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CHANGE OF THE *CONGRUENCE CANONICAL FORM
OF 2-BY-2 MATRICES UNDER PERTURBATIONS*

VYACHESLAV FUTORNY', LENA KLIMENKO?!, AND VLADIMIR V. SERGEICHUKS

Abstract. It is constructed the Hasse diagram for the closure ordering on the sets of *congruence
classes of 2 x 2 matrices. In other words, it is constructed the directed graph whose vertices are 2 x 2
canonical complex matrices for *congruence and there is a directed path from A to B if and only if
A can be transformed by an arbitrarily small perturbation to a matrix that is *congruent to B.
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1. Introduction. We study how arbitrarily small perturbations of a 2 x 2 com-
plex matrix can change its *canonical form for *congruence (matrices A and B are
*congruent if S*AS = B for a nonsingular S). We construct the closure graph G,
which is defined for any natural n as follows.

DEFINITION 1.1. The closure graph G,, for *congruence classes of n x n complex
matrices is the directed graph, in which each vertex v represents in a one-to-one
manner a *congruence class C,, of n x n matrices, and there is a directed path from
a vertex v to a vertex w if and only if one (and hence each) matrix from C, can be
transformed to a matrix form C,, by an arbitrarily small perturbation.

The graph G, is the Hasse diagram of the *congruence classes of n x n matrices
with the following partial order: a < b means that a is contained in the closure of b.
Thus, the graph G, shows how the *congruence classes relate to each other in the
affine space of n x n matrices.

Since each n x n matrix is uniquely represented in the form P + i@ in which P
and @ are Hermitian matrices, Gy, is also the closure graph for *congruence classes
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of Hermitian matrix pencils P + \Q.

Note that the closure graph G for *congruence, which we construct in Theorem
22 is more complicated than the closure graphs for congruence classes of 2-by-2 and
3-by-3 matrices, which were constructed by the authors in [4], since an arrow between
*congruence classes in G2 may depend on the parameters of their matrices.

Unlike perturbations of matrices under congruence and *congruence, perturba-
tions of matrices under similarity and of matrix pencils have been much studied. For
a given matrix A, den Boer and Thijsse [3] and, independently, Markus and Parilis
[I7] described the set of all Jordan canonical matrices such that for each J from this
set there exists a matrix that is arbitrarily close to A and is similar to J. Their
description was extended to Kronecker’s canonical forms of pencils by Pokrzywa [1§].
Edelman, Elmroth, and Kagstrom [7] developed a comprehensive theory of closure
relations for similarity classes of matrices, for equivalence classes of matrix pencils,
and for their bundles. The software StratiGraph [§] constructs their closure graphs.
The closure graph for 2 x 3 matrix pencils was constructed and studied by Elmroth
and Kagstrom [9].

The term “*congruence orbit” is often used instead of “*congruence class” (see De
Terdn and Dopico [2]). The problem that we consider can be called “the stratification
of orbits of matrices under *congruence” by analogy with the stratification of orbits
of matrices under similarity and of matrix pencils [7, [8 [I5]. An informal introduction
to perturbations of matrices determined up to similarity, congruence, or *congruence
is given by Klimenko and Sergeichuk [16].

All matrices that we consider are complex matrices.

2. The closure graph for *congruence classes of 2-by-2 matrices. Define
the n-by-n matrices:

Jn(A) =

We use the following canonical form for *congruence.

ProOPOSITION 2.1 ([I0, Theorem 4.5.21]). FEach square complex matriz is *con-
gruent to a direct sum, uniquely determined up to permutation of summands, of ma-
trices of the form

(2.1) [Jm“w Ig‘] 0#AeC, N<1), pA, (ueC, [ul=1), J(0).
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This canonical form obtained in [I1] was based on [21I, Theorem 3] and was generalized
to other fields in [I4]. A direct proof that this form is canonical is given in [12] [13].

The vertices of G,, can be identified with the n x n canonical matrices for *con-
gruence since each *congruence class contains exactly one canonical matrix.

For each A € C™"™ and a small matrix X € C™",

(I+X)'A(T+X)=A+X*"A+AX + X*AX
| — —
small very small

and so the *congruence class of A in a small neighborhood of A can be obtained by
a very small deformation of the real affine matrix space {A+ X*A+ AX | X e C™"}.
(By the local Lipschitz property [20], if A and B are close to each other and B = S*AS
with a nonsingular S, then S can be taken near I,,.) The real vector space

T(A)={X"A+AX|X eC""}
is the tangent space to the *congruence class of A at the point A. The numbers
(2.2) dimg T(A),  codimg T'(A) := 2n* — dimg T (A)

are called the dimension and, respectively, codimension over R of the *congruence
class of A.

The following theorem proved in Section [3is the main result of the paper.

THEOREM 2.2. The closure graph for *congruence classes of 2 x 2 matrices is

il =l =17l = 1,
e bt 2w, ol <1,

0 v o 0 T T . .
dimensiong = 6.

)\e;l++uR+ Im(AT ZO[
A0
0 A

the same A\

A 0] Al =1,

dimensiong = 4.
Ye same A

(2.3)

0 IAl=1,
0 dimensiong = 3.

T

0 0
0 0

dimensiong = 0.
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in which A\, p,v,0,7 € C, Ry denotes the set of nonnegative real numbers, and Im(c)
denotes the imaginary part of c € C. Each *congruence class is given by its canonical
matriz, which is a direct sum of blocks of the form (ZII). The graph is infinite: Each
vertex except for [§ 9] represents an infinite set of vertices indexed by the parameters
of the corresponding canonical matriz. The *congruence classes of canonical matrices
that are located at the same horizontal level in (23)) have the same dimension over
R, which is indicated to the right.

The arrow [ 3] — [’8 10/] exists if and only if X = pa + vb for some nonnegative
a,b e R. The arrow [ ] = [2 ] ewists if and only if the imaginary part of AT is
nonnegative. The arrow [ Q] — [ 7] ezists if and only if T = X. The arrows
[091 = 1[4 Q] ezist if and only if the value of X is the same in both matrices. The
other arrows exist for all values of parameters of their matrices.

REMARK 2.3. Let M be a 2 x 2 canonical matrix for *congruence.

e Let N be another 2 x 2 canonical matrix for *congruence. Each neighborhood
of M contains a matrix whose *congruence canonical form is N if and only
if there is a directed path from M to N in (Z3)) (if M = N, then there is the
“lazy” path of length 0 from M to N).

e The closure of the *congruence class of M is equal to the union of the *con-
gruence classes of all canonical matrices IV such that there is a directed path
from N to M (if M = N then the “lazy” path exists).

REMARK 2.4. It is not surprising that diag(\,+\) and diag(u,v) (JA| = |p| =
|v| =1 and p # +v) have different behavior under perturbation: many properties of
a nonsingular matrix A with respect to *congruence are determined by its *cosquare
(A*)LA (see [13| 14l [19]), the *cosquare of diag(A,+A) has a multiple eigenvalue,
and the *cosquare of diag(u,v) has two distinct eigenvalues.

3. Proof of Theorem The following lemma is a weak form of [6, Example
2.1] (which is a special case of [6, Theorem 2.2] about n x n matrices).

LEMMA 3.1. Let A be any 2 x 2 matriz. Then all matrices A + X that are
sufficiently close to A can be simultaneously reduced by some transformation

S(X) is nonsingular and conti-

S(X) A+ X)S(X), nuous on a neighborhood of zero,
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to one of the following forms:
[0 0 * %k [\ 0 ex 0 3
oo RN
(A 0] [ex O ~ A 0] [ex O] (N#zxp,
LSt P KB P

0

A

0 du] [Al=lul=1),
[0 1] [0 © A 0
o)) o] e, A+l o] ov-.

Each of these matrices has the form Acan + D, in which Acan is a direct sum of blocks
of the form (21), the *’s in D are complex numbers, all €x,0x,0,, are either real
numbers if A\, ¢ R or pure imaginary numbers if A\, € R. (Clearly, D tends to zero
as X tends to zero.) For each Acan + D, twice the number of its stars plus the number
of its entries of the form ex,0x,0, is equal to the codimension over R (defined in
@2)) of the *congruence class of Acan-

Note that the codimensions of congruence and *congruence classes were calculated
in [I, 5] and [2, [6], respectively.

By [22], Part III, Theorem 1.7], the boundary of each *congruence class is a union
of *congruence classes of strictly lower dimension, which ensures the following lemma.

LEMMA 3.2. If M — N is an arrow in the closure graph G, then the *congruence
class Cy of M is contained in the closure of the *congruence class Cn of N, and so
the dimension of Cyr is lower than the dimension of Cy.

For each vertex M in (23), the dimension dj; over R of the *congruence class of
M is indicated in ([Z3)). It was calculated as follows: By ([Z2)), dps = 8 — ¢ps in which
¢y is the codimension of the *congruence class of M; cj; was taken from Lemma [3.11

The proof of Theorem is divided into two steps.

Step 1: Let us prove that each arrow in ([23) is correct. To make sure
that an arrow M — N is correct, we need to prove that the canonical matrix M can
be transformed by an arbitrarily small perturbation to a matrix whose *congruence
canonical form is N. Consider each of the arrows of ([2.3).

o The arrows [§3] >[4 2], [§8] - [38]. and [33] > [0 7] are correet.

T T1

Let A := [g S], [39], 0r [27]. Then A is *congruent to €A, in which ¢ is any
positive real number, and each neighborhood of [ 3] contains e A with a sufficiently

small e.

o The arrow [} Q] — [4 2] (with given \,p,v € C such that |\ = |u| = || = 1)
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exists if and only if X\ € Ry + VR, = {ua + vbla,b € R,a > 0,b > 0} (in particular,
[6\8] - [89\] and [’0\8] - [8,0)\] exist).

The arrow [ 9] - [“ 2] exists if and only if there exists an arbitrarily small

0
perturbation
A0 )\+511 €12 A0
3.1 +F = f
( ) [0 0] [ €921 €992 © 0 0
that is *congruent to [# °]. This means that there exists a nonsingular S = [¥ Y]
such that
:f Z( |k Oflz vy _ A0 o)
y t]10 v|]lz t 0 0
ie.,
(3.2) :Tc:cu+%zu =A+enn :Eyu+27tz/ =€19
yrp +tzr =¢c91 Yyyp + 1ty = €99.

For fixed A, u, v and an arbitrarily small €11, the first equation with unknowns x and
z has a solution only if A € uR; + VR,

Conversely, let A € uR, + vR,. Take €117 =0 and chose x and z for which the first
equality in ([B.2)) holds. Then take arbitrarily small y,¢ for which S is nonsingular and
get arbitrarily small 12,21, €22 for which the other equalities in (2] hold.

o The arrow [ 9] = [28]1 (AN =1, |o| < 1) exists for all X and o.

The arrow [ §] = [ 2 §] exists if and only if there exists an arbitrarily small per-

turbation (3I)) that is *congruent to [ 2 § . This means that there exists a nonsingular

S =[%%] such that
% 0 1)||lz y _ A0 1B,
t|lo Of[z t 0 0

Tz+Zro=\+¢e11 Tt + Zyo = €12

| senummmmm |
Q| &I

(3.3) - -
Yz +txo =€ yt +tyo = e99.

Suppose that zx = u+iv, 0 = a+ i, and A\+e11 = a+bi, in which u,v,a, 3,a,b € R.
Then the first equation in (B3)) takes the form (u-wvi)+ (u+vi)(a+Bi) = a+bi, which
gives the system

(1+a)u-Bv=a
Bu+(a-1)v=">b
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with respect to the unknowns v and v. Its determinant a2 + 5% — 1 is nonzero since
|o| < 1. Therefore, the first equation in ([B.3]) holds for some z and z. Taking arbitrarily
small y,t for which S is nonsingular, we get arbitrarily small £12,€21,£22 for which
the other equalities in (3] hold.

e The arrow [ 9] = [2 7] (A =|7| = 1) exists if and only if Im(AT) >0

The arrow [ §] - 7[§ 1] exists if and only if there exists an arbitrarily small

perturbation (3] that is *congruent to 7[{ !]. This means that there exists a non-
singular S =[7 %] such that

e AR A

Zx+Tz+zzi=T(A+e11) Zy + Tt + Zti = Teqo

trx +yz+tz=Teg ty + gt + tti = Tegg.

Consider the first equation in (34). Since 7(A+¢e11) #0, 2z # 0 too. Thus,
Im(7(A+e11)) =Im(zx + 2 + 22i) = 22 > 0
and so Im(7\) > 0

Conversely, if Im(7A) > 0, then we put €17 = 0 and take z,z such that the first
equation in ([34) holds. Taking arbitrarily small y,¢ for which S is nonsingular, we
get arbitrarily small 12,21, €22 for which the other equalities in (4] hold.

o The arrow [ O] = [2 5] (N =|r|=1) ewists if and only if A = +7.

The arrow [é R\ ] [ ] exists if and only if there exists an arbitrarily small

perturbation [ ] of [0 A ] that is *congruent to 7[ 9 }]. This means that there
exists a nonsmgular S such that

Lo 17, [x o
sol? Us<[) o)

Equating the determinants of both sides, we find that —72 det(S*S) is arbitrarily close

> o
oS

to —A\2. Since
det(S*S) =det Sdet S

is a real positive number, |72|det(S*S) is arbitrarily close to [A?|. Since || = |7| =1,
det(S*9) is arbitrarily close to 1. Hence, —72 = =\?, and so \ = +7.
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Conversely, let A = +7. Since

b o S0 S
e o ] o e

[4 9] is *congruent to +
€ > 0) is *congruent to |

S0 [6\ OA]_’T[?H-

and

03], Its arbitrarily small perturbatlon +
1]
(2

[ az] (E € R’
via diag(\/z,1/+/€). Therefore, [§ 4] > £[§}

[
0 ], and

Step 2: Let us prove that we have not missed arrows in (Z3]). We write
M -+ N if the closure graph G5 does not have the arrow M — N i.e., if each matrix
obtained from M by an arbitrarily small perturbation is not *congruent to N. Lemma
ensures that we need to prove only the absence of the arrows

[al=160] [BaT=-128] [8R]-[27]

e [0 A]»[60] and [§ Q] #1961 (N =lul=lv|=1, u#=2v, o <1).

Suppose that there is an arbitrarily small perturbation A := [0 i/\] + E of [0 . )\]

that is *congruent to B := [’6 B] or C:= [2 (1)] Then A7 A := (A~ ) A is similar to

B™*B or C~*C, which is impossible since the eigenvalues of A™* A are arbitrarily close
to A™1A\ = A2, whereas B™* B = diag(x?,v?) and C~*C = diag(o,71).

e [0R]» 27T N =Irl=1).

Let [6‘ ] =79 1]; ie., there exists an arbitrarily small perturbation A :=[§ 9]+
E of [} 9] that is congruent to B := A'7[Q1]. This means that there exists a

nonsingular S such that
(11 0 1|01
Els-
(et

Equating the determinants of both sides, we find that
r(l+e)=-(\"17)2, r:=det(S*S) > 0,

in which ¢ is arbitrarily small. Since —(A7'7)? is fixed and |[A"'7| = 1, we have
(A17)? = -1, and so A7'7 = +i. Then rank(B + B*) = 1, which is impossible since
A+ A* is *congruent to B + B* and rank(A + A*) = 2.
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