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MINIMAL CP RANK∗

NAOMI SHAKED-MONDERER†

Abstract. For every completely positive matrix A, cp-rankA ≥ rankA. Let cp-rankG be
the maximal cp-rank of a CP matrix realization of G. Then for every graph G on n vertices,
cp-rankG ≥ n. In this paper the graphs G on n vertices for which equality holds in the last
inequality, and graphs G such that cp-rankA = rankA for every CP matrix realization A of G, are
characterized.
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1. Introduction. An n× n matrix A is completely positive (CP) if there exists
an entrywise nonnegative (not necessarily square) matrix B such that A = BBT .
Equivalently, A is completely positive if it can be represented as a sum of rank 1
symmetric entrywise nonnegative matrices

A =
m∑

i=1

bib
T
i .(1.1)

Such a representation is called a rank 1 representation of A. The vectors bi are the
columns of a matrix B satisfying A = BBT . The minimal m for which there exists
an m×n nonnegative matrix B satisfying A = BBT (or a rank 1 representation with
m summands) is called the cp-rank of A, and denoted by cp-rankA.

Every CP matrix is doubly nonnegative (DNN), that is, it is both nonnegative
and positive semidefinite. The converse is not true, and the problem of determining
which DNN matrices are CP is an open one. Computing the cp-rank of a given CP
matrix is another open problem. For surveys of work done on these two problems,
see [1], [4], [10], and also [7, pp. 304–306].

The definition clearly implies that cp-rankA ≥ rankA for every CP matrix A. It
is known that equality holds when n ≤ 3, or when rankA ≤ 2. But for every n ≥ 4
there exists an n×n CP matrix such that cp-rankA > rankA. For 4×4 CP matrices
cp-rankA ≤ 4. For n ≥ 5, there exist n× n CP matrices with cp-rank greater than n
[15, 5, 6].

An upper bound on cp-rankA in terms of rankA was established in [12] and
sharpened in [3] to the following tight inequality (when rankA ≥ 2):

cp-rankA ≤ rankA(rankA+ 1)
2

− 1.

In particular this implies that for every n× n CP matrix A (n ≥ 2),

cp-rankA ≤ n(n+ 1)
2

− 1.
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However, it seems that the least upper bound on the cp-ranks of all n×n CP matrices
may be much smaller. In [11], Drew, Johnson and Loewy conjectured that for every
n× n CP matrix A (n ≥ 4),

cp-rankA ≤
⌊
n2

4

⌋
.

So far, the conjecture has been proved only for matrices with special graphs, or for
special matrices.

Here, a graph means a simple undirected graph. If A is an n × n symmetric
matrix, the graph of A, denoted by G(A), is the graph on vertices 1, 2, . . . , n with
{i, j} an edge iff i �= j and aij �= 0. If A is a CP matrix and G(A) = G, we say that
A is a CP matrix realization of G.

Definition 1.1. Let G be a graph on n vertices. The cp-rank of G, denoted by
cp-rankG, is the maximal cp-rank of a CP matrix realization of G, that is,

cp-rankG = max{cp-rankA |A is CP and G(A) = G}.

We may rephrase the Drew-Johnson-Loewy conjecture: For every graph G on
n ≥ 4 vertices, cp-rankG ≤

⌊
n2

4

⌋
. It was proved for triangle free graphs in [11], for

graphs which contain no odd cycle on 5 or more vertices in [10], for all graphs on 5
vertices which are not the complete graph in [14], and for nonnegative matrices with
a positive semidefinite comparison matrix (and any graph) in [8]. But the conjecture
is still open.

Clearly, for any graph G on n vertices, cp-rankG ≥ n. In this paper we charac-
terize all graphs which attain this lower bound.

Remark 1.2. A graph G on n vertices satisfies cp-rankG = n if and only if
for every nonsingular CP matrix A such that G(A) = G, cp-rankA = rankA. To
see that, note that if cp-rankG = n, A is nonsingular and CP, and G(A) = G, then
n = rankA ≤ cp-rankA ≤ n and equality follows. For the reverse implication, note
that each CP matrix A satisfying G(A) = G is a limit of nonsingular CP matrices
with the same graph: A = limε→0+(A+ εI). If for each ε > 0 cp-rank (A+ εI) = n,
then cp-rankA ≤ n. This implies cp-rankG = n.

The remark shows that our problem is related to the question: Which CP matrices
A satisfy cp-rankA = rankA?

Definition 1.3. We say that a graph G is of type I if every nonsingular CP
matrix A with graph G satisfies cp-rankA = rankA. We say that G is of type II if
every CP matrix A with graph G has cp-rankA = rankA.

Of course, if G is of type II, then G is of type I. In this paper we characterize
all graphs of type I and all graphs of type II. We show that a graph is of type I iff
it does not contain a triangle free graph with more edges than vertices, and a graph
is of type II iff it contains no even cycle and no triangle free graph with more edges
than vertices.

We denote the vertex set of a graph G by V (G), the edge set by E(G). We assume
that the reader is familiar with basic graph theoretic terms, such as a cycle, a path
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and a complete graph. The notations and terminology we use are mostly as in [9].
We mention here some of them: A graph H is a subgraph of G (notation: H ⊆ G)
if V (H) ⊆ V (G) and E(H) ⊆ E(G). A subgraph H of G is an induced subgraph if
E(H) contains all edges of G which have both ends in V (H). We denote the cycle on
n vertices by Cn, and the complete graph on n vertices by Kn (K2 is a single edge,
K3 = C3 is a triangle). A clique in a graph G is a subset of V (G) that induces a
complete subgraph. We denote by dG(u, v) the distance in G between the vertices u
and v. A chord of a cycle C is an edge {u, v} connecting vertices u, v of C, where
dC(u, v) ≥ 2. A vertex v of a connected graph G is a cut vertex if deleting it, together
with its adjacent edges, disconnects G. A connected graph is a block if it has no cut
vertices. A block of a connected graph G is a subgraph of G which is a block and
is maximal with respect to this property. We will use the fact that in a block on 3
vertices or more, any two vertices are connected by at least two paths, which have no
vertex in common except for the first and the last; see [9, p. 44]. A graph G is triangle
free if it has no clique of size 3 or more. We will say that cliques V1, V2, . . . , Vk cover
G, if the subgraphs of G they induce, G1, G2, . . . , Gk, cover G in the following sense:
V (G) = ∪k

i=1Vi and E(G) = ∪k
i=1E(Gi). We denote by c(G) the minimal number of

cliques in a clique cover of G.
Other notations and terminology: We denote the cardinality of a set E by |E|.

The support of a nonnegative vector a ∈ R
n, aT = (a1, . . . , an) is

supp a = {1 ≤ i ≤ n | ai �= 0}.
For every n, we denote by e1, . . . , en the vectors of the standard basis of R

n, and by
Eij the n×n matrix whose only nonzero entry is 1 in the ij position. Jn is the n×n
matrix of all ones, In is the n×n identity matrix, and 0n is the n×n zero matrix. If
A is an n× n matrix and α ⊆ {1, . . . , n}, we denote by A[α] the principal submatrix
of A on rows and columns α. For a CP matrix, a minimal rank 1 representation is a
rank 1 representation of A which has cp-rankA summands. Note that if (1.1) is any
rank 1 representation of A, then supp b1, . . . , supp bm are m cliques covering G(A).
Hence

Observation 1.4. For every CP matrix A, cp-rankA ≥ c(G(A)).
A graph is completely positive if every DNN matrix realization of the graph is CP.

We will use the following two results. The first was obtained in a series of papers:
Theorem 1.5. [15, 5, 6, 13] A graph G is completely positive if and only if it

has no subgraph which is an odd cycle of length greater than 4.
The second theorem we use is obtained by combining a result of [11] with a result

of [5], and the above observation.
Theorem 1.6. [11, 5] If G is a triangle free graph on n ≥ 4 vertices and A is a

CP matrix realization of G, then
(a) If G is a tree, cp-rankA = rankA.
(b) If G is not a tree, cp-rankA = |E(G)|.
Finally, a permutation similarity preserves both complete positivity and cp-rank.

Thus we may number (and renumber) the vertices of any graph as we please. Also,
it is easy to see that if A = A1 ⊕ A2, then A is CP iff A1 and A2 are, rankA =
rankA1 + rankA2, and cp-rankA = cp-rankA1 + cp-rankA2. Hence, a graph G is of
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type I (type II) iff every connected component of G is of type I (type II), and we may
restrict our attention to connected graphs and irreducible matrices.

2. Graphs of Types I and II. The main results are Theorems 2.12 and 2.16.
We prove them through a series of propositions. We begin with several simple exam-
ples of graphs of both types.

Example 2.1. By the results mentioned in the introduction, every graph on 3
vertices or less is of type II. Every graph on 4 vertices is of type I, but there exist graphs
on 4 vertices which are not of type II. By a continuity argument this implies that K4

itself is not of type II: Suppose A is any 4×4 CP matrix such that cp-rankA > rankA.
A necessarily has nonzero entries in each row. Let e be the vector of all ones, and
define Aε = A + ε(Ae)(Ae)T . For each ε > 0, Aε is a CP matrix, G(Aε) = K4 and
rankAε = rankA. There exists an ε such that cp-rankAε > rankAε. Otherwise,
cp-rankAε = rankAε = rankA for every ε. But since A = limε→0+ Aε, this would
imply that cp-rankA ≤ rankA, which contradicts the choice of A.

By Theorem 1.6, every tree is of type II.
Cn is of type I for each n ≥ 3. For n ≥ 4 this follows from Theorem 1.6.
We show that Cn is of type II iff n ≥ 3 is odd: By Theorem 1.6, the cp-rank of each

CP matrix realization of Cn, n ≥ 4, is n. If n ≥ 4 is even, then there exists a CP matrix
A with graph Cn and rank n−1; see [6]. For such A, cp-rankA = n > n−1 = rankA.
But if n ≥ 5 is odd, every CP matrix realization of Cn is necessarily of rank n. To see
that, note that if A is such a matrix, and (1.1) is a rank 1 representation of A, then
each edge of G(A) is the support of at least one of the vectors b1, . . . , bm. So suppose
b1, . . . , bn are nonnegative vectors such that supp bi = {i, i + 1} for i = 1, . . . , n − 1
and supp bn = {n, 1}. By the patterns of the vectors

b1b2 . . . bn−1bn =

+ 0 0 · · · · · · 0 +
+ + 0 · · · · · · 0 0

0 + +
...

...

0 0 +
. . .

...
...

. . . . . .
0 0 0 + 0
0 0 0 · · · + +

it is clear that b1, . . . , bn−1 are linearly independent and, since n is odd, that bn
cannot be a linear combination of the first n− 1 vectors. Hence these are n linearly
independent vectors in the column space of A, csA; rankA = n; see also [2]. Since
Cn is of type I, cp-rankA = rankA = n for every CP matrix realization of Cn.

Remark 2.2. By Theorem 1.6, a triangle free graph G that has more edges than
vertices is not of type I: Such a graph is not a tree. Hence if A is a nonsingular CP
matrix and G(A) = G, then rankA = |V (G)|, while cp-rankA = |E(G)| > |V (G)|.

Proposition 2.3. Let G be a connected graph with a cut vertex. If G = G1 ∪G2

where G1 ∩G2 is a single vertex, and G1 is either one edge or a triangle, then
(a) G is of type I iff G2 is of type I,

and
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(b) G is of type II iff G2 is of type II.
Proof. Assume G1 is the complete graph on vertices 1, . . . , k, k = 2 or 3, and G2

is a graph on vertices k, . . . , n. If A is a CP matrix realization of G, then

A = (A1 ⊕ 0n−k) + (0k−1 ⊕A2),

where A1 and A2 are completely positive, G(A1) = G1 and G(A2) = G2.

rankA1 + rankA2 − 1 ≤ rankA ≤ rankA1 + rankA2

and equality on the left occurs iff ek ∈ cs (A1 ⊕ 0n−k) ∩ cs (0k−1 ⊕ A2). But if
ek ∈ cs (A1 ⊕ 0n−k), then there exists δ > 0 such that (A1 ⊕ 0n−k) − δeke

T
k =

(A1 ⊕ 0n−k) − δEkk is positive semidefinite. Let δ0 be a maximal such δ, and let
A′

1 ⊕ 0n−k = (A1 ⊕ 0n−k) − δ0Ekk and 0k−1 ⊕ A′
2 = (0k−1 ⊕ A2) + δ0Ekk. Then A′

1

is DNN and G(A′
1) = G1. Since G1 is a completely positive graph (Theorem 1.5),

A′
1 is CP. Clearly A′

2 is also CP, G(A′
2) = G2, and A = (A′

1 ⊕ 0n−k) + (0k−1 ⊕ A′
2).

Hence we may assume that A = (A1 ⊕ 0n−k) + (0k−1 ⊕ A2), where A1 and A2 are
completely positive, G(A1) = G1 and G(A2) = G2, and ek /∈ cs (A1 ⊕ 0n−k), so that
rankA = rankA1 + rankA2. Also, since A1 is 2× 2 or 3× 3, cp-rankA1 = rankA1.

Now if G2 is of type II, then cp-rankA2 = rankA2, and therefore

rankA ≤ cp-rankA ≤ cp-rankA1 + cp-rankA2 = rankA1 + rankA2 = rankA.

Suppose G2 is of type I and rankA = n. Since ek /∈ cs (A1 ⊕ 0n−k), rankA1 ≤ k − 1.
And this inequality together with the equality rankA1 + rankA2 = n implies that
rankA2 ≥ n − k + 1, and therefore rankA2 = n − k + 1. But G(A2) = G2, and G2

is of type I, hence cp-rankA2 = rankA2, and we deduce as above that cp-rankA =
rankA = n.

Corollary 2.4. If H is a block of a connected graph G, and every other block
of G is either an edge or a triangle, then G is of type I (type II) iff H is of type I
(respectively, type II).

Proof. This follows easily from the previous proposition by induction on the
number of blocks other than H in G. In a graph G with two or more blocks, there
exists a block which has exactly one cut vertex of G among its vertices. As a matter
of fact, there exist at least two such blocks. Thus if G is a graph that fits the above
description, and G has at least two blocks, we may assume that G = G1 ∪G2, where
G1 ∩G2 consists of a single vertex, G1 is either an edge or a triangle, and G2 fits the
same description as G, but has one less triangle or edge block than G.

Corollary 2.5. If in a connected graph G each block is either an edge or a
triangle, then G is of type II.

Proposition 2.6. If G is a graph of type I, then every subgraph of G is also of
type I.

Proof. First suppose that V (H) = V (G) = {1, . . . , n} and E(H) is a proper
subset of E(G). Let A be a rank n CP matrix realization of H. For each edge
e ∈ E(G) \ E(H), denote by 1e the 0− 1 vector supported by e. For every ε > 0 let

Aε = A+
∑

e∈E(G)\E(H)

ε1e1T
e .
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Then Aε is clearly CP, G(Aε) = G and (since rankAε ≥ rankA = n) rankAε = n.
Hence for each ε > 0 cp-rankAε = n. Since A = limε→0+ Aε, this implies that
cp-rankA ≤ n, and therefore cp-rankA = n.

Next suppose that V (H) is a proper subset of V (G). Assume w.l.o.g. that V (H) =
{1, . . . , k} for some k < n. Given a rank k CP matrix A such that G(A) = H, let

A1 = A⊕ In−k.

Clearly A1 is a CP matrix, rankA1 = n, V (G(A1)) = {1, . . . , n}, and E(G(A1)) is a
subset of E(G). By the first part of the proof, cp-rankA1 = n. It is easy to see that
every minimal rank 1 representation of A1 is of the form

k∑
i=1

bib
T
i +

n∑
i=k+1

eie
T
i ,

where
k∑

i=1

bib
T
i is a rank 1 representation of A. Hence cp-rankA = k.

Combining the last proposition together with remark 2.2 we get the following
result.

Corollary 2.7. If a graph G has a triangle free subgraph with more edges than
vertices, then G is not of type I.

We intend to show that the converse of Corollary 2.7 holds also, and in the process
describe all graphs which have no triangle free subgraph with more edges than vertices.
First we introduce several blocks which contain no such triangle free subgraph. For
n ≥ 3 denote by S2n the cycle on 2n vertices with chords connecting each even vertex
to the next even vertex (assuming the cycle vertices are numbered consecutively).

✁
✁
✁
✁
✁
✁❆

❆
❆
❆
❆
❆

❆
❆
❆✁

✁
✁

� � �

� �

�

S6

❅
❅

❅

�
�

�

�
�

�

❅
❅

❅

� � �

� �

� � �

S8

❅
❅ �

�

❅
❅�

�

❆
❆❍❍✟✟✁

✁
✁
✁
✟✟❍❍

❆
❆

�

� �

�

�

��

�

�

�

�

�

�

�

�

�

�

S16

Note that the chords generate an n-cycle (on the n even vertices). We will call this
cycle the inner cycle of S2n

We denote by S5 the graph

✁
✁
✁
✁❆

❆
❆
❆

❆
❆
❆
❆

✁
✁

✁
✁� � �

� �

S5
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Proposition 2.8. For every n ≥ 3 the graph S2n is of type I.
Proof. We first consider the case n ≥ 4. Renumber S2n’s vertices so that 1

is a vertex of degree 1, adjacent to vertices 2 and 3. Let A be a CP matrix with
G(A) = S2n and rankA = 2n. Take any rank 1 representation of A of the form (1.1),
and let

Ω1 = {1 ≤ i ≤ m | supp bi ⊆ {1, 2, 3}} , Ω2 = {1, 2, . . . ,m} \ Ω1,

B =
∑
i∈Ω1

bib
T
i , C =

∑
i∈Ω2

bib
T
i .

Then B and C are CP, B = B′ ⊕ 02n−3, C = 01 ⊕C ′. G(B′) is a triangle, and G(C ′)
is a graph on 2n−1 vertices which is a “chain”of n−1 triangles; every block of G(C ′))
is a triangle. Of course, A = B + C. Note that

B′ =


 a11 a12 a13

a12 α0 a23

a13 a23 β0


 ,

where a2
12/a11 ≤ α0 ≤ a22. If α0 = a2

12/a11, then a23 = (a12a13)/a11 and

B′ =


 a11 a12 a13

a12 α0 a23

a13 a23 a2
13/a11


+ δE33,

for some δ ≥ 0. In this case, denote B′′ = B′ − δE33 and C ′′ = C ′ + δE33. B′′ is CP,
and clearly so is C ′′; A = (B′′ ⊕ 02n−3) + (01 ⊕ C ′′), and

2n = rankA ≤ cp-rankA ≤ cp-rankB′′ + cp-rankC ′′ ≤ 1 + (2n− 1) = 2n.

Now consider the case a2
12/a11 < α0 ≤ a22. For every a2

12/a11 < α ≤ a22 denote

B′(α) =


 a11 a12 a13

a12 α a23

a13 a23 f(α)


 ,

where f(α) is the unique real number for which B′(α) is singular, i.e., f(α) =
[a23(a11a23 − a12a13) − a13(a12a23 − αa13)]/(a11α − a2

12). Since a11 > 0 and a11α −
a12

2 > 0, B′(α) is a positive semidefinite matrix. In particular f(α) ≥ 0, and
since B′(α) is nonnegative it is CP (Theorem 1.5). Let B(α) = B′(α) ⊕ 02n−3, and
C(α) = A − B(α). C(α) = 01 ⊕ C ′(α). Now if B′, B, C ′ and C are as above, then
β0 ≥ f(α0), B(α0) = B− (β0 − f(α0))E33, and C(α0) = C +(β0 − f(α0))E33. Hence
C(α0) is CP. On the other hand, it is clear that C(a22) is not positive semidefinite. By
the continuity of the eigenvalues of C(α), it follows that there exists a α0 < α1 < a22

such that C(α1) is a singular positive semidefinite matrix. In particular, C(α1)22 > 0,
C(α1)33 > 0, so C(α1) is DNN. By Theorem 1.5, G(C(α1)) is a completely positive
graph, hence C(α1) is a CP matrix. Thus we have

2n = rankA ≤ cp-rankA ≤ cp-rankB′(α1) + cp-rankC ′(α1) ≤ 2 + (2n− 2) = 2n.
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The last inequality follows from the fact that both B′(α1) and C ′(α1) are singular
and their graphs are of type II.

For the proof that S6 is also of type I we need to show first that S5 is of type I.
Number the vertices of S5 as follows:

✁
✁
✁
✁❆

❆
❆
❆

❆
❆
❆
❆

✁
✁

✁
✁� � �

� �

1 3 5

2 4

Let A be a CP matrix with G(A) = S5 and rankA = 5. We use a technique
of [14] to show that cp-rankA ≤ 5. Let (1.1) be a rank 1 representation of A, and
denote

Ω1 = {1 ≤ i ≤ m | 1 ∈ supp bi} , Ω2 = {1, . . . ,m} \ Ω1

A1 =
∑
i∈Ω1

bib
T
i , A2 =

∑
i∈Ω2

bib
T
i .

Both matrices are CP and A = A1+A2. Rows 4 and 5 ofA1 are zero, andA2 = 01⊕A′
2.

The support of row 5 in A2 is contained in that of row 4. Let

a = min

{
(A2)4j

(A2)5j

∣∣∣∣∣ j = 3, 4, 5

}
.

(a is attained at some j �= 4, since (A2)44(A2)55 ≥ (A2)245). Let S = I5 − aE45. Then
SA2S

T is a is a DNN matrix, and at least one of its entries in positions 4,3 and 4,5 is
zero. Since SA2S

T is a DNN matrix with just four nonzero rows, it is CP. Since row 3
of A1 is zero, we have SA1S

T = A1. Hence SAST = SA1S
T +SA2S

T = A1+SA2S
T

is CP, rank (SAST ) = rankA = 5, and cp-rankA ≤ cp-rank (SAST ) (since S−1 is a
nonnegative matrix). Therefore it suffices to show that cp-rank (SAST ) = 5. But the
graph of SAST is contained in one of the following graphs

✁
✁
✁
✁❆

❆
❆
❆

❆
❆
❆
❆� � �

� �

1 3 5

2 4

✁
✁
✁
✁❆

❆
❆
❆

✁
✁

✁
✁� � �

� �

1 3 5

2 4

The graph on the left is a subgraph of S8; the one on the right has two blocks, a
K2 and a block on 4 vertices. By the beginning of this proof, Example 2.1, and
Proposition 2.3, both graphs are of type I, hence cp-rank (SAST ) ≤ 5.

We now show by similar arguments that S6 is also of type I. Renumber its vertices
as follows:
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✁
✁
✁
✁
✁
✁❆

❆
❆
❆
❆
❆

❆
❆
❆✁

✁
✁

� � �

� �

�

1 5 3

6 4

2

Let A be a rank 6 CP matrix realization of S6. Let (1.1) be a rank 1 representation
of A and denote

Ω1 = {1 ≤ i ≤ m | 1 ∈ supp bi},
Ω2 = {1 ≤ i ≤ m | 2 ∈ supp bi},
Ω3 = {1, . . . ,m} \ (Ω1 ∪ Ω2).

Note that Ω1 ∩ Ω2 = ∅. Let

A1 =
∑
i∈Ω1

bib
T
i , A2 =

∑
i∈Ω2

bib
T
i , A3 =

∑
i∈Ω3

bib
T
i .

These are three CP matrices, and A = A1 + A2 + A3. Rows 2, 3, 4 of A1 are zero,
rows 1, 3, 5 of A2 are zero, and rows 1 and 2 of A3 are zero. In A3, the support of row
3 is contained in that of row 4. Let

a = min

{
(A3)4j

(A3)3j

∣∣∣∣∣ j = 3, 4, 5

}
,

and S = I6 − aE43. Then SA3S
T is a CP matrix, and at least one of its entries in

positions 4,3 or 4,5 is zero; SAST = SA1S
T +SA2S

T +SA3S
T = A1 +A2 + SA3S

T

is CP, rank (SAST ) = rankA, and cp-rankA ≤ cp-rank (SAST ). Finally, the graph
of SAST is contained in one of the following graphs

✁
✁
✁
✁
✁
✁❆

❆
❆
❆
❆
❆

❆
❆
❆� � �

� �

�

1 5 3

6 4

2

✁
✁
✁
✁
✁
✁❆

❆
❆

❆
❆
❆✁

✁
✁

� � �

� �

�

1 5 3

6 4

2

The graph on the left is a subgraph of S8, and the graph on the right has two blocks:
a K2 and an S5. By the first parts of this proof and Proposition 2.3 both graphs are
of type I. Hence G(SAST ) is of type I, and cp-rank (SAST ) ≤ 6.

Proposition 2.9. If a connected graph G has no triangle free subgraph with
more edges than vertices, then each block of G has one of the following forms:

(i) a single edge
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(ii) a triangle
(iii) a K4

(iv) a block which is contained in S2m for some m ≥ 3,
and at most one of G’s blocks has more than 3 vertices.

Before presenting the proof, we state and prove the following lemma.
Lemma 2.10. Let G be a connected graph. If H is a block which has no triangle

free subgraph with more edges than vertices, then H has one of the forms (i), (ii), (iii)
or (iv) of Proposition 2.9.

Proof. We need to show that if that H is a block on n ≥ 4 vertices, which has
no such triangle free subgraph, then H has form (iii) or (iv). The only blocks on 4
vertices are

�

�

�

�

�

�

�

�

❅
❅

❅
❅

❅ �

�

�

�

❅
❅

❅
❅

❅�
�

�
�

�

The first two are subgraphs of S6. Hence we consider the case n ≥ 5. Let C be a
cycle subgraph of H of maximal length. We first show that C is a cycle on all of
H’s n vertices. If this is not the case, assume w.l.o.g. that C is the cycle on vertices
1, 2, . . . , k, k < n, with edges {i, i+1}, i = 1, . . . , k− 1, and {k, 1}. Let v be a vertex
in H which is not a vertex of C. Since H is connected, there exists a path P from
v to 1. Let v1 be the first vertex on this path which is a vertex of C. Let P1 be the
section of P which is a path from v to v1. We now show that there is also a similar
path from v to a different vertex of C. If v1 �= 1, take a path Q from v to 1 which
has no internal vertex in common with P . Let v2 be the first vertex on Q which is a
vertex of C. Let P2 be the section of Q which is a path from v to v2. If v1 = 1, then
if we add to P the edge {1, 2}, we get a path from v to 2. There is another path from
v to 2, which has no internal vertex in common with the first path, say Q. Let v2 be
the first vertex on Q which is a vertex of C, and let P2 be the section of Q which is a
path from v to v2. In any case, v1 �= v2, vi is the only vertex on Pi which is a vertex
of C, i = 1, 2, and v is the only vertex which is both a vertex of P1 and a vertex of
P2. Denote by li the number of edges in Pi, i = 1, 2.

�

�

�

v1

v2

v

If v1 and v2 are adjacent in C, then the graph consisting of all edges of C other
than {v1, v2}, the edges of P1 and the edges of P2, is a cycle on k+ l1 + l2 − 1 ≥ k+1
vertices, in contradiction to the choice of C. If v1 and v2 are not adjacent in C, then
k > 3, and the graph consisting of all of C’s edges, and the edges of P1 and P2 is a
triangle free graph on k+l1+l2−1 vertices, with k+l1+l2 edges, and this contradicts
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the initial assumption regarding H. Hence there is no such vertex v, and the maximal
cycle C is a spanning cycle of H.

We now consider which chords of C may be edges of H. There is no edge in H
which is a chord between two vertices u, v such that the dC(u, v) ≥ 3, since the graph
consisting of C and such a chord would be a triangle free subgraph of H which has n
vertices and n + 1 edges. Hence, if there exists an edge of H which is a chord of C,
it would be {u, v} where dC(u, v) = 2. If w is the vertex such that dC(u,w) = 1 and
dC(v, w) = 1, then there is no edge {w, x} in H which is a chord of C. Otherwise,
dC(w, x) = 2, so either u or v is halfway between w and x. Assume w.l.o.g. that v is.
Then the graph consisting of the two chords, and all of G’s edges except for {w, v}, is
a triangle free graph on n vertices with 2 + (n− 1) = n+ 1 edges. (n ≥ 5 guarantees
an additional vertex on the cycle C, between u and x.)

�
�

✟✟✟✟

❅
❅

❍❍❍❍� �

� �

�

u x

w v

This completes the proof that H is subgraph of some S2m (If H consists of the cycle
C and k such chords, then H ⊆ S2(n−k)).

Proof of Proposition 2.9. If G has no triangle free subgraph with more edges than
vertices, then no block of G has such subgraph. By Lemma 2.10, each block of G
has one of the forms (i) – (iv). Suppose two of these blocks had 4 vertices or more.
By the proof of Lemma 2.10, each of these large blocks has a spanning cycle. Let C1

and C2 be spanning cycles of these two blocks. The cycles may share a vertex, or,
if they don’t, there is a path in G from a vertex of C1 to a vertex of C2. A graph
consisting of two cycles on 4 or more vertices sharing a vertex, or two such cycles and
a path connecting them, is a triangle free graph with more edges than vertices. But
this contradicts our assumption on G, hence there cannot be two blocks on 4 or more
vertices in G.

Proposition 2.11. If G is a connected graph of the form described in Proposition
2.9, then G is of type I.

Proof. Combine Propositions 2.6 and 2.8 with Corollary 2.4.
All these propositions add up to the first of our main results.
Theorem 2.12. Let G be a connected graph, then the following are equivalent:
(a) G is of type I.
(b) G contains no triangle free graph with more edges than vertices.
(c) Each block of G is an edge, or a triangle, or a K4, or a subgraph of S2m for

some m ≥ 3, and at most one of G’s blocks has more than 3 vertices.
We now characterize graphs of type II. Since every type II graph is of type I, it

suffices to check which of the graphs described in Theorem 2.12 is of type II.
We first consider some specific blocks. Denote by Hn the graph on n vertices,

n ≥ 4, which consists of a cycle C on n vertices and exactly one chord, joining vertices
u and v of the cycle, where dC(u, v) = 2.
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❅
❅

❅
❅

❅�

�

�

�

H4

�
��

❅
❅❅

�

�

�

�

�

H5

❝
❝❝�

��

�
��

❝
❝❝

�

�

�

�

�

�

H6

Proposition 2.13. If n ≥ 5, then Hn is not of type II.
Proof. Let the edges of Hn be {i, i+ 1}, i = 1, . . . , n− 1, {1, n− 1}, and {1, n}.

We construct a CP matrix with graph Hn, rank n − 1, and cp-rank n. Actually, we
use one construction for the case that n ≥ 5 is odd, and another for the case that
n ≥ 6 is even.

For odd n: Let R be the following n× n matrix:

R =




1 0 0 · · · · · · 1 1
1 1 0 · · · · · · 0 0

0 1 1
...

...

0 0 1
. . .

...
...

. . . . . . 0 0
0 0 0 1 1 1
0 0 0 · · · 0 0 1



.

If n is even, let R be the following n× n matrix:

R =




1 0 0 · · · · · · 1 2
1 1 0 · · · · · · 0 0

0 1 1
...

...

0 0 1
. . .

...
...

. . . . . .
0 0 0 1 1 0
0 0 0 · · · 0 1 1



.

In both cases let A = RRT . Then for odd n,

A =




3 1 0 · · · · · · 2 1
1 2 1 · · · · · · 0 0

0 1 2 1
...

...
. . . . . . . . .

...
...

. . . 2 1 0
2 0 0 1 3 1
1 0 0 · · · 0 1 1



.
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For even n,

A =




6 1 0 · · · · · · 1 3
1 2 1 · · · · · · 0 0

0 1 2 1
...

...
. . . . . . . . .

...
...

. . . 2 1 0
1 0 0 1 2 1
3 0 0 · · · 0 1 2



.

In both cases it is clear that A is CP, G(A) = Hn, and cp-rankA ≤ n. Also, it is
easy to see that rankA = n− 1. Denote the ith column of R by Ri, then for odd n,

columns 1, . . . , n− 2, n of R are linearly independent and Rn−1 =
n−2∑
i=1

(−1)i+1Ri. For

even n the first n−1 columns of R are linearly independent and Rn =
n−1∑
i=1

(−1)i+1Ri.

We show that in both cases cp-rankA ≥ n.
Let (1.1) be a minimal rank 1 representation of A. Let

Ω1 = {1 ≤ i ≤ m | 1 ∈ supp(bi)} , Ω2 = {1, . . . ,m} \ Ω1.

(both are nonempty) and let

B =
∑
i∈Ω1

bib
T
i , C =

∑
i∈Ω2

bib
T
i .

Then B and C are CP. C = C ′⊕01 and in B only rows 1, n−1, n are nonzero. By the
minimality of the representation, cp-rankB = |Ω1|, cp-rankC = cp-rankC ′ = |Ω2|,
and cp-rankA = cp-rankB + cp-rankC. If |Ω1| = 1, B is of rank 1, and since its last
row equals that of A, we necessarily have

B[1, n− 1, n] = J3 (for odd n), B[1, n− 1, n] =




9
2

3
2 3

3
2

1
2 1

3 1 2


 (for even n).

For odd n we get that C = A − B is a CP matrix whose graph is an even cycle on
n − 1 vertices, hence cp-rankC = n − 1, and cp-rankA = cp-rankB + cp-rankC =
1+ (n− 1) = n. In the case that n is even it turns out that |Ω1| = 1 is impossible —
in this case the 1, n− 1 element of C = A−B is −1/2, a contradiction since C is CP.

If |Ω1| ≥ 2, then (in both cases) cp-rankB ≥ 2. G(C ′) is either the cycle on n−1
vertices or the path from vertex 1 to vertex n − 1. Hence at least n − 2 cliques are
needed to cover all its edges. Thus cp-rankC ′ ≥ n− 2, and we get

cp-rankA = cp-rankB + cp-rankC ≥ 2 + (n− 2) = n.
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In Proposition 2.15 we will see that H4 is not of type II either. But first we want
to consider blocks which are subgraphs of S2k for some k ≥ 4. Any such block H,
which is not an edge or a triangle, contains the inner cycle C of S2k, and if H �= C,
then H contains also 1 ≤ r ≤ k triangles, each consisting of an edge e of C, and a
vertex not in C which is joined by edges to e’s ends.

Proposition 2.14. Any block H contained in S2k, k ≥ 4, which is not an edge
or an odd cycle, is not of type II.

Proof. Let C be the inner cycle of S2k. As mentioned above, any block H ⊆ S2k

which is not an edge or a triangle, is a graph on k + r vertices containing C and
0 ≤ r ≤ k triangles. If r = 0, then H = C. If C is an even cycle, it is not of type II
(Example 2.1). For r ≥ 1 we prove by induction on r that there exists a CP matrix A
such that G(A) = H, rankA = k+ r− 1 and cp-rankA = k+ r. If r = 1, H = Hk+1,
and by Proposition 2.13 there exists such matrix A.

Suppose the proposition holds for subgraphs of S2k which are blocks with r−1 ≥ 1
triangles, and let H ⊆ S2k be a block which has r triangles. Then H has n = k + r
vertices, and we may assume that the vertices n−2 and n−1 are adjacent vertices in
C, that the vertex n is not a vertex of C, and that n is joined by edges to n− 2 and
n− 1. We denote by H ′ the graph obtained from H by deleting vertex n and the two
edges adjacent to it. By the induction hypothesis there exists a CP matrix A′ such
that G(A′) = H ′, rankA′ = k + (r − 1)− 1 and cp-rankA′ = k + (r − 1). Let

A = (A′ ⊕ 01) + (0n−2 ⊕ J3).

Then A is CP, and clearly rankA = rankA′+1 = k+r−1. We show that cp-rankA =
cp-rankA′ + 1 = k + r. Let (1.1) be a minimal rank 1 representation of A. Let

Ω1 = {1 ≤ i ≤ m | supp(bi) ⊆ {n− 2, n− 1, n}} , Ω2 = {1, . . . ,m} \ Ω1,

B =
∑
i∈Ω1

bib
T
i , C =

∑
i∈Ω2

bib
T
i .

Then B = 0n−3 ⊕ B′, C = C ′ ⊕ 01, A = B + C, and by the minimality of the
representation cp-rankA = cp-rankB + cp-rankC. Note that

B′ =


 + α+ 1 1

α+ 1 + 1
1 1 1


 ,(2.1)

where + denotes a positive entry and α > 0 is the n− 2, n− 1 entry of A′. We may
assume that B′ is singular. (If B′ is not singular, let δ0 be the maximal δ > 0 such that
B − δen−1e

T
n−1 is positive semidefinite. We may replace B by B0 = B − δ0en−1e

T
n−1

and C by C0 = C + δ0en−1e
T
n−1. We have rankB0 = rankB− 1 and (since B and B0

have only three nonzero rows each) cp-rankB0 = cp-rankB − 1. Also, cp-rankC0 ≤
cp-rankC + 1. By the minimality of the original representation, there is actually an
equality in the last inequality, and cp-rankA = cp-rankB0 + cp-rankC0. Note also
that B0[n−2, n−1, n] is of the form (2.1).) By (2.1), rankB′ ≥ 2. Hence rankB′ = 2.
From (2.1) it is also easy to deduce that matrix B′−J3 is a rank 1 positive semidefinite
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matrix and has a zero last row, and nonnegative off-diagonal entries. Because of the
positive semidefiniteness of B′ − J3, its diagonal entries are also nonnegative. Hence
it is CP. Thus B′ = J3 +(C ′′ ⊕ 01), where C ′′ is a 2× 2 rank 1 CP matrix. As above,
we may replace B by 0n−3 ⊕ J3 and C by C + (0n−3 ⊕ C ′′ ⊕ 01) without destroying
the minimality of the representation. But C ′ + (0n−3 + C ′′) = A′. We therfore have

cp-rankA = cp-rankJ3 + cp-rankA′ = 1 + k + (r − 1).

The same holds also for blocks which are subgraphs of S6.
Proposition 2.15. If H is a block contained in S6, and H is not an edge or an

odd cycle, then H is not of type II.
Proof. H is one of the following: C4, H4, H5, S5, H6, C6, S6 itself, or the following

graph:

✁
✁
✁
✁
✁
✁❆

❆
❆
❆
❆
❆

❆
❆
❆✁

✁
✁

� � �

� �

�

By Example 2.1 and Proposition 2.14, we only need to show that H4, S5 and S6

are not of type II.

A1 =




6 3 3 0
3 5 1 3
3 1 5 3
0 3 3 6




is a CP matrix realization of H4 and rankA1 = 3. Let A1 =
m∑

i=1

bib
T
i be a minimal

rank 1 representation of A1. If 1 ∈ supp bi for exactly one i, say i = 1, then the first
row of b1b

T
1 is equal to that of A1, and hence

b1b
T
1 =




6 3 3 0
3 3

2
3
2 0

3 3
2

3
2 0

0 0 0 0


 .

But then (A1 − b1b
T
1 )23 < 0, a contradiction to A1 − b1b

T
1 being CP. Hence the

vertex 1 belongs to at least two of the supports supp bi, and by the same reasoning
so does the vertex 4. Since 1 and 4 cannot be in the same supports, this shows that
cp-rankA1 = m ≥ 4. Hence H4 is not of type II.

Next let A2 = (J3 ⊕ 02) + (0 ⊕ A1). A2 is a CP matrix realization of S5, and
rankA2 = 4. Let A2 =

∑m
i=1 bib

T
i be a minimal rank 1 representation of A2. If 1 ∈
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supp bi for exactly one i, say i = 1, then necessarily b1b
T
1 = J3⊕02, and cp-rankA2 =

cp-rank b1b
T
1 + cp-rankA1 = 1 + 4 = 5. Suppose 1 belongs to two of the supports,

say supp b1 and supp b2. We argue as in the case of H4 that 5 also belongs to two
supports, say supp b3, supp b4. But if 1 ∈ supp bi or 5 ∈ supp bi, then {2, 4} �⊆ supp bi.
Thus there is a fifth vector b5 such that {2, 4} ⊆ supp b5. Hence cp-rankA2 = m ≥ 5;
S5 is not of type II. By a similar argument

A3 = (A1 ⊕ 01) +




1 0 1 0 1
0 0 0 0 0
1 0 1 0 1
0 0 0 0 0
1 0 1 0 1


 =




7 3 4 0 1
3 5 1 3 0
4 1 6 3 1
0 3 3 6 0
1 0 1 0 1




is another CP matrix realization of S5. rankA3 = 4 and cp-rankA3 = 5. Using these
results, and the same arguments, it is easy to see that A4 = (J3 ⊕ 03) + (01 ⊕ A3) is
a CP matrix realization of S6, rankA4 = 5 and cp-rankA4 = 6.

Combining Theorem 2.12, Example 2.1, Propositions 2.14 and 2.15, we obtain
our second main result.

Theorem 2.16. Let G be a connected graph, then the following are equivalent:
(a) G is of type II.
(b) G contains no even cycle and no triangle free graph with more edges than

vertices.
(c) Each block of G is an edge or an odd cycle, and at most one of G’s blocks

has more than 3 edges.
A general characterization of the CP matrices A that satisfy cp-rankA = rankA

cannot rely on graph and rank alone. This is shown in the following concluding
remark.

Remark 2.17. Though H4, S5 and S6 are not of type II, each of these graphs
has a CP matrix realization with cp-rank equal to the rank. More precisely: If G is
one of these graphs, denote by n the number of G’s vertices (n = 4, 5, or 6). Then
there exists a rank r CP matrix realization of G iff c(G) ≤ r ≤ n. For every such
matrix with rank �= n− 1, the cp-rank is equal to the rank. For r = n− 1 there exists
a CP matrix realization A of G such that cp-rankA = rankA = n− 1, and also a CP
matrix realization of G whose cp-rank= n and rank= n− 1.

We demonstrate the proof in the case of S6. For the purpose of this proof assume
the vertices are numbered as in the proof of Proposition 2.8. By [16], the minimal
rank of a CP matrix realization of S6 is c(S6) = 3. We already know that S6 is of
type I, and that there exists a CP matrix realization of S6 with rank 5 and cp-rank
6. It remains to show that for every CP matrix A with G(A) = S6 and rank 3 or 4,
cp-rankA = rankA, and to give an example of a rank 5 CP realization of S6 whose
cp-rank is also 5.

We begin by proving the claim for rank 3. Let A is a CP matrix realization of
S6 with rankA = 3. Let (1.1) be a minimal rank 1 representation of A. Each of
the vertices 1, 2, 3 belongs to the support of at least one of the vectors bi. Assume
i ∈ supp bi, i = 1, 2, 3. Suppose one of these vertices belongs also to another support,
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say 1 ∈ supp b4. The pattern of these 4 vectors is as follows (+ denotes a positive
entry and ∗ a nonnegative one):

b1b2b3b4 =

+ 0 0 +
0 + 0 0
0 0 + 0
0 ∗ ∗ 0
∗ 0 ∗ ∗
∗ ∗ 0 ∗

.

By the pattern it is clear that b1, b2, b3 are linearly independent. Since all four vectors
are in csA, {b1, b2, b3} is a basis for csA, and b4 is a linear combination of these
three vectors. But then (again by the pattern) b4 is a scalar multiple of b1. In
that case, b1b

T
1 + b4b

T
4 can be replaced by one rank 1 symmetric nonnegative matrix,

which contradicts the assumption of minimality of the rank 1 representation. Hence
each of the vertices i ∈ {1, 2, 3} belongs only to supp bi. If there is a b4 in the
representation, then supp b4 ⊆ {4, 5, 6} and b4 is a linear combination of b1, b2, b3.

But if b =
3∑

i=1

αibi, and the first three entries of b are zero, then by the pattern of

b1, b2, b3 we get α1 = α2 = α3 = 0, hence b = 0. Therefore m = 3.
Now for rank 4: Let A be a CP matrix with graph S6 and rank 4, (1.1) a minimal

rank 1 representation of A. Again we may assume that i ∈ supp bi, i = 1, 2, 3. Assume
that two of these vertices belong also to one more support each. Say 1 ∈ supp b4,
2 ∈ supp b5. Then bi ∈ csA for i = 1, . . . , 5, and b3 /∈ Span{b1, b4, b2, b5} (since
supp b1, supp b4 ⊆ {1, 5, 6} and supp b2, supp b5 ⊆ {2, 4, 6}). Thus

dim(Span{b1,b4,b2,b5}) ≤ 3.

This implies that the rank of B = b1b
T
1 + b4b

T
4 + b2b

T
2 + b5b

T
5 is at most 3. B’s third

row is zero, and the graph of B[1, 2, 4, 5, 6] is subgraph of the following graph

✁
✁
✁
✁
✁
✁❆

❆
❆

❆
❆
❆� �

� �

�

But any subgraph of this graph is of type II, hence cp-rankB = rankB ≤ 3. This
means that we can replace b1b

T
1 + b4b

T
4 + b2b

T
2 + b5b

T
5 in the rank 1 representation

by at most three summands, which contradicts the minimality of the representation.
Hence at most one of the vertices 1, 2, 3 is in more than one support. Suppose that
vertices 1 and 2 are each in exactly one support, say 1 ∈ supp b1 and 2 ∈ supp b2.
Then A = b1b

T
1 + b2b

T
2 + C, where C =

∑m
i=3 bib

T
i is a CP matrix. The first two

rows (and columns) of b1b
T
1 + b2b

T
2 are equal to the first two rows of A. Therefore

C = 02⊕C ′, where C ′ is necessarily the Schur complement of A[1, 2]; for details on the
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Schur complement see [1]. In particular, rankC ′ = rankA − rank (b1b
T
1 + b2b

T
2 ) = 2,

so cp-rankC ′ = 2 and cp-rankA ≤ 2 + 2 = 4, which implies cp-rankA = 4.
Finally, we present a rank 5 CP matrix with graph S6 and cp-rank 5. Let

R =




1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 1 1 1 0
1 0 1 1 0
1 1 0 1 1



.

Then A = RRT satisfies all the requirements.
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