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QUADRATIC FORMS ON GRAPHS WITH APPLICATION

TO MINIMIZING THE LEAST EIGENVALUE OF SIGNLESS

LAPLACIAN OVER BICYCLIC GRAPHS∗
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Abstract. Given a graph and a vector defined on the graph, a quadratic form is defined on

the graph depending on its edges. In order to minimize the quadratic form on trees or unicyclic

graphs associated with signless Laplacian, the notion of basic edge set of a graph is introduced, and

the behavior of the least eigenvalue and the corresponding eigenvectors is investigated. Using these

results a characterization of the unique bicyclic graph whose least eigenvalue attains the minimum

among all non-bipartite bicyclic graphs of fixed order is obtained.
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1. Introduction. Let G be a simple graph of order n with vertex set V (G) =

{v1, v2, . . . , vn} and edge set E(G). The adjacency matrix of G is defined as the

n × n matrix A(G) = [aij ] given by: aij = 1 if vi is adjacent to vj , and aij = 0

otherwise. Denote by D(G) = diag{dG(v1), dG(v2), . . . , dG(vn)} the diagonal matrix

of vertex degrees, where dG(v), or simply d(v), denotes the degree of the vertex v.

The matrix Q = Q(G) = D(G) + A(G) is called the signless Laplacian of G (see

[29]), and is also known as the unoriented Laplacian (see [22, 27, 36]). Evidently,

Q(G) is symmetric and positive semidefinite, so its eigenvalues can be arranged as

0 ≤ λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G). In this paper, the eigenvalue λ1(G) and the

corresponding eigenvectors for a given graph G are simply called the least eigenvalue

and the first eigenvectors of G, respectively.
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The matrix L(G) = D(G)−A(G), known as the standard Laplacian of G, and is

studied extensively in the literature; see e.g. [33, pp. 113–136]. A more generalized

matrix associated with graphs, the Laplacian of mixed graphs or signed graphs are

discussed in [1, 21, 30, 44].

Recently the eigenvalues of the signless Laplacian have received a lot of attention,

especially the spectral radius. The papers [6, 8, 9, 10, 11] provide a comprehensive

survey on this topic. There are a number of works discussing the relationships between

the spectral radius of Q(G) and certain graph parameters of G, such as chromatic

number [3], order and size [5], pendant vertices [24], maximum clique [32], connectivity

[42], matching number [43], degree [34] or degree sequence [45], and hamiltonicity [46].

On the other hand, there is far less work on the least eigenvalue of the signless

Laplacian. It is well known that for a connected graph G, the least eigenvalue is

zero if and only if G is bipartite. So connected non-bipartite graphs are considered

here. In [13], the least eigenvalue was used to reflect the ‘non-bipartiteness’ of graphs.

Some results on minimizing or maximizing the least eigenvalue of mixed graphs are

given in [16]. The paper [37] introduces a parameter called edge singularity to reflect

the singularity of Laplacian of mixed graphs. The structure of the eigenvectors cor-

responding the least eigenvalue is also discussed in [16, 17, 37]. In [20], the authors

introduce the characteristic set of mixed graphs, and determine the unique graph

with minimum least eigenvalue among all nonsingular unicyclic mixed graphs with

fixed order. Their results can be easily applied to the signless Laplacian of graphs.

Independently, Cardoso et al. [4] determine the unique graph (surely being unicyclic)

with minimum least eigenvalue among all non-bipartite graphs of fixed order with

respect to the signless Laplacian of graphs.

In this paper, we focus on the least eigenvalues of the signless Laplacian of graphs,

especially the least eigenvalue of non-bipartite bicyclic graphs. We determine the

unique graph whose least eigenvalue attains the minimum among all non-bipartite

bicyclic graphs with fixed order. The optimal graph is obtained from a triangle

and a square by connecting a path between them. We begin the discussion from

the quadratic form defined on graphs, as many problems of graph eigenvalues can

be translated to maximizing or minimizing quadratic form on graphs. This will be

discussed in next section.

We finally remark that the signless Laplacian of a graph is maybe more closely

related to the graph structures than the adjacency matrix and the Laplacian of that

graph. The papers [12, 29] provide spectral uncertainties with respect to the adjacency

matrix, with respect to the Laplacian, and with respect to the signless Laplacian of

sets of all graphs on n vertices for n ≤ 11. It was found that the spectral uncertainty

with respect to the signless Laplacian is smallest when 7 ≤ n ≤ 11.
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2. Quadratic forms on graphs. Many problems arising from the spectra of

graphs can be viewed as those of minimizing or maximizing quadratics of associ-

ated matrices of graphs. As these matrices are defined on graphs, the corresponding

quadratics are also defined on graphs. Formally, given a graph G of order n, a vector

X ∈ R
n is called to be defined on G, if there is a 1-1 map ϕ from V (G) to the entries

of X , simply written Xu := ϕ(u) for each u ∈ V (G). A function defined on G with

respect to X , denoted by f(G,X), is defined as

f(G,X) =
∑

uw∈E(G)

fuw,

where fuw is a symmetric function in two variables Xu, Xw. Particularly, f(G,X) is

a quadratic form on G when fuw is a symmetric polynomial of degree 2. For example,

if fuw equals 2XuXw or (Xu −Xw)
2 or (Xu +Xw)

2, then the function is exactly the

quadratic form of the adjacency matrix or the Laplacian or the signless Laplacian of

G with respect to X .

The Courant-Fischer-Weyl min-max principle, for a real symmetric matrix A of

order n, implies

λ↑
k = min

Sk

max
X∈Sk,‖x‖=1

XTAX, λ↓
k = max

Sk

min
X∈Sk,‖x‖=1

XTAX,

where Sk denotes a k dimensional subspace of Rn, and ↑ or ↓ indicates it is the kth

eigenvalue in the increasing or decreasing order. So, the eigenvalue of (the adjacency

matrix, Laplacian, signless Laplacian) of a graph is exactly a optimal solution obtained

by maximizing or minimizing the quadratic form on the graph in a certain subspace.

This viewpoint has been applied to many topics, such as the algebraic connectivity

[15, 31] related to the Laplacian, the spectral radius [5, 22, 36, 42] and the least

eigenvalue [20] related to the signless Laplacian, and the least eigenvalue [23, 38, 39,

41] related to the adjacency matrix. Consider an example of minimizing the least

eigenvalue of the signless Laplacian over a certain class G of graphs. Let f(G,X) =

XTQ(G)X defined on graphs G ∈ G . If we find a graph H ∈ G such that f(G,X) ≥
f(H,X), or also a vector Y with length not less than X such that f(G,X) ≥ f(H,Y ),

then λ1(G) ≥ λ1(H) whenever X is a first eigenvector of G. This can be done by

locally changing the graph structure and keeping the resulting graph in G .

We often ignore the ordering of the vertices of G and the entries of X . The

quadratic XTQ(G)X may be written as

fQ(G,X) :=
∑

uw∈E(G)

(Xu +Xw)
2.

The eigen-equation Q(G)X = λX is interpreted as

[λ− dG(v)]Xv =
∑

u∈N(v)

Xu, for each v ∈ V (G),(2.1)
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where NG(v), or simply N(v), denotes the neighborhood of the vertex v in G.

2.1. Basic edge sets of graphs. In this section, we introduce the notion of

basic edge set of a graph, and use it to investigate the property of first eigenvectors.

With respect to a real vector X defined on a graph G, the value, modulus, sign

of a vertex u ∈ V (G) is Xu, |Xu|, sgn(Xu), respectively. A vertex of G is called

zero (nonzero) if its sign is zero (nonzero). An edge uw of G is called positive or

nonnegative or negative if XuXw > 0 or XuXw ≥ 0 or XuXw < 0.

A basic edge set of G with respect to X , denoted by BX , is a set with a minimum

number of nonnegative edges whose deletion yields a bipartite graph. In particular,

when G is bipartite, then BX = ∅. The basic edge set BX may not be unique, but

this does not cause any difficulties with our discussion.

The edge bipartiteness of G, denoted by ǫb(G), is the minimum number of edges

G whose deletion yields a bipartite graph, which was introduced in [14] to measure

how close a graph is to being bipartite. The notion was used in [18] to confirm a

conjecture on minimum signless Laplacian spread [7].

We find that the basic edge set of a graph is closely related to the edge bipartite-

ness; see Lemma 2.1 below. A resigning X ′ of a real vectorX is a vector obtained from

X by changing the signs of some (possibly none or all) entries of X , that is, X ′ = DX

for some signature matrix D (a diagonal matrix with 1 or −1 on its diagonals).

Lemma 2.1. Let G be a connected non-bipartite graph with n vertices and m

edges, and let X be a vector defined on V (G). Then the following hold:

(1) G− BX is connected, and each edge of BX lies on an odd cycles.

(2) 1 ≤ |BX | ≤ m− n+ 1.

(3) ǫb(G) = minX′ |BX′ |, where X ′ is taken over all resignings of X.

Proof. (1) If G − BX is disconnected, say with components C1, . . . , Ck (each of

which must be bipartite), then there exists an edge e ∈ BX such that e connects Ci

and Cj for some i, j, as G is connected. It is clear that the addition of the edge e

to G− BX still yields a bipartite graph. Thus, G− (BX − e) is still bipartite, which

contradicts the definition of basic edge set. So G− BX is connected.

Let (U,W ) be the bipartition of G − BX . Then each edge of BX lies within the

same part U or W , and the addition of this edge to G − BX will yield an odd cycle

of G as G− BX is connected.

(2) Note that G contains a spanning tree and the deletion of the edges comple-

mentary to this tree will produce a bipartite graph. Hence, any basic edge set BX
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contains at most m − n + 1 elements. Surely B contains at least 1 element as G is

non-bipartite.

(3) Clearly, ǫb(G) ≤ |BX |. Let F be a set of ǫb(G) edges such that G − F is

bipartite. By a similar discussion as in (1), G − F is connected. Let (U,W ) be a

bipartition of G−F . Then the edges of F lies within the same part U or W . Let X ′

be a resigning of X such that the value of each vertex in U is given by its modulus

and the value of each vertex in W is given by the negative of its modulus. Then

|BX′ | ≤ ǫb(G), and hence, |BX′ | = ǫb(G). The result follows.

A bipartite graph G is called bi-signed with respect to a vector X defined on G

if there exists a bipartition for G such that the vertices in one part of the bipartition

are nonnegative and the vertices in the other part are nonpositive.

Let G be a connected graph and let X be a real vector defined on G. If G is

bipartite, there is a resigning X ′ of X such that G is bi-signed with respect to X ′,

and

fQ(G,X) ≥ fQ(G,X ′),

where the equality holds if and only if G contains no positive edges with respect to

X . The vector X ′ is defined as follows: reassign the value of each vertex in one part

of the bipartition for G by its modulus and the value of each vertex in the other part

by the negative of its modulus.

If G is non-bipartite, then G− BX is connected and bipartite by Lemma 2.1(1).

By the above discussion, there exists a resigningX ′ of X such that G−BX is bi-signed

with respect to X ′, and fQ(G− BX , X) ≥ fQ(G− BX , X ′). As the edges of BX join

the vertices within same part of the bipartition for G − BX , BX is still a basic edge

set of G with respect to X ′, and consequently, (Xu + Xw)
2 = (X ′

u +X ′
w)

2 for each

edge uw ∈ BX . Hence,

fQ(G,X) = fQ(G− BX , X) +
∑

uw∈BX

(Xu +Xw)
2

≥ fQ(G− BX , X ′) +
∑

uw∈BX

(X ′
u +X ′

w)
2 = fQ(G,X ′).

In the above, we have established the following result, which includes the case of G

being bipartite whence BX = ∅.

Lemma 2.2. Let G be a connected graph and let X be a real vector defined on

G. For any basic edge set BX, there exists a resigning X ′ of X such that fQ(G,X) ≥
fQ(G,X ′), G−BX is bi-signed with respect to X ′ and BX is a also basic edge set with

respect to X ′. Furthermore, fQ(G,X) = fQ(G,X ′) if and only if G−BX contains no

positive edges with respect to X.
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If considering the basic edge sets with respect to the first eigenvectors of a graph,

we will obtain some properties of the first eigenvectors.

Lemma 2.3. Let G be a connected non-bipartite graph and let X be a first eigen-

vector of G. Then the following results hold:

(1) G− BX contains no positive edges with respect to X.

(2) There exists a first eigenvector X ′ (as a resigning of X) of G such that, with

respect to X ′, BX is also a basic edge set and G− BX is bi-signed.

(3) If a vertex is not adjacent to any vertices with smaller moduli, then this vertex

and its neighbors must all have zero values, unless it is incident with an edge in BX.

(4) If the minimum modulus is positive, then any vertex with the minimum mod-

ulus is incident with an edge in BX ; if the minimum modulus is zero, then there exists

a zero vertex incident with an edge in BX .

Proof. By Lemma 2.2, there exists a resigning X ′ of X such that fQ(G,X) ≥
fQ(G,X ′), G − BX is bi-signed with respect to X ′ and BX is a basic edge set with

respect to X ′. As X corresponds to the least eigenvalue of G, we have fQ(G,X) =

fQ(G,X ′), by Lemma 2.2, G−BX contains no positive edges with respect to X . From

the equality, X ′ is also a first eigenvector of G. So the assertions (1) and (2) follow.

Let G − BX have a bipartition (U,W ). Note that BX is a basic edge set with

respect to X ′, and X ′ differs to X only at the signs of its entries. We prove the

assertions (3) and (4) using X ′. Assume that there exists a vertex, say u ∈ U with

X ′
u ≥ 0, and adjacent to vertices of moduli greater than or equal to |X ′

u| such that

the edges incident with u are all not in BX . Then N(u) ⊂ W , and for each v ∈ N(u),

X ′
v ≤ −X ′

u ≤ 0. By the eigen-equation (2.1) for X ′ at u,

[λ1(G)− d(u)]X ′
u =

∑

v∈N(u)

X ′
v ≤ −d(u)X ′

u.

As G is connected and non-bipartite, λ1(G) > 0. So X ′
u = 0 from the above equation,

and then X ′
v = 0 for each v ∈ N(u). The assertion (3) follows.

By the result (3), the first part of the assertion (4) follows. Now assume that u

is a zero vertex but not incident with any edge of BX . Then all neighbors of u have

zero values. As G−BX is connected, there must exist a zero vertex joining a nonzero

vertex by an edge of G − BX . By (2.1) at this zero vertex, it must be adjacent to

another nonzero vertex by an edge of BX .

Corollary 2.4. Let G be a connected non-bipartite graph and let X be a first

eigenvector of G. If vw is a cut edge of G, then XvXw ≤ 0.

Proof. By Lemma 2.1(1), a cut edge cannot be contained in any basic edge set
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BX of G, and is hence contained in G−BX . The result follows from Lemma 2.3(1).

The coalescence of two disjoint nontrivial graphs G1, G2 with respect to v1 ∈
V (G1), v2 ∈ V (G2), denoted by G1(v1) ⋄G2(v2), is obtained by identifying v1 with v2
and forming a new vertex u, and is also written as G1(u) ⋄G2(u). Let X be a vector

defined on a graph G and let H be a subgraph of G. Denote by XH the subvector of

X indexed by the vertices of H .

Corollary 2.5. [40] Let G = G1(u) ⋄B(u), where G1 is a connected graph, B

is a connected bipartite graph. Let X be a first eigenvector of G.

(1) If Xu = 0, then XB = 0.

(2) If Xu 6= 0, then Xp 6= 0 for every vertex p ∈ V (B). Furthermore, for every

vertex p ∈ V (B), XpXu is either positive or negative, depending on whether p is or is

not in the same part of the bipartite graph B as u; consequently, XpXq < 0 for each

edge pq ∈ E(B).

Note that in Corollary 2.4, if G is connected and bipartite, then 0 is a simple

least eigenvalue of G and a corresponding eigenvector takes the same value at each

vertex of one part of the bipartition for G and takes its negative value at each vertex

of the other part. So Corollary 2.4 still holds in this case. In addition, Corollary 2.5

can also be proved by using Lemma 2.3 and the eigen-equation (2.1).

We finally remark that the idea of basic edge set with respect to a first eigenvector

is similar to that of ‘characteristic set’ (a set consisting of characteristic edges and

characteristic vertices), which is used for standard Laplacian with respect to a Fiedler

vector [2] or other eigenvector [19, 26, 35], and is also used for Laplacian of mixed

graphs with respect to a first eigenvector [20].

2.2. Quadratic forms on trees and unicyclic graphs. In this section, by

the notion of basic edge set, we minimize of the quadratic forms on unicyclic graphs

associated with signless Laplacian. We begin with trees as a preliminary work, though

the basic edge sets of this kind of graphs are empty.

Denote by Pn : v1v2 · · · vn, a path on distinct vertices v1, v2, . . . , vn with edges

vivi+1 for i = 1, 2, . . . , n− 1. Let

fL(G,X) :=
∑

uw∈E(G)

(Xu −Xw)
2,

be the quadratic form on G associated with Laplacian.
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Lemma 2.6. [15] Let T be a tree of order n, and let X ∈ R
n defined on T whose

entries are arranged as X1 ≤ X2 ≤ · · · ≤ Xn. Then

fL(T,X) =
∑

uw∈E(T )

(Xu −Xw)
2 ≥

n−1
∑

i=1

(Xi −Xi+1)
2 = fL(Pn, Y ),

where Y is defined on Pn : v1v2 · · · vn such that Yvi = Xi for i = 1, 2, . . . , n. Further-

more, if Xu 6= Xw for each edge uw ∈ E(T ), then the equality holds if and only if

X1 < X2 < · · · < Xn and T = Pn.

It was proved by Fiedler [25] that α(T ) ≥ α(Pn), where α(G) denotes the algebraic

connectivity of a graph G, which is defined as the second smallest eigenvalue of the

Laplacian of G. Using Lemma 2.6, the inequality can be obtained directly. Further-

more, the equality holds if and only if T = Pn. For a vector X = (X1, X2, . . . , Xn),

denote |X | := (|X1|, |X2|, . . . , |Xn|).

Corollary 2.7. Let T be a tree of order n, and let X ∈ R
n defined on T whose

entries are arranged as |X1| ≤ |X2| ≤ · · · ≤ |Xn|. Then

fQ(T,X) ≥
n−1
∑

i=1

(|Xi+1| − |Xi|)2 = fQ(Pn, Y ),

where Y is defined on Pn : v1v2 · · · vn such that Yvi = (−1)i+1|Xi| for i = 1, 2, . . . , n.

Furthermore, if |Xu| 6= |Xw| for each edge uw ∈ E(T ), then the equality holds if and

only if T contains no positive edges, |X1| < |X2| < · · · < |Xn|, and T = Pn.

Proof. By Lemma 2.2, there exists a vector X ′ (as a resigning of X) such that T

is bi-signed with respect to X ′, and fQ(T,X) ≥ fQ(T,X
′) with equality if and only

if T contains no positive edges with respect to X . Let (V+, V−) be the bipartition of

T , and let D be the signature matrix with a 1 for the vertices of V+ and a −1 for V−.

Then Q(T ) = DL(T )D, and fQ(T,X
′) = fL(T, |X ′|). By Lemma 2.6,

fL(T, |X ′|) ≥
n−1
∑

i=1

(|Xi| − |Xi+1|)2 = fQ(Pn, Y ).

The second claim follows from the above discussion and Lemma 2.6.

Lemma 2.8. Let G be an odd-unicyclic graph of order n, and let X ∈ R
n defined

on G. In addition, assume that if there exists an edge of BX whose end vertices have

the smallest and the 2nd smallest moduli respectively, then one of the end vertices has

degree 2. Then we have

fQ(G,X) ≥ fQ(G△, Y ),

where G△ is the graph of order n and Y is defined on G△ as shown in Fig. 2.1.
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Proof. Arrange the entries of X as |X1| ≤ |X2| ≤ · · · ≤ |Xn|. Note that BX must

contain an edge, say uw, necessarily on the odd cycle. By Lemma 2.2, there exists

a vector X ′ (as a resigning of X) such that fQ(G,X) ≥ fQ(G,X ′), and with respect

to X ′, G − uw is bi-signed and {uw} is still a basic edge set. If one of |Xu|, |Xw| is
greater than or equal to |X3|, then by Corollary 2.7,

fQ(G,X ′) = fQ(G− uw,X ′) + (|Xu|+ |Xw|)2

≥
n−1
∑

i=1

(|Xi| − |Xi+1|)2 + (|X1|+ |X3|)2

≥
n−1
∑

i=2

(|Xi| − |Xi+1|)2 + (|X1|+ |X2|)2 + (|X1| − |X3|)2

= fQ(G△, Y ).

Otherwise, assume that |Xu| = |X1| ≤ |Xw| = |X2| < |X3|. By the assumption,

u or w has degree 2. If u has degree 2, letting v be its other neighbor, we have

fQ(G,X ′) = fQ(G− u,X ′
G−u) + (|Xu|+ |Xw|)2 + (|Xu| − |Xv|)2

≥
n−1
∑

i=2

(|Xi| − |Xi+1|)2 + (|X1|+ |X2|)2 + (|X1| − |X3|)2

= fQ(G△, Y ).

The argument is similar if w has degree 2.

1x

2x

3x− 4x ( 1)n
n
x−

Fig. 2.1. The graph G△ of order n with a vector Y defined on it.

Lemma 2.9. Let G be an even-unicyclic graph of order n, and let X ∈ R
n

defined on G where the cycle of G contains a vertex with minimum or maximum

modulus. In addition, assume that if the vertex with minimum modulus (maximum

modulus, respectively) has two neighbors on the cycle with the 2nd and the 3rd smallest

moduli respectively (the 2nd and the 3rd largest moduli respectively), then one of these

neighbors has degree 2. Then we have

fQ(G,X) ≥ fQ(G�, Y ),

where G� is the graph of order n and Y is defined on G� without boxes (in the

minimum case) or within the boxes (for the maximum case) as shown in Fig. 2.2.
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Proof. Arrange the entries of X as |X1| ≤ |X2| ≤ · · · ≤ |Xn|. By Lemma 2.2,

there exists a vector X ′ (a resigning of X) such that fQ(G,X) ≥ fQ(G,X ′) and G

is bi-signed with respect to X ′. Assume that u is a vertex with minimum modulus

defined on the cycle. If one neighbor w of u on the cycle satisfies |Xw| ≥ |X4|, then
by Corollary 2.7,

fQ(G,X ′) = fQ(G− uw,X ′) + (|Xu| − |Xw|)2

≥
n−1
∑

i=1

(|Xi| − |Xi+1|)2 + (|X1| − |X4|)2

≥
n−1
∑

i=3

(|Xi| − |Xi+1|)2 + (|X1| − |X3|)2 + (|X1| − |X2|)2 + (|X2| − |X4|)2

= fQ(G�, Y ),

where G� is in Fig. 2.2 and Y is defined on G� without boxes.

Otherwise, both neighbors of u, say v, w, on the cycle have moduli less than |X4|,
say, |X1| = |Xu| ≤ |X2| = |Xv| ≤ |X3| = |Xw| < |X4|. If v has degree 2, letting v′ be

another neighbor of v other than u, considering G− v (a tree), we have

fQ(G,X ′) = fQ(G− v,X ′
G−v) + (|Xv| − |Xu|)2 + (|Xv| − |Xv′ |)2

≥ (|X1| − |X3|)2 +
n−1
∑

i=3

(|Xi| − |Xi+1|)2 + (|X1| − |X2|)2 + (|X2| − |X4|)2

= fQ(G�, Y ).

If w has degree 2, the argument is similar and is omitted.

If a vertex with maximum modulus is defined on the cycle, the discussion is also

similar and the corresponding graph is G� with a vector Y defined on G� within the

boxes; see Fig. 2.2.

1x

2x−

3x−

4x ( 1)n
nx−

4
3( 1)n

nx−
−−

2x−

3
1( 1)n

nx−
−−

2( 1)n
nx−−

3
2( 1)n

nx−
−−

1x

1
1( 1)n

nx−
−−

Fig. 2.2. The graphs G� with a vector Y defined on it without or within boxes.

2.3. Perturbations of least eigenvalue. In this section, we use the quadratic

forms on graphs to establish a perturbation result for the least eigenvalues. Though
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Lemma 2.10 was already given in [40], the proof idea is still related to it.

Note that if a graph G contains a pendant edge, say uw with du = 1, then

λ1(G) < 1. Let A be the 2 × 2 principal submatrix of Q(G) indexed by u,w. From

the interlacing of eigenvalues (see [28]) it follows that

λ1(G) ≤ λ1(A) = (d(w) + 1−
√

[d(w) − 1]2 + 4 )/2 < 1,(2.2)

where λ1(A) denotes the least eigenvalue of A. In particular, if d(w) = 2, then

λ1(G) ≤ (3−
√
5)/2.

Lemma 2.10. [40] Let G = G0(v1) ⋄ B(u) and Ḡ = G0(v2) ⋄ B(u), where G0 is

a connected graph containing two distinct vertices v1, v2, and B is connected bipartite

graph. If there exists a first eigenvector X of G such that |Xv2 | ≥ |Xv1 |, then

λ1(G) ≥ λ1(Ḡ)

with equality only if |Xv2 | = |Xv1 | and dB(u)Xu = −∑

v∈NB(u) Xv.

Lemma 2.11. [40] Let G = G1(u) ⋄ T (u), where G1 is a connected non-bipartite

graph and T is a tree. Let X be a first eigenvector of G, which gives a nonzero value

at some vertex of T . Then |Xq| < |Xp| whenever p, q are vertices of T such that q

lies on the unique path from u to p.

Lemma 2.12. Let G = G1(u)⋄T (u), where G1 is a connected non-bipartite graph

and T is a tree of order m. Let X be a unit first eigenvector of G, which gives a

nonzero value at some vertex of T . Then there exists a unit vector Y such that

fQ(G1(u) ⋄ T (u), X) ≥ fQ(G1(u) ⋄ Pm(u), Y ),

where Pm has u as an end vertex. Hence, λ1(G) ≥ λ1(G1(u)⋄Pm(u)). Both equalities

hold if and only if T = Pm having u as an end vertex.

Proof. By Corollary 2.5(2) and Lemma 2.11, we may arrange the moduli of

vertices of T as 0 < |Xu| =: |X0| < |X1| ≤ |X2| ≤ · · · ≤ |Xm−1|. By Corollary 2.7,

fQ(G,X) = fQ(G1, XG1
) + fQ(T,XT )

≥ fQ(G1, XG1
) +

m−2
∑

i=0

(|Xi| − |Xi+1|)2

= fQ(G1(u) ⋄ Pm(u), Y ),

where Y is defined as: Yv = Xv if v ∈ V (G1), and Yui
= (−1)isgn(Xu)|Xi| for

i = 1, 2, . . . ,m − 1 if Pm is the path on vertices u, u1, u2, . . . , um−1. So λ1(G) ≥
λ1(G1(u) ⋄ Pm(u)). Note that the end vertices of each edge of T must have different

moduli by Lemma 2.11 and different signs by Corollary 2.5(2). The last claim now

follows from Corollary 2.7.
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A graph G is called minimizing among all graphs in a graph class C if λ1(G) =

minH∈G λ1(H).

Corollary 2.13. [4, 20] Let G be an odd-unicyclic graph of order n. Then

λ1(G) ≥ λ1(G△),

with equality if and only if G = G△, where G△ is the graph in Fig. 2.1.

Proof. It suffices to prove if G is a minimizing graph among all odd-unicyclic

graphs of order n, then G = G△. Suppose G contains a cycle Cm. Let X be a unit

first eigenvector of G, and let u be the vertex with maximum modulus among all

vertices of Cm. Surely Xu 6= 0; otherwise X = 0 by Corollary 2.5(1). If there exists a

tree T attached at w 6= u, relocating T from w to u, we arrive at a graph G′ holding

that λ1(G) ≥ λ1(G
′) by Lemma 2.10. As G is minimizing, λ1(G) = λ1(G

′), which

implies |Xw| = |Xu| > 0 and dT (w) = −∑

v∈NT (w) Xv by the last part of Lemma

2.10. But the latter cannot hold by Lemma 2.11. So G = Cm(u) ⋄ T (u) for some tree

T , where u is the unique (nonzero) vertex with maximum modulus among all vertices

of Cm. By Lemma 2.12, G = Cm(u) ⋄ Pn−m(u), where u is an end vertex of P .

Now by Lemma 2.8, there exists a graph G△ of order n and a unit vector Y

defined on it (see Fig. 2.1), such that

λ1(G) = fQ(G,X) ≥ fQ(G△, Y ) ≥ λ1(G△).

If the equality holds, then Y is a first eigenvector of G△. By Lemma 2.11 and from

the eigen-equation of Y for the graph G△, |X1| = |X2| < |X3| < · · · < |Xn|. If

G 6= G△, then G will have two or more pairs of vertices with same moduli. The result

now follows.

3. Minimum of the least eigenvalue over bicyclic graphs. Using the result

in Section 2, we will minimize the least eigenvalue over all non-bipartite bicyclic graphs

of fixed order. A graph G on n vertices is a bicyclic graph if it is a connected graph

with exactly n + 1 edges. Observe that G is obtained from a ∞-graph or a θ-graph

G0 (possibly) by attaching trees to some of its vertices, where a ∞-graph is a union

of two cycles that share exactly one vertex or is obtained from two disjoint cycles by

connecting a path between them, and a θ-graph is a union of three internally disjoint

paths with common end vertices, which are distinct, and such that at most one of the

paths has length 1. We also call G0 the kernel of G.

3.1. Least eigenvalues of special bicyclic graphs. We first discuss the least

eigenvalues of some special bicyclic graphs, which will be used for our main result.

Lemma 3.1. Let G be a non-bipartite bicyclic graph whose kernel is a ∞-graph

and contains an even cycle. Then λ1(G) < 1.
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Proof. Let G0 be the kernel of G, and let C be an odd cycle of G0. Let v be a

vertex of C such that dG0
(v) > 2, and let e be an edge of C which is incident with

v. By the interlacing property (see [4]), λ1(G) ≤ λ2(G − e). As G − e is bipartite,

Q(G− e) is similar to L(G− e), and λ2(G− e) is exactly the algebraic connectivity of

G− e. Furthermore, the graph G− e has vertex connectivity 1 with v as a cut vertex,

so λ2(G − e) < 1 by [31, Theorem 1] as v cannot be adjacent to all other vertices of

G− e.

We introduce four bicyclic graphs on n ≥ 9 vertices in Fig. 3.1, and list some

properties on the first eigenvectors and least eigenvalues for them. Observe that in

Fig. 3.1, all graphs have least eigenvalue less than 1 by Lemma 3.1 and (2.2).
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− n
v

1
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2
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v1nv −6

v

3
v

2
v

1
v

4
v

n
v

1n
v

−5
v

1v

2v

3v

4v n
v1nv −5

v

Fig. 3.1. The graph G1(left-upper), G2(right-upper), G3(left-lower), G4(right-lower.)

Lemma 3.2. Let G be one graph of order n ≥ 9 in Fig. 3.1, and let X be a first

eigenvector of G. Then we have the following results.

(1) If G = G1, then Xv1 = Xv2 6= 0, |Xv2 | < |Xv3 |, and v1, v2, v3 are the vertices

with the smallest, the 2nd smallest and the 3rd smallest moduli, respectively.

(2) If G = G3, then X contains no zero entries.

(3) λ1(G4) > λ1(G3).

Proof. We simply write Xvi as Xi for i = 1, 2, . . . , n. Assume G = G1. Then

BX contains only one edge necessarily on the triangle. By Lemma 2.10, |X3| ≥
max{|X1|, |X2|}. So X3 6= 0; otherwise X = 0 by Corollary 2.5(1). By the eigen-

equations (2.1) of X at v1 and v2 respectively, together with the fact λ1(G1) < 1

by Lemma 3.1, X1 = X2 6= 0. So there exists a basic edge set BX = {v1v2}. By

Lemma 2.3(4), v1 or v2 is a nonzero vertex with minimum modulus. So X contains

no zero entries, and G1 − v1v2 contains only negative edges by Lemma 2.3(1), which
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also implies BX is unique. Considering (2.1) at v2, we have (λ1(G1) − 3)X2 = X3,

which implies |X2| < |X3|. We assert v3 must have the 3rd modulus. Otherwise,

there exists a vertex of the 3rd modulus which is not adjacent to the edge of BX , and

this vertex is zero by Lemma 2.3(3), a contradiction.

Assume G = G3. By the eigen-equations (2.1) of X at v1 and v2 respectively,

X1 = X2. If X1 = 0, then X2 = 0, and X3 = X4 = 0 by using (2.1), which implies

X = 0 by Corollary 2.5(1). So X1 = X2 6= 0, and {v1v2} is a basic edge set. By

Lemma 2.3(4), v1 or v2 is a vertex with minimum modulus. So X contains no zero

entries.

Finally, we prove λ1(G4) > λ1(G3). Let X be a first eigenvector of G4. Similar

to the above discussion, |X4| ≥ |X1|, X4 6= 0, and X2 = X3. In addition, |X4| > |X1|
by the last part of Lemma 2.10, and then X2 6= 0 by (2.1) at v2. If assuming X2 > 0,

then X4 < 0 also by (2.1) at v2. Considering (2.1) at v1 and v2 respectively, we get

λ1(G4)X2 = [λ1(G4)− 2]X1, X4 =

(

λ1(G4)− 2− λ1(G4)

λ1(G4)− 2

)

X2.

From the first equality, we have X1 < 0, which implies {v1v4} is a basic edge set. So

X contains no zero entries, and G4 − v1v4 contains only negative edges by Lemma

2.3(1). By the second equality, |X4| > |X2| if λ1(G4) − 1 − λ1(G4)
λ1(G4)−2 < 0. This can

be assured as λ1(G4) ≤ (3−
√
5)/2 by (2.2).

In the graph G4, deleting the edge v2v4 and adding a new edge v2v3, we derive

a graph G′ isomorphic to G3. Define a vector Y on G′ such that Yv1 = −X1,

Yv2 = −X2, and Yu = Xu for other vertices u. Then

fQ(G4, X)− fQ(G
′, Y ) = (|X4| − |X2|)2 + 4|X1|(|X4| − |X3|) > 0,

which implies the desired conclusion.

Lemma 3.3. Let G1,G2,G3 be the graphs of order n ≥ 9 in Fig. 3.1. Then

λ1(G2) > λ1(G3) > λ1(G1).

Proof. The result follows from the following two assertions.

Assertion 1: λ1(G2) > λ1(G3). Simply denote f(x) = det(Q(G2) − xI) and

g(x) = det(Q(G3) − xI), denote f [a : b] or g[a : b] the contiguous principal minor

of the determinant f(x) or g(x) indexed by vertices vi for i = a, a + 1, . . . , b, where

1 ≤ a ≤ b ≤ n. Expanding f(x) and g(x) with respect to the edge v5v6, respectively,

and noting that f [a : n] = g[a : n] when 6 ≤ a ≤ n, we have
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f(x)− g(x) = f [1 : 5]f [6 : n]− f [1 : 4]f [7 : n]−
(

g[1 : 5]g[6 : n]− g[1 : 4]g[7 : n]
)

=
(

f [1 : 5]− g[1 : 5]
)

f [6 : n]−
(

f [1 : 4]− g[1 : 4]
)

f [7 : n]

= −3(x− 1)(x− 3)f [6 : n]− (x− 1)(x− 3)2f [7 : n]

= (x− 1)(x− 3)
(

− 3f [6 : n]− (x− 3)f [7 : n]
)

.

Note that if 0 < x ≤ λ1(G2)(< 1), then by interlacing theorem f [a : b] ≥ 0 for

1 ≤ a ≤ b ≤ n. From the recursion relation that f [6 : n] = (2 − x)f [7 : n]− f [8 : n],

for 0 < x ≤ λ1(G2) < 1,

f [7 : n]− f [6 : n] = f [8 : n]− f [7 : n] + xf [7 : n] ≥ f [8 : n]− f [7 : n]

≥ · · · ≥ f [n : n]− f [n− 1 : n] > 0.

Hence,

f(x)− g(x) = (x− 1)(x− 3)
{

3(f [8 : n]− f [7 : n]) + 2xf [7 : n]
}

> 0,

which implies the desired assertion.

Assertion 2: λ1(G3) > λ1(G1). Simply denote f(x) = det(Q(G3) − xI) and

g(x) = det(Q(G1)− xI). Denote by pm the principal minor of f or g indexed by the

vertices of an induced path of order m which contains vertices all of degree 2. The

notation f [a : b], g[a : b] are as defined in Assertion 2. Expanding f(x) first with

respect to the edge v4v5 and then with respect to the edge vn−4vn−3, we have

f(x) = f [1 : 4]f [5 : n]− f [1 : 3]f [6 : n]

= f [1 : 4]
(

f [5 : n− 4]f [n− 3 : n]− f [5 : n− 5]f [n− 2 : n]
)

−f [1 : 3]
(

f [6 : n− 4]f [n− 3 : n]− f [6 : n− 5]f [n− 2 : n]
)

= f [1 : 4]f [n− 3 : n]pn−8 + f [1 : 3]f [n− 2 : n]pn−10

−
(

f [1 : 4]f [n− 2 : n] + f [1 : 3]f [n− 3 : n]
)

pn−9,

where pn−9 = 1, pn−10 = 0 if n = 9, and pn−10 = 1 if n = 10.

Using a similar expansion for g(x), we compute the difference

f(x)− g(x) =
(

f [1 : 4]f [n− 3 : n]− g[1 : 4]g[n− 3 : n]
)

pn−8

+
(

f [1 : 3]f [n− 2 : n]− g[1 : 3]g[n− 2 : n]
)

pn−10

−
(

f [1 : 4]f [n− 2 : n] + f [1 : 3]f [n− 3 : n]
)

pn−9

+
(

g[1 : 4]g[n− 2 : n] + g[1 : 3]g[n− 3 : n]
)

pn−9

= −(x− 1)2(x − 2)4pn−8 − (x− 2)4pn−10 − 2(x− 1)(x− 2)4pn−9

= −(x− 2)4
{

(x− 1)2pn−8 + pn−10 + 2(x− 1)pn−9

}

= x(x− 2)4pn−7,
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where the last equality is obtained by using the recursion relations for pn−8, pn−7. We

assert pn−7 > 0 if 0 < x ≤ λ1(G3); otherwise λ1(G3) is a least eigenvalue of some

proper principal submatrix of Q(G3), but then G3 has a first eigenvector containing

zero entries by the interlacing theorem (see [28, Theorem 2.1]), a contradiction of

Lemma 3.2(2).
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Fig. 3.2. The graph Ḡ1.

Lemma 3.4. Let Ḡ1 be the graph of order n in Fig. 3.2. If m < n, then

λ1(Ḡ1) > λ1(G1).

Proof. Let X be a first eigenvector of Ḡ1. We simply write Xvi as Xi for

i = 1, 2, . . . , n. By a similar argument as in the proof of Lemma 3.2 for the graph

G1, BX consists of the positive edge v1v2, and G− v1v2 contains only negative edges,

Xm−2 = Xm−1, and 0 < |Xm| < |Xm+1| < · · · < |Xn| by Lemma 2.11. Considering

the eigen-equations (2.1) at vm, vm−1 respectively, we have |Xm−3| < |Xm−1| < |Xm|.
Deleting the edges of the square and also the edge vn−1vn, joining vm−3 to vm and

joining each of vm−2, vm−1 to both vn−1, vn, we form a graph G′ isomorphic to G1.

Now define a vector Y on G′ such that Yvm−2
= Yvm−1

= (Xn−1−Xn)/2, Yvi = −Xvi

for i = m,m+ 1, . . . , n− 1, and Yu = Xu for any other vertices u. Then

fQ(Ḡ1, X)− fQ(G
′, Y ) = 2[(|Xm−1| − |Xm−3|)2 + (|Xm| − |Xm−1|)2]

−(|Xm| − |Xm−3|)2 ≥ 0.

If equality holds, then 2|Xm−1| = |Xm−3|+ |Xm|. By (2.1) at vm−1, we get Xm−1 = 0

and then Xm−3 = Xm = 0, a contradiction. So fQ(Ḡ1, X) > fQ(G
′, Y ) and the

desired result follows as ‖Y ‖ > ‖X‖.

4nv −

3nv −

2 1kv +

1nv −

nv

1v

2v
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4v 2nv −
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Fig. 3.3. The graph Ĝ1.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 213-236, March 2014



ELA

Quadratic Forms on Graphs With Application to Minimizing Least Eigenvalue 229

Lemma 3.5. Let Ĝ1 be a ∞-graph of order n in Fig. 3.3, which is obtained

from an odd cycle C1 and an even cycle C2 connected by a (possibly trivial) path. If

C1 contains at least 5 vertices or C2 contains at least 6 vertices, then there exists a

non-bipartite bicyclic graph G whose kernel is a ∞-graph such that λ1(Ĝ1) > λ1(G).

Proof. First note that 0 < λ1(Ĝ1) < 1 by Lemma 3.1. Let X be a first eigenvector

of Ĝ1. By Lemma 2.10, v2k+1 has the maximum modulus among all vertices of C1. So

Xv2k+1
6= 0; otherwise X = 0 by Corollary 2.5(1). This implies every vertex of C2 is

nonzero by Corollary 2.5(2). We divide the discussion into two cases: (1) C1 contains

at least 5 vertices, (2) C2 contains at least 6 vertices. From the graph symmetry and

the fact Xv2k+1
6= 0, we may assume X holds that Xv1 = Xv2 , Xv3 = Xv4 (if case (1)

occurs), Xvn−1
= Xvn−2

.

If case (1) occurs, deleting the edge v1v3 and adding a new edge v1v4, we will

get a new graph G with the same quadratic form as Ĝ1 associated with X . So

λ1(Ĝ1) ≥ λ1(G). If the equality holds, then X is also a first eigenvector of G. By the

eigen-equations (2.1) of X for Ĝ1 and G both at v3, we have Xv1 = −Xv3 . Also by

(2.1) for Ĝ1 at v1, we have Xv1 = 0, and then Xv2k+1
= 0 by repeatedly using (2.1),

a contradiction. Hence, λ1(Ĝ1) > λ1(G).

If case (2) occurs, deleting the vn−1vn−3 and adding a new edge vn−1vn−4, we

also get a new graph G′ with the same quadratic form as Ĝ1 associated with X . So

λ1(Ĝ1) ≥ λ1(G
′). If the the equality holds, then X is also a first eigenvector of G′.

By a similar discussion to the first case, we have Xvn−3
= −Xvn−1

. Considering (2.1)

for Ĝ1 at vn−1 and vn respectively, we get λ1(Ĝ1) equals 0 or 3, a contradiction.

Lemma 3.6. Let G be a non-bipartite bicyclic graph and let X be a first eigen-

vector of G. Suppose G contains a triangle on vertices v1,v2,v3, where v1,v2,v3

have the smallest, the 2nd smallest and the 3rd smallest moduli respectively, and BX

contains only v1v2 or v1v3. In addition, assume G is obtained from a θ-graph by

attaching at most one path at some vertex other than one of v1, v2 and v3. Then

λ1(G) ≥ λ1(G2) or λ1(G) ≥ λ1(G3), where G2,G3 are the graphs in Fig. 3.1.

Proof. Let X be a first eigenvector of G, whose entries are arranged as |X1| ≤
|X2| ≤ · · · ≤ |Xn|. We only discuss the case of v1v2 ∈ BX . The case of v1v3 ∈ BX

can be argued similarly and is omitted. Let G0 be the kernel of G. We have three

cases according to the structure of G0; see Fig. 3.4.

1v

2v 3v

1v

2v
3v

1v

2v 3v

Fig. 3.4. An illustration in the proof of Lemma 3.6.
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If G0 is of the first graph in Fig. 3.4, then by Lemma 2.9,

fQ(G,X) = fQ(G− v2, XG−v2
) + S ≥ fQ(G�, YG�

) + S = fQ(G2, Y ),

where G2 is the graph in Fig. 3.1, G� = G2 − v1, and S = (|X1|+ |X2|)2 + (|X2| −
|X3|)2. Here Y is defined as: Yv1 = |X2|, Yv2 = |X1|, Yvi = −|Xi| for i = 3, 4 and

Yvi = (−1)i−5|Xi| for i = 5, . . . , n. So, λ1(G) ≥ λ1(G2).

If G0 is of the second graph in Fig. 3.4, we also get λ1(G) ≥ λ1(G2) by a similar

discussion to the above. If G0 is of the third graph in Fig. 3.4, then by Lemma 2.8,

fQ(G,X) = f(G− v3, XG−v3
) + S ≥ fQ(G△, YG△

) + S = fQ(G3, Y ),

where G3 is the graph in Fig. 3.1, G△ = G3−v3, S = (|X1|− |X3|)2+(|X2|− |X3|)2.
Here Y is defined as: Yvi = |Xi| for i = 1, 2, Yv3 = −|X3|, and Yvi = (−1)i−3|Xi| for
i = 4, . . . , n. So, λ1(G) ≥ λ1(G3).

3.2. Minimum of least eigenvalues of bicyclic graphs. In this section,

we will get the main result of this paper, namely a characterization of the unique

minimizing non-bipartite bicyclic graphs of order n.

Lemma 3.7. Let G be a minimizing graph among all non-bipartite bicyclic graphs

of order n ≥ 9, and let X be a first eigenvector of G. Then

(1) G is formed from a ∞-graph or θ-graph G0 by attaching at most one path P

at some vertex w0, where w0 is the unique vertex with (nonzero) maximum modulus

among all vertices of G0 (if P exists).

(2) BX contains exactly one edge v1u, where v1 has the minimum modulus.

(3) There exists a vertex v2 with the 2nd smallest modulus such that v2 is adjacent

to v1.

(4) If v1v2 ∈ BX , then there exists a vertex v3 of the 3rd smallest modulus such

that v3 is adjacent to v1 or v2.

(5) If v1 has degree 2, then u has the 2nd smallest modulus.

Proof. (1) The argument is similar to the first paragraph of the proof of Corollary

2.13.

(2) By Lemma 2.3(2), we may assume X be such that G − BX is bi-signed.

Arrange the entries of X as |X1| ≤ |X2| ≤ · · · ≤ |Xn|. Assume to the contrary, BX

contains two edges, both of which necessarily lie on odd cycles by Lemma 2.1(1).

If one edge in BX , say vw, incident with a vertex with modulus not less than

|X4|, we will prove λ1(G) ≥ λ1(G3), and hence, G3 is also minimizing. However, this
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is impossible by Lemma 3.3. Observe that G − vw is a unicyclic graph containing

an odd cycle. If the odd cycle of G − vw contains the other basic edge, say v′w′

of BX , such that v′, w′ have the smallest and the 2nd smallest moduli respectively,

and dG−vw(v
′) and dG−uv(w

′) are both greater than 2, noting that the path P in (1)

cannot be attached at v′ or w′, then G0 (the kernel of G) has the structure as the

graph in Fig. 3.5, where C1 is an odd cycle and C2 is an even cycle. In this case,

deleting the edge pv′ and adding a new edge pw′, we arrive at a graph G′ for which

v′ has degree 2. As |Xp| ≥ max{|Xv′ |, |Xw′ |} and G−BX contains no positive edges,

fQ(G,X) ≥ fQ(G
′, X).

w′v′

wv

p

1C

2C

Fig. 3.5. An illustration in the proof of Lemma 3.7(2).

From the above discussion, we may assume G−vw holds the condition of Lemma

2.8 (otherwise taking G′ as G). Now by Lemma 2.8

fQ(G,X) ≥ fQ(G− vw,X) + (Xv +Xw)
2

≥ fQ(G△, Y ) + (|X1|+ |X4|)2 = fQ(G3, Y ),

where G△ is the graph in Fig. 2.1 with the vector Y defined on it, G3 is the graph

in Fig. 3.1. Thus, λ1(G) ≥ λ1(G3). However, G3 is not minimizing by Lemma 3.3.

p

q r

p

q

r

Fig. 3.6. An illustration in the proof of Lemma 3.7(2).

So the two edges of BX share a common vertex, say p, and have the other two

end vertices, say q, r, which have the moduli |X1|, |X2|, |X3| respectively (regardless

of their order) and same signs (including zero), all lying on odd cycles; see Fig. 3.6

for their positions. Let u be a vertex with minimum modulus among all neighbors of

p, q, r other than themselves. If u joins p, q, r, by the assertion (1), G = G4, which is

impossible as G4 is not minimizing by Lemma 3.2(3). Otherwise, we have a graph G′

for which u is adjacent to p, q, r and fQ(G
′, X) ≤ fQ(G,X). Thus, λ1(G

′) = λ1(G)

and G′ is a minimizing graph. By the assertion (1), G′ = G4, also a contradiction.
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Hence, BX contains exactly one basic edge, which must be incident with a vertex, say

v1, with minimum modulus by Lemma 2.3(4).

(3) Let v1u be the only edge of BX . If v2, a vertex with the second modulus, is

not adjacent to v1, by Lemma 2.3(3), v2 and its neighbors all have zero values. In

addition v1 has a zero value. If Xu 6= 0, noting that G− BX = G− v1u is bi-signed,

delete v1u and add a new edge v1v2 or v1u
′ depending on whether v1,v2 are in

the same part of the bipartition for G − BX or not, where u′ is a neighbor of v2 in

G − BX . A non-bipartite bicyclic graph G′ follows having fQ(G
′, X) < fQ(G,X),

a contradiction as G is minimizing. So the vertex u must have a zero value, and is

taken as v2.

(4) If v3, a vertex with the third modulus, is not adjacent to v1 or v2, then v3 and

all its neighbors have zero values. In addition v1 and v2 have zero values. Note that

v1 lies on an odd cycle. If one of the neighbors of v1 other than v2, say w, has nonzero

value, then delete v1w and add a new edge v1v3 or v1w
′ depending on whether v1,v3

are in different part of the bipartition for G − BX or not, where w′ is a neighbor of

v3 in G − BX . A non-bipartite graph G′′ follows having fQ(G
′′, X) < fQ(G,X), a

contradiction as G is minimizing. So w must have zero value, and is taken as v3.

(5) Let v1u be the only edge in BX , where d(v1) = 2. Assume to the contrary

that |Xu| > |X2|. Now v1 has two neighbors: u and the vertex v2 by the assertion (3).

Re-assigning the value of v1 by its minus, denoted the resulting vector as X ′, we have

fQ(G,X) ≥ fQ(G,X ′) with equality only if Xv1
= 0, and consequently, Xv2

= −Xu

by the eigen-equation at v1 for the graph G, a contradiction.

Theorem 3.8. Let G be a non-bipartite bicyclic graph of order n ≥ 9. Then

λ1(G) ≥ λ1(G1),

with equality if and only if G = G1, where G1 is depicted as in Fig. 3.1.

Proof. Suppose G is a minimizing non-bipartite bicyclic graph of order n. The

result will follow if we prove G = G1. Let X be a first eigenvector of G, arranged

as |X1| ≤ |X2| ≤ · · · ≤ |Xn|. By Lemma 3.7(1), we may assume G is obtained from

a ∞-graph or a θ-graph G0 by attaching at most one path P . By Lemma 2.3(2) we

may assume X be such that G − BX is bi-signed. By Lemma 3.7(2), BX contains

exactly one edge v1u, where v1 has the minimum modulus.

Case 1. G0 is a ∞-graph. We will prove G = G1.

Firstly we will show G = G0, that is, no path is attached to G0. Otherwise, let

G = G0(w0) ⋄ Pn−m+1(w0), where G0 has order m < n, and w0 is the unique vertex

with (nonzero) maximum modulus among all vertices of G0. By Lemma 2.11, we have

|Xm−1| < |Xw0
| = |Xm| < |Xm+1| < · · · < |Xn|, where Xm, Xm+1, . . . , Xn are the
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values of the vertices of P starting from w0.

As BX contains exactly one edge, we may assume C1, C2 are the two cycles of G0,

where C1 is odd and C2 is even. The vertex w0 must lie on C2; otherwise, removing

C2 and attaching it at w0, we could get a graph whose least eigenvalue is less than

G by Lemma 2.10. Similarly, by Lemma 2.10, C1 contains exactly one vertex, say p,

with degree greater than 2 and also with maximum modulus among all vertices of C1.

So Xp 6= 0, by Corollary 2.5(1). If p = v1, then all vertices of C1 have same moduli

as v1, and the vertex u is chosen as v1.

Thus, G0 − v1 is a unicyclic graph of order m− 1(≥ 5), which contains an even

cycle with w0 (the vertex of maximum modulus) on the cycle. Now letting r, s be two

neighbors of v1, by Lemma 2.9 and its proof, we have

fQ(G,X) = fQ(G0 − v1, XG0−v1
) + fQ(P,XP ) + (Xv1

+Xr)
2 + (Xv1

+Xs)
2

≥ fQ(G�, YG�
) +

n−1
∑

i=m

(|Xi| − |Xi+1|)2 + (|X1|+ |X2|)2 + (|X1| − |X3|)2

= fQ(Ḡ1, Y ),

where Ḡ1 is the graph in Fig. 3.2, G� is the subgraph of Ḡ1 induced by v2, v3, . . . , vm,

and Y is defined as: Yvi = |Xi| for i = 1, 2, Yvi = (−1)i|Xi| for i = 3, . . . ,m − 2,

Yvm−1
= (−1)m−2|Xm−1|, Yvi = (−1)i−1|Xi| for i = m, . . . , n. So, λ1(G) ≥ λ1(Ḡ1).

As G is minimizing, Ḡ1 is also minimizing, where the path P is also attached at vm
now. However, by Lemma 3.4, λ1(Ḡ1) > λ1(G1), a contradiction.

So G = G0, that is, G is obtained from C1, C2 connected by a (possibly trivial)

path, i.e., G is the graph Ĝ1 in Fig. 3.3. If Ĝ1 contains an odd cycle of order at least

5 or an even cycle of order at least 6, then Ĝ1 is not minimizing by Lemma 3.5. So

we get the desired assertion in this case.

Case 2. G0 is a θ-graph. We will prove λ1(G) is one of λ1(G2), λ1(G3) and

λ1(G4). However, by Lemma 3.2(3) and Lemma 3.3, λ1(G) > λ1(G1), a contradic-

tion. So this case cannot occur. Recall that BX = {v1u}.

Case 2.1. |Xu| ≤ |X3|. In this case, we will show there exists a minimizing graph

H whose kernel is a θ-graph and contains a C3 made by vertices v1,v2,v3, where

v2,v3 have the 2nd smallest and the 3rd smallest moduli, respectively. Furthermore

λ1(H) equals λ1(G2) or λ1(G3).

Case 2.1.1. |Xu| = |X2|. Denote u as v2. By Lemma 3.7(4), there exists a

vertex with third smallest modulus, say v3, adjacent to v1 or v2. If v3 is adjacent

to v1 but not v2, letting u be a neighbor of v2 other than v1, and deleting v2u

and adding v2v3, we would get a graph G′ containing C3 made by v1,v2,v3, and

holding fQ(G,X) ≥ fQ(G
′, X), which implies G′ is also minimizing with X as a first
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eigenvector. If G′ contains a ∞-graph as its kernel, then from the discussion of Case

1, G′ = G1 with X as a first eigenvector. By the eigen-equations of X for G and G′

both at v3, we get Xv2
= −Xv3

, a contradiction to Lemma 3.2(1). So G′ contains a

θ-graph as its kernel, and also a triangle C3 made by v1,v2,v3.

Similarly, if v3 is adjacent to v2 but not v1, letting w be a neighbor of v1 other

than v2, and deleting v1w and adding v1v3, we would get a graph G′′ containing

C3 made by v1,v2,v3, and holding fQ(G,X) ≥ fQ(G
′′, X), which implies G′′ is also

minimizing. By a discussion similar to the above, G′′ contains a θ-graph as its kernel,

and also a triangle C3 made by v1,v2,v3.

Case 2.1.2. |Xu| = |X3| > |X2|. Denote u as v3. By Lemma 3.7(3), there exists

a vertex with the 2nd smallest modulus, say v2, adjacent to v1. In addition, v2 lies

on cycle; otherwise, |X2| > |Xw0
| > |X3|, a contradiction. If v2 is not adjacent to v3,

letting v be a neighbor of v2 other than v1, deleting v2v and adding v2v3, we would get

a graph G′′′ containing C3 made by v1,v2,v3, and holding fQ(G,X) ≥ fQ(G
′′′, X),

which implies G′′′ is also minimizing. By a discussion similar to Case 2.1.1, G′′′

contains a θ-graph as its kernel, and also a triangle C3 made by v1,v2,v3.

From the above discussion, we arrive at a minimizing graph H with X as a

first eigenvector, which contains a θ-graph as its kernel, and a triangle C3 made by

v1,v2,v3. By Lemma 3.7(2), the basic edge set BX of H contains only one edge,

which is incident to a vertex of minimal modulus by Lemma 2.3(4). So the basic edge

set BX of H contains only v1v2 or v1v3. By Lemma 3.6, λ1(H) equals λ1(G2) or

λ1(G3).

Case 2.2. v1u is a basic edge of BX , where |Xu| > |X3|. Then by Lemma 3.7(5),

v1 has degree 3. Noting that G − v1u is a unicyclic graph containing an even cycle

with v1 (the vertex with minimum modulus) on that cycle, by Lemma 2.9,

fQ(G,X) = f(G− v1u,XG−v1u) + (|X1|+ |Xu|)2

≥ fQ(G�, YG�
) + (|X1|+ |X4|)2 = fQ(G4, Y ),

where G4 is the graph in Fig. 3.1, G� = G4 − v1v4, Y is defined as: Yv1 = |X1|,
Yvi = −|Xi| for i = 2, 3, and Yvi = (−1)i−4|Xi| for i = 4, . . . , n. So λ1(G) ≥ λ1(G4),

and hence, λ1(G) = λ1(G4) as G is a minimizing graph.

The result follows from the above discussion.
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