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A BOUND FOR CONDITION NUMBERS OF MATRICES∗

MICHAEL I. GIL’ †

Abstract. Let A be a diagonalizable matrix; so there is an invertible matrix T and a normal

matrix D̂, such that T−1AT = D̂. A sharp bound for the constant κT = ‖T‖‖T−1‖ is suggested.

Some applications of the obtained bound are also discussed.
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1. Introduction and preliminaries. Let Cn be the n-dimensional complex

Euclidean space with a scalar product (·, ·), the Euclidean norm ‖ · ‖ =
√

(·, ·) and

the identity matrix I. For an n× n matrix A, σ(A) denotes the spectrum of A, ‖A‖
is the spectral norm; A∗ is the adjoint to A; ‖A‖F = (Trace A∗A)1/2 is the Frobenius

norm; λk (k = 1, . . . , n) are the eigenvalues of A. Everywhere below it is assumed

that

λj 6= λm, whenever j 6= m. (1.1)

So, A is a diagonalizable matrix: There is an invertible matrix T and a normal matrix

D̂, such that

T−1AT = D̂. (1.2)

The condition number κT := ‖T ‖‖T−1‖ is very important for various applications,

cf. [3, 16]. That number is mainly numerically calculated.

In the present paper, we suggest a sharp bound for κT . Applications of the

obtained bound to spectrum perturbations and matrix functions are also discussed.

The following quantity (departure from normality) plays an essential role here-

after:

g(A) :=

[

‖A‖2F −
n
∑

k=1

|λk|2
]1/2

.
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g(A) enjoys the following properties:

g2(A) ≤ 2‖AI‖2F (AI = (A−A∗)/2i) and g2(A) ≤ ‖A||2F − |Trace A2|, (1.3)

cf. [10, Section 2.1]. If A is normal, then g(A) = 0. Put

δ := min
j,k=1,...,n; k 6=j

|λj − λk|.

Corollary 3.6 from [11], under condition (1.1) gives us the inequality

κT ≤ n
n−1
∑

k=0

gk(A)2k

δk
√
k!

. (1.4)

That inequality is not sharp: If A is a normal matrix, then it gives κT ≤ n, but

κT = 1 in this case. Inequality (1.4) has been slightly improved in [12]. In this paper,

we considerably refine (1.4) and the corresponding result from [12].

Put

τ(A) :=

n−2
∑

k=0

gk+1(A)√
k! δk+1

and

γ(A) :=

(

1 +
τ(A)√
n− 1

)2(n−1)

.

Now we are in a position to formulate the main result of this paper.

Theorem 1.1. Let condition (1.1) be fulfilled. Then there is an invertible matrix

T , such that (1.2) holds with

κT ≤ γ(A). (1.5)

The proof of this theorem is presented in the next two sections. Theorem 1.1 is

sharp: If A is normal, then g(A) = 0 and γ(A) = 1. Thus, we obtain the equality

κT = 1. So Theorem 1.1 is obviously sharper than (1.4) at least for matrices “close”

to normal ones. The proof of Theorem 1.1 is absolutely different from the proof of

inequality (1.4) and the proof of the corresponding result from [12].

Theorem 1.1 supplements the interesting recent investigations of the similarity of

matrices, cf. [4, 5, 9, 13] and references therein.
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2. Auxiliary results. Let matrix A have in Cn a chain of invariant projections

Pk (k = 1, . . . ,m; m ≤ n):

0 ⊂ P1C
n ⊂ P2C

n ⊂ · · · ⊂ PmC
n = C

n (2.1)

and

PkAPk = APk (k = 1, . . . ,m). (2.2)

Put ∆Pk = Pk − Pk−1 (P0 = 0), Ak = ∆PkA∆Pk,

Qk = I − Pk, Bk = QkAQk and Ck = ∆PkAQk.

It is assumed that the spectra σ(Ak) of Ak in ∆PkC
n satisfies the condition

σ(Ak) ∩ σ(Aj) = ∅ (j 6= k). (2.3)

Lemma 2.1. One has

σ(A) = ∪m
k=1σ(Ak).

Proof. Put

S =

m
∑

k=1

Ak and W = A− S.

Due to (2.2), we have WPk = Pk−1WPk. Hence,

Wm = WmPm = Wm−1Pm−1WPm = Wm−2Pm−2WPm−1WPm

= Wm−2Pm−2W
2 = Wm−3Pm−3W

3 = · · · = P0W
m = 0.

So, W is nilpotent. Similarly, taking into account that

(S − λI)−1WPk = Pk−1(S − λI)−1WPk,

we prove that ((S − λI)−1W )m = 0 (λ 6∈ σ(S)). Thus,

(A− λI)−1 = (S +W − λI)−1 = (I + (S − λI)−1W )−1(S − λI)−1

=

m−1
∑

k=0

(−1)k((S − λI)−1W )k(S − λI)−1.

Hence, it easily follows that σ(S) = σ(A). This proves the lemma. �

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 162-171, February 2014



ELA

A Bound for Condition Numbers of Matrices 165

Since Bj is a block triangular matrix, according to the previous lemma, we have

σ(Bj) = ∪m
k=j+1σ(Ak) (j = 0, . . . ,m− 1).

So, due to (2.3),

σ(Bj) ∩ σ(Aj) = ∅.

Under this condition, the equation

AjXj −XjBj = −Cj (j = 1, . . . ,m− 1). (2.4)

has a unique solution, e.g., [1, Section VII.2] or [2].

Lemma 2.2. Let condition (2.3) hold and Xj be a solution to (2.4). Then

(I −Xm−1)(I −Xm−2) · · · (I −X1)A (I +X1)(I +X2) · · · (I +Xm−1)

= A1 +A2 + · · ·+Am. (2.5)

Proof. Since Xj = ∆PjXjQj , we have XjAj = BjXj = XjCj = CjXj = 0. Due

to (2.2), QjAPj = 0. Thus, A = A1 +B1 + C1, and consequently,

(I −X1)A(I +X1) = (I −X1)(A1 +B1 + C1)(I +X1) =

A1 +B1 + C1 −X1B1 +A1X1 = A1 +B1.

Furthermore, B1 = A2 +B2 + C2. Hence,

(Q1 −X2)B1(Q1 +X2) = (Q1 −X1)(A2 +B2 + C2)(Q1 +X1) =

A2 +B2 + C2 −X2B2 +A2X2 = A2 +B2.

Therefore,

(I −X2)(A1 +B1)(I +X2) = (P1 +Q1 −X2)(A1 +B1)(P1 +Q1 +X2) =

A1 + (Q1 −X2)(A1 +B1)(Q1 +X2) = A1 +A2 +B2.

Consequently,

(I −X2)(A1 +B1)(I +X2) = (I −X2)(I −X1)A(I +X1)(I +X2) = A1 +A2 +B2.
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Continuing this process and taking into account that Bm−1 = Am, we obtain the

required result. �

Take

T = (I +X1)(I +X2) · · · (I +Xm−1). (2.6)

It is simple to see that the inverse to I +Xj is the matrix I −Xj . Thus,

T−1 = (I −Xm−1)(I −Xm−2) · · · (I −X1) (2.7)

and (2.5) can be written as

T−1AT = diag(Akk)
m
k=1. (2.8)

By the inequalities between the arithmetic and geometric means, we get

‖T ‖ ≤
m−1
∏

k=1

(1 + ‖Xk‖) ≤
(

1 +
1

m− 1

m−1
∑

k=1

‖Xk‖
)m−1

(2.9)

and

‖T−1‖ ≤
(

1 +
1

m− 1

m−1
∑

k=1

‖Xk‖
)m−1

. (2.10)

3. Proof of Theorem 1.1. Let {ek} be the Schur basis (the orthogonal normal

basis of the triangular representation) of matrix A:

A =











a11 a12 a13 · · · a1n
0 a22 a23 · · · a2n
...

...
...

...

0 0 0 · · · ann











with ajj = λj in that basis. Besides,

n
∑

k=2

k−1
∑

i=1

|aik|2 = g2(A).

Take Pj =
∑j

k=1(·, ek)ek. Then one can apply Lemma 2.2 with m = n, ∆Pk =

(·, ek)ek,

Qj =

n
∑

k=j+1

(·, ek)ek, Ak = ∆PkA∆Pk = λk∆Pk, diag(Akk)
n
k=1 = diag(λk)

n
k=1,
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Bj = QjAQj =











aj+1,j+1 aj+1,j+2 · · · aj+1,n

0 aj+2,j+2 · · · aj+2,n

...
...

...

0 0 · · · ann











and

Cj = ∆PjAQj =
(

aj,j+1 aj,j+2 · · · aj,n
)

.

Besides,

A =

(

λ1 C1

0 B1

)

, B1 =

(

λ2 C2

0 B2

)

, . . . , Bj =

(

λj+1 Cj+1

0 Bj+1

)

(j < n).

So, Bj is an upper-triangular (n − j) × (n − j) matrix. Equation (2.4) takes the

form λjXj − XjBj = −Cj. Since Xj = XjQj , we can write Xj(λjQj − Bj) = Cj .

Therefore,

Xj = Cj(λjQj −Bj)
−1. (3.1)

The inverse matrix is understood in the sense of subspace QjC
n. Hence,

‖Xj‖ ≤ ‖Cj‖‖(λjQj − Bj)
−1‖.

Besides,

‖Cj‖2 =

n
∑

k=j+1

|ajk|2,

and due to [10, Corollary 2.2.2], we have

‖(λjQj −Bj)
−1‖ ≤

n−j−1
∑

k=0

gk(Bj)√
k! δk+1

(j = 1, 2, . . . , n− 1).

But

g2(Bj) = g2(QjAQj) =

n
∑

k=j+2

k−1
∑

i=j+1

|aik|2 ≤ g2(A).

So, with the notation

τ1(A) :=

n−2
∑

k=0

gk(A)√
k! δk+1

,

we have

‖(λjQj −Bj)
−1‖ ≤ τ1(A) and ‖Xj‖ ≤ ‖Cj‖τ1(A).
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Take T as is in (2.6) with Xk defined by (3.1). Besides (2.9) and (2.10), imply

‖T ‖ ≤
(

1 +
1

n− 1

n−1
∑

k=1

‖Xk‖
)n−1

≤
(

1 +
τ1(A)

n− 1

n−1
∑

k=1

‖Ck‖
)n−1

and

‖T−1‖ ≤



1 +
τ1(A)

n− 1

n−1
∑

j=1

‖Cj‖





n−1

.

But, by the Schwarz inequality,





n−1
∑

j=1

‖Cj‖





2

≤ (n− 1)

n−1
∑

j=1

‖Cj‖2 = (n− 1)

n−1
∑

j=1

n
∑

k=j+1

|ajk|2 = (n− 1)g2(A).

Thus,

‖T ‖2 ≤
(

1 +
τ1(A)√
n− 1

g(A)

)2(n−1)

=

(

1 +
τ(A)√
n− 1

)2(n−1)

= γ(A)

and ‖T−1‖2 ≤ γ(A). Now (2.8) proves the theorem. �

4. Applications of Theorem 1.1. Theorem 1.1 immediately implies the fol-

lowing.

Corollary 4.1. Let condition (1.1) hold and f(z) be a scalar function defined

on the spectrum of A. Then ‖f(A)‖ ≤ γ(A)maxk |f(λk)|.

Let A and Ã be complex n×n matrices whose eigenvalues λk and λ̃k, respectively,

are taken with their algebraic multiplicities. Recall that

svA(Ã) := max
k

min
j

|λ̃k − λj |

is the spectral variation of Ã with respect to A.

Corollary 4.2. Let condition (1.1) hold. Then svA(Ã) ≤ γ(A)‖A− Ã‖.

Indeed, the matrix D̂ = TAT−1 is normal. Put B = T ÃT−1. Thanks to the

well-known Corollary 3.4 [16], svD̂(B) ≤ ‖D̂−B‖. Now the required result is due to

Theorem 1.1.

Furthermore, let us suppose that λk are real and

λ1 > λ2 > · · · > λn. (4.1)
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Then (1.2) holds with a Hermitian matrix D̂. Again put B = T ÃT−1. Then, due to

Theorem 1.1, we have

‖D̂ −B‖F = ‖TAT−1 − T ÃT−1‖F ≤ ‖T ‖‖A− Ã‖F‖T−1‖ ≤ γ(A)‖A− Ã‖F . (4.2)

The eigenvalues of B coincide with the eigenvalues λ̃k of Ã. Denote µk = Re λ̃k and

assume that λ̃k are ordered in such a way that

µ1 ≥ µ2 ≥ · · · ≥ µn. (4.3)

Due to the Kahan theorem [16, Theorem IV.5.2, p. 213, inequality (5.4)], we can

write
[

n
∑

k=1

|λ̃k − λk|2
]1/2

≤
√
2‖D̂ −B‖F .

Hence, taking into account (4.2), we arrive at our next result.

Corollary 4.3. Let the inequalities (4.1) and (4.3) hold. Then

[

n
∑

k=1

|λ̃k − λk|2
]1/2

≤
√
2γ(A)‖A− Ã‖F .

In addition, note that Theorem 4.5.4 in [16, p. 215] and Theorem 1.1 yield the

following corollary.

Corollary 4.4. Let A and Ã be diagonalizable n × n matrices having purely

real eigenvalues:

λ1 < λ2 < · · · < λn and λ̃1 < λ̃2 < · · · < λ̃n, respectively .

Then

|λ̃j − λj | ≤ γ(A)γ(Ã)‖A− Ã‖ (j = 1, . . . , n).

To consider an additional application of Theorem 1.1, put

md(A, Ã) := min
π

[

n
∑

k=1

|λ̃k − λk|2
]1/2

,

where π ranges over all permutations of the integers 1, 2, . . . , n, cf. [16] . Let us use

Theorem 4.5.5 [16, p. 216]. That theorem together with Theorem 1.1 implies our

next result.

Corollary 4.5. Let the conditions (1.1) and

λ̃j 6= λ̃m, whenever j 6= m (4.4)
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be fulfilled. Then

md (A, Ã) ≤ γ(A)γ(Ã)‖A− Ã‖F .

About the interesting recent publications on spectrum perturbations see for in-

stance [6, 8].

Finally, note that Corollaries 2.2 and 2.3 from [11] and the above proved Theorem

1.1 yield the following corollary.

Corollary 4.6. Let conditions (1.1) and (4.4) be fulfilled, and f be a function

defined on σ(A) ∪ σ(Ã). Then the inequalities

‖f(A)− f(Ã)‖F ≤ γ(A)γ(Ã)max
j,k

∣

∣

∣

∣

∣

f(λk)− f(λ̃j)

λk − λ̃j

∣

∣

∣

∣

∣

‖A− Ã‖F ,

and

‖f(A)− f(Ã)‖F ≤ γ(A)γ(Ã)max
j,k

|f(λk)− f(λ̃j)|

are valid.

The recent interesting results devoted to matrix-valued functions can be found in

[7, 14].

5. Example. To illustrate Theorem 1.1, consider the simple matrix

A =





5 0 − 1
3

0 7 0

0 0 3



 .

It is simple to check that λ1 = 5, λ2 = 7, λ3 = 3. So, δ = 2. In addition, due to (1.3),

we have g(A) ≤ ‖A−A∗‖F /
√
2 = 1

3 . Thus,

τ(A) =

1
∑

k=0

gk+1(A)√
k! δk+1

≤ 1

6
+

1

36
≈ 0.1944

and

γ(A) ≤
(

1 +
0.1944√

2

)4

≈ 1.6741.

On the other hand, it is not hard to check that the matrix

T =





1 0 1
6

0 1 0

0 0 1



 has the inverse one T−1 =





1 0 − 1
6

0 1 0

0 0 1




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and satisfies relation (1.2) with

D̂ =





5 0 0

0 7 0

0 0 3



 .

The direct calculations gives us κT ≈ 1.1815.
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