = max

{

max
i∈N

{min{Ri(A), Ci(A)}}, ρ1

}

,

where ρ1 is defined as in Theorem 2.7.

Remark 2.9. Theorem 2.7 provides an equivalent form of the Ostrowski upper

bound min
α∈[0,1]

max
i∈N

(Ri(A))
α(Ci(A))

1−α. However, it is determined with more diffi-

cultly than that in Theorem 2.2 because of computing logRi(A)

Ci(A)

Ci(A) or logRi(A)

Ci(A)

Cj(A)
Rj(A)

difficultly. So in general we estimate the spectral radius of nonnegative matrices by

Theorem 2.2.

3. Numerical comparisons. Besides the Frobenius bound and the Ostrowski

bounds, there are another results on upper bounds for the spectral radius of non-

negative matrices [2, 3, 5, 8, 11, 12, 16, 17]. We now list some of the well-known

bounds, and compare with the bound in Theorem 2.2. In 1964, Derzko and Pfeffer [5]

provided an upper bound for the spectral radius of complex matrices, which is also

used to estimate the spectral radius of a nonnegative matrix A = (aij) ∈ R
n×n.

ρ(A) ≤

(

ǫ(A)2 −

(

max
i∈N

|R̄i(A)− C̄i(A)|

)2
)

1
2

,(3.1)

where ǫ(A) =

(

∑

i,j∈N

a2ij

)
1
2

, R̄i(A) =

((

∑

j∈N

a2ij

)

− a2ii

)
1
2

and C̄i(A) = R̄i(A
T ).

In 1974, Brauer and Gentry [2] derived the following bound:

ρ(A) ≤
1

2
max
j 6=i

(

aii + ajj +
(

(aii − ajj)
2
+ 4R′

i(A)R
′
j(A)

)
1
2

)

,(3.2)

where R′
i(A) = Ri(A)− aii.

In 1994, Rojo and Jiménez [16] obtained the following decreasing sequence of

upper bounds:

ρ(A) ≤ vk(A) ≤ · · · ≤ v2(A) ≤ v1(A),(3.3)
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where vp(A) =
trace(A)

n
+ γp(A),

γp(A) =

(

(n− 1)2p−1

(n− 1)2p−1 + 1
trace

(

M(A)−
trace(A)

n
I

)2p
)

1
2p

and M(A) = A+AT

2 .

In 1998, Taşçi and Kirkland [17] obtained another sequence of upper bounds

based on an arithmetic symmetrization of powers of A:

ρ(A) ≤ σk ≤ · · · ≤ σ2 ≤ σ1,(3.4)

where σk =
(

ρ
(

M(A2k)
))2−k

.

In 2006, Kolotilina [11] provided the following bound:

ρ(A) ≤ max
i,j:aij 6=0

{

(

Ri(A)
αRj(A)

1−α
)β (

Ci(A)
αCj(A)

1−α
)1−β

}

,(3.5)

where 0 ≤ α, β ≤ 1.

In 2012, Melman [12] derived an upper bound for the spectral radius, that is,

ρ(A) ≤
1

2
max
i∈N

min
j 6=i

{

aii + ajj +R′′
ij(A) + ((aii − ajj +R′′

ij(A))
2 + 4aijR

′
j(A))

1
2

}

,

(3.6)

where R′′
ij(A) = R′

i(A)− aij = Ri(A)− aii − aij .

Very recently, Butler and Siegel [3] obtained the following upper bound for the

spectral radius of nonnegative matrices with nonzero row sums.

ρ(A) ≤ max
i,j∈N

{

(

Ri(A
K+P )Rj(A

K+Q)

Ri(AK)Rj(AK)

)

1
P+Q

: a
(P )
ij > 0

}

,(3.7)

where a
(P )
ij is the (i, j) entry of AP , P > 0, Q ≥ 0 and K ≥ 0.

We now give some numerical examples to compare the Ostrowski upper bound

min
α∈[0,1]

max
i∈N

{αRi(A) + (1− α)Ci(A)}, or equivalently, the bound in Theorem 2.2 with

the listed bounds.

Example 3.1. Let A = (aij) ∈ R
n×nwith n ≥ 2, where

aij =
i+ j

n− i+ j
.
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Obviously, A is nonnegative. We compute by Matlab 7.0 the Frobenius upper bound,

the bounds in (3.1), (3.2), (3.3), (3.4), (3.5), (3.6), (3.7), and the Ostrowski upper

bound min
α∈[0,1]

max
i∈N

{αRi(A)+ (1−α)Ci(A)}, i.e., the bound in (2.7), which are showed

in Table 1.

n 20 50 100 200

the Frobenius upper bound 59.1503 183.9587 429.1125 987.3623

the bound in (3.1) 35.3673 96.8358 207.5647 443.3573

the bound in (3.2) 50.7089 160.4870 380.0033 886.6063

the bound in (3.3) 35.0224 92.2129 192.3634 401.0254

the bound in (3.4) 27.3319 67.0738 133.3430 265.9199

the bound in (3.5) 30.6872 82.1932 174.0878 368.2669

the bound in (3.6) 47.5346 151.0051 358.3530 837.9700

the bound in (3.7) 34.9409 88.6291 178.2934 357.7011

the Ostrowski upper bound 43.4386 128.1360 288.8136 645.2955

ρ(A) 25.4223 62.1346 123.3112 245.6604

Table 1. Comparison of the bounds for the nonnegative matrix in Example 3.1.

Example 3.2. Let

A =





1 1 0

0 2 1

4 1 3



 .

The bounds are showed in Table 2.

the Frobenius upper bound 5

the bound in (3.1) 4.8214

the bound in (3.2) 4.3723

the bound in (3.3) 4.8868

the bound in (3.4) 4.4001

the bound in (3.5) 4.4267

the bound in (3.6) 4.2361

the bound in (3.7) 4.6104

the Ostrowski upper bound 4.5714

ρ(A) 4.0946

Table 2. Comparison of the bounds for the nonnegative matrix in Example 3.2.

Example 3.3. Let

A =





1 1 0

0 2 2

4 2 3



 .
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By computation, the Ostrowski upper bound is 5, and the bounds in (3.4) and (3.5)

are 5.1938 and 5.4772, respectively. In fact, ρ(A) = 5.

Remark 3.4. (I) In Examples 3.1, 3.2 and 3.3, the bounds in (3.3), (3.4) are

given by v1(A) and σ1(A), respectively. And the bound in (3.5) is given for α = β = 1.

For the bound in (3.7), we compute its value for K = P = Q = 1 in Example 3.1,

and for P = 2, K = Q = 1 in Example 3.2.

(II) From Examples 3.1 and 3.2, we have that the Ostrowski upper bound is

smaller than the Frobenius upper bound, smaller than the bounds in (3.1), (3.2),

(3.3), (3.6), and (3.7) in some cases.

(III) Example 3.3 shows that the Ostrowski upper bound is smaller than the

bounds in (3.4) and (3.5), and that the Ostrowski upper bound is sharp.

Acknowledgment. The authors are grateful to the referees for their useful and
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