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Abstract. In this brief note, it is shown that the random hyperbolicity of a random linear

cocycle is equivalent to having the Lipschitz shadowing property.
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1. Introduction. The study of the notion of shadowing is one of the central

tasks of the stability theory in dynamical systems in deterministic and random views.

A shadowable dynamics is interpreted commonly as the systems in which the numer-

ical approximation orbit are, in fact, traced by true orbit. It can be useful especially

in the numerical solution of differential equations (see Chapter 4 of [11]). During the

last years, many studies have been performed to prove the shadowing property of

hyperbolic systems in deterministic cases [11] and random cases [3, 5, 7, 9]. But what

about the converse? Does the shadowing property imply the hyperbolicity? Although

some results have been obtained in deterministic case (see for instance, [12, 13, 14]),

it remains to deal with in random case. One of the classical results in the study of

hyperbolicity and the shadowing states that a discrete dynamical system generated

by a linear operator of a finite dimensional Banach space has the shadowing property

if and only if it is hyperbolic [10]. This motivates the study of shadowing property in

the case of random linear cocycles. The aim of this note is to investigate the relation-

ship between the shadowing property and hyperbolicity of a random linear cocycle.

Namely, we prove that the shadowing property of a random triangular cocycle is

equivalent to its hyperbolicity.

We begin by introducing the notation of “Random Linear Cocycle”. Let (Ω,F ,P)

be a probability space and σ : Ω → Ω be a P-ergodic transformation. Consider a

random variable A : Ω → GL(R, d), d ∈ N with log+ ‖A±(·)‖ ∈ L1(P). A generates

∗Received by the editors on October 20, 2012. Accepted for publication on February 24, 2014.

Handling Editor: Bryan L. Shader.
†Department of Mathematics, Shahid Beheshti University, G.C. Tehran 19839, Iran

(a fakhari@sbu.ac.ir).
‡Instituto de Matematica, Universidade Federal do Rio de Janeiro, C.P. 68.530, CEP 21.945-970,

Rio de Janeiro, Brazil (agolmaka@im.ufrj.br).

190

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 190-196, March 2014



ELA

Shadowing Property of Random Linear Cocycles 191

the linear cocycle [1]

An(ω) =







A(σn−1(ω)) ◦ · · · ◦A(ω) if n > 0,

id if n = 0,

A(σ−n(ω))−1 ◦ · · · ◦A(σ−1(ω))−1 if n < 0.

The cocycle A is triangular if for any ω ∈ Ω, A(ω) is triangular.

Definition 1.1. A random variable g : Ω → (0,∞) is called tempered if

lim
n→±∞

1

n
log g(σn(ω)) = 0.

For a tempered random variable δ > 0, a sequence ξ = {xk}k∈Z ⊂ R
d is called

(ω, δ)-pseudo orbit if for any k, ‖A(σk(ω))xk − xk+1‖ < δ(σk(ω)). For a tempered

random variable ǫ > 0, the sequence ξ is (ω, ǫ)-shadowed by a point x ∈ R
d if

‖Ak(ω)x− xk‖ < ǫ(σk(ω)).

The following definition can be regarded as a natural extension of the classical

deterministic Lipschitz shadowing property to the random case.

Definition 1.2. A cocycle A has Lipschitz shadowing property if there are a

tempered random variables L ≥ 2 and d0 > 0 such that for any tempered random

variable d ≤ d0, any (ω, d)-pseudo orbit of A can be (ω,Ld)-shadowed by some point

of Rd
P-a.e.

Definition 1.3. A cocycle A is random hypergolic if there are constant 0 <

λ < 1, two tempered random variables C and α and random subbundles Es(ω) and

Eu(ω), vary measurably, such that the following hold P-a.e.

• Es(ω)⊕ Eu(ω) = R
d,

• A(ω)Es(ω) = Es(σ(ω)) and A(ω)Eu(ω) = Eu(σ(ω)),

• ‖
(

A(ω)|Es(ω)

)k
‖, ‖

(

A(ω)|Eu(ω)

)−k
‖ ≤ C(σk(ω))λk, for any k ∈ N,

• ∡(Es(ω), Eu(ω)) > α(ω).

By changing the inner product, one can get a random inner product 〈·, ·〉ω, de-

pends measurably to ω, for which the random subbundles Es(ω) and Eu(ω) are

orthogonal and also C(ω) = 1 P-a.e. The obtained random norm ‖ · ‖ω satisfies the

following assertion

1

β(ω)
‖ · ‖ ≤ ‖ · ‖ω ≤ β(ω)‖ · ‖,

where β is a tempered random variable [5].
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Main Theorem. A random linear cocycle A has the Lipschitz shadowing prop-

erty if and only if it is random hyperbolic.

2. Proof of the Main Theorem. For the proof of this stage of the Main

Theorem, we modify the proof in [5] to get the Lipschitz shadowing property in the

linear case. Suppose that P (ω) : R
d → Es(ω) and Q(ω) : R

d → Eu(ω) are the

projections on Es(ω) and Eu(ω) along the directions Eu(ω) and Es(ω), respectively.

For the proof, as in the deterministic case, it is enough to show that any finite pseudo

orbit can be shadowed [5]. Choose a sequence {xk}
n
k=1 such that ‖A(σk(ω))xk −

xk+1‖ < d(σk(ω)). There is a sufficiently small tempered random variable 0 < η ≤ βd

such that A(ω)(Eρ

η(ω)(ω)) ⊂ Eρ

η(σ(ω))(σ(ω)), where Eρ
ǫ (ω) = {v ∈ Eρ(ω); ‖v‖w < ǫ}

for ρ = s, u. Put

[x, y]ω = Q(ω)y + P (ω)x,

and note that ‖[x, y]− y‖ω, ‖[x, y]− x‖ω ≤ ‖x− y‖ω (see [8]). Choose x̃0 = x0 and

x̃k = [xk, A(σ
k−1(ω))x̃k−1]σk(ω), x = A−n(σn(ω))x̃n.

It is not difficult to see that ‖Ak(ω)x − x̃k‖σk(ω) ≤ η(σk(ω)). On the other hand,

‖xk − x̃k‖σk(ω) ≤ 2η(σk(ω)). Hence,

‖Ak(ω)x − xk‖σk(ω) ≤ ‖Ak(ω)x − x̃k‖σk(ω) + ‖xk − x̃k‖σk(ω) ≤ 3η(σk(ω)),

and so, ‖Ak(ω)x− xk‖ ≤ 3β2(σk(ω))d(σk(ω)) (see also [4, 5]).

Before proceed to the converse of the Main Theorem, let us recall “Oseledec’s

Multiplication Ergodic Theorem”, in the sense of random dynamical systems [1].

The theorem says that there is a σ-invariant subset Γ ⊂ Ω of P-full measure with

the following property: There are a fixed number m, positive integers di and real

numbers −∞ < λm < · · · < λ1 < ∞, 1 ≤ i ≤ m, such that for any ω ∈ Γ, there exists

a splitting Em(ω)⊕ · · · ⊕ E1(ω) of TxM satisfying the two following conditions

• dimEi(ω) = di, for any 1 ≤ i ≤ m,

• v ∈ Ei(ω) ⇒ limn→∞
1
n
log ‖An(ω)v‖ = λi.

Put

Es(ω) =
⊕

λi<0

Ei(ω), Ec(ω) =
⊕

λi=0

Ei(ω) and Eu(ω) =
⊕

λi>0

Ei(ω).

The subbundles Es(ω), E0(ω) andEu(ω) are well-defined and measurablyA-invariant.

If E0(ω) = 0, then for some tempered random variables C and α, the cocycle A has a

random hyperbolic decomposition as in the Definition 1.3 (see [2, 8]). In other words,
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the random hyperbolicity are precisely equivalent to the non-existence of zero Lya-

punov exponents. Hence, to prove the converse of the Main Theorem for triangular

cocycles, it is sufficient to prove the non-existence of zero Lyapunov exponents.

Now, let us follow the proof of the Main Theorem in proving the converse. First,

we prove it for a triangular cocycle. It does get a bit notations. Let A(ω) = (aij(ω))

with aij(ω) = 0 if j > i. Then An(ω) = (anij(ω)) with anij(ω) = 0 if j > i, and

anii(ω) = aii(σ
n−1(ω)) · · · aii(ω).

In the case of triangular matrices, the existence of the limits

lim
n→∞

1

n
log |anii(ω)|

for P-a.e ω ∈ Ω is a consequence of Birkkhoff’s Ergodic Theorem. However, the fact

of P-integrability of the functions log ‖A±(·)‖ implies that these limits are exactly the

Lyapunov exponents [2].

Theorem 2.1. If A is a random triangular cocycle with the Lipschitz shadowing

property, then the Lyapunov exponent of A are all non-zero.

Proof. By contradiction, suppose that A has Lipschitz shadowing property with

random variable L ≥ 2 and d0 > 0, however, for some 1 ≤ i ≤ d,

lim
n→∞

1

n
log |anii(ω)| = 0.

For simplicity, suppose that i = 1 and put a(ω) = a11(ω). By the ergodicity of P, the

Lyapunov exponent along the fibre ω is also zero P-a.e. Put

γn =
n
∑

k=1

d0(σ
k(ω))/2|ak(ω)|

and define a (ω, d0/2)-pseudo orbit ξ(ω) = {xn}n∈Z as follows:

x1
n =

{

an(ω)x0 if n ≤ 0,

an(ω)γn if n ≥ 0,

and xj
n = 0 for 2 ≤ j ≤ d. We have

‖A(σn(ω))xn − xn+1‖ = |a(σn(ω))an(ω)γn − an+1(ω)γn+1| ≤ d0(σ
n(ω))/2.

Hence, {xn}n∈Z is a (ω, d0/2)-pseudo orbit for A. Suppose that the pseudo orbit

(ω,Ld0/2)-shadowed by some point x. Then

‖An(ω)x − xn‖ < L(σn(ω))d0(σ
n(ω))/2,
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and hence,

|x− γn| ≤
1

|an(ω)|
‖An(ω)x− xn‖ ≤ L(σn(ω))

d0(σ
n(ω))

2|an(ω)|
.

Now, the inequality

|x−
n
∑

k=1

d0(σ
k(ω))

2|ak(ω)
| ≤ L(σn(ω))

d0(σ
n(ω))

2|an(ω)|

inductively implies that

d0(σ
n(ω))

|an(ω)|
≥

c

L(σn(ω))− 1

n−1
∏

k=1

(

L(σk(ω))

L(σk(ω))− 1

)

for some positive constant c. The recent inequality leads to the following contradic-

tion:

0 = lim
n→∞

1

n
log

d0(σ
n(ω))

|an(ω)|
≥ lim

n→∞

1

n

n−1
∑

k=0

log

(

L(σk(ω))

L(σk(ω))− 1

)

=

∫

Ω

log
L(ω)

L(ω)− 1
dP > 0,

where the last equality holds by “Birkhoff’s Ergodic Theorem”.

To give the proof in the general situation, i.e., the case where A isn’t necessarily

triangular, we first give a cohomology between A and a triangular cocycle. We ben-

efit a method known Lyapunov-Perron triangularization (see also [6]). Then, using

Theorem 2.1, we conclude the proof in the general case.

By Gram-Schmidt decomposition, any M ∈ GL(R, d) is represented uniquely

in the form M = G(M)T (M) where G(M) is an orthogonal matrix and T (M) a

triangular matrix. Put H = Ω × O(R, d), where O(R, d) is the set of orthogonal

matrices. For any z = (ω,U) ∈ H , put Θn(z) = (θn(ω), G(An
ωU)). Let MP(Θ)

denotes all Θ-invariant probability measures on H whose marginal on Ω coincide

with P (such measures can be characterized in term of their disintegrations µω by

A(ω)(µω) = µθ(ω)a.s.). Let EP(Θ) ⊂ MP(Θ) be the set of ergodic measures. Define

random cocycle B over the base space H as follows

B(ω,U) = G(A(ω)U)−1A(ω)U = T (A(ω)U)−1.

By the definition,

Bn(ω,U) = G(An(ω)U)−1An(ω)U = T (An(ω)U)−1.
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In particular, B defines a triangular cocycle. The lemma below completes the proof

of the Main Theorem.

Lemma 2.2. Theorem 2.1 remains true if we drop the condition of triangularity

of A.

Proof. Suppose that A has the Lipschitz shadowing property. We first show

that the cocycle B obtained by the triangularization method, described above, has

the same property. For this, let ξ = {xn} be a (ω,U, d)-pseudo orbit of B. Put

yn = G(An(ω)U)xn. A straightforward calculation shows that ζ = {yn} is a (ω, d)-

pseudo orbit for A. Hence, ζ can be (ω,Ld) shadows by a point y. It isn’t difficult to

see that ξ is (ω,U, Ld) shadowed by x = U−1y.

Now, choosing a measure µ ∈ EP(Θ) and applying Theorem 2.1, one can deduces

that the Lyapunov exponents of B are all non-zero on a set H̃ ⊂ H with µ(H̃) = 1.

Suppose that Ω̃ ⊂ Ω be the projection of H̃ over the first component, so P(Ω̃) = 1.

For ω ∈ Ω̃ and v ∈ R
d, choosing z ∈ H̃ with z = (ω,U), one has that

lim
n→∞

1

n
log ‖An(ω)v‖ = lim

n→∞

1

n
log ‖G(An(ω)U)Bn(z)U−1v‖

= lim
n→∞

1

n
log ‖Bn(z)(U−1v)‖

6=0.

That is, the Lyapunov exponents of A are all non-zero on Ω̃.

Acknowledgment. Ali Golmakani thanks Instituto de Matematica, Universi-

dade Federal do Rio de Janeiro for its kind hospitality during the preparation of this

paper. The authors were partially supported by the following fellowships: A. Fakhari

by grant from IPM (No. 92370127) and A. Golmakani by a PosDoc fellowship from

CAPES/Brasil.

REFERENCES

[1] L. Arnold. Random Dynamical Systems. Springer-Verlag, Berlin, 1998.

[2] L. Barreira and Y. Pesin. Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero Lya-

punov Exponents. Cambridge University Press, 2007

[3] S.N. Chow and E.S. Van Vleck. A shadowing lemma approach to global error analysis for initial

value ODEs. SIAM J. Sci. Comput., 15:959–976, 1994.

[4] M. Gundlach. Random homoclinic orbits. Random & Computational Dynamics, 3(1-2):1–33,

1995.

[5] M. Gundlach and Y. Kifer. Random hyperbolic systems. In: H. Crauel and M. Gundlach

(editors), Stochastic Dynamics, Springer, New York, 117–145, 1999.

[6] R. Johnson, K. Palmer, and G. Sell. Ergodic properties of linear dynamical systems. SIAM J.

Math. Anal., 18:1-33, 1987.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 190-196, March 2014



ELA

196 Abbas Fakhari and Ali Golmakani

[7] H. Lianfa, Z. Yujun, and Z. Hongwen. Shadowing in random dynamical systems. Discrete Contin.

Dyn. Syst., 12(2):355–362, 2005.

[8] P.D. Liu and M.P. Qian. Smooth Ergodic Theory of Random Dynamical Systems. Lecture Notes

in Math., Vol. 1606, Springer-Verlag, Berlin, 1995.

[9] P.D. Liu, M.P. Qianand, and F.C. Tang. Pseudo-orbit tracing property for random diffeomor-

phisms. Proc. Roy. Soc. Edinburgh, 126A:1027–1033, 1996.

[10] J. Ombach. The shadowing lemma in the linear case. Universitatis Iagellonicae Acta Mathe-

matica, Fasciculus xxxi, 1994.

[11] S.Yu. Pilyugin. Shadowing in Dynamical Systems. Lecture Notes in Math., Vol. 1706, Springer-

Verlag, Berlin, 1999.

[12] S.Yu. Pilyugin, A. Rodionova, and K. Sakai. Orbital and weak shadowing in dynamical systems.

Discrete Contin. Dyn. Syst., 9(2):287–308, 2003.

[13] K. Sakai. C1-stably shadowable chain components. Ergodic Theory Dynam. Systems, 28:987–

1029, 2008.

[14] K. Sakai. Pseudo-orbit tracing property and strong transversality of diffeomorphisms on closed

manifolds. Osaka J. Math., 31:373–386, 1994.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 190-196, March 2014


