CHANGE OF THE * CONGRUENCE CANONICAL FORM OF 2-BY-2 MATRICES UNDER PERTURBATIONS*

VYACHESLAV FUTORNY ${ }^{\dagger}$, LENA KLIMENKO ${ }^{\ddagger}$, AND VLADIMIR V. SERGEICHUK ${ }^{\S}$

Abstract

It is constructed the Hasse diagram for the closure ordering on the sets of *congruence classes of 2×2 matrices. In other words, it is constructed the directed graph whose vertices are 2×2 canonical complex matrices for *congruence and there is a directed path from A to B if and only if A can be transformed by an arbitrarily small perturbation to a matrix that is *congruent to B.

Key words. Closure graph, *Congruence canonical form, Perturbations.

AMS subject classifications. 15A21, 15A63, 47A07.

1. Introduction. We study how arbitrarily small perturbations of a 2×2 complex matrix can change its * canonical form for ${ }^{*}$ congruence (matrices A and B are ${ }^{*}$ congruent if $S^{*} A S=B$ for a nonsingular S). We construct the closure graph G_{2}, which is defined for any natural n as follows.

Definition 1.1. The closure graph G_{n} for $*$ congruence classes of $n \times n$ complex matrices is the directed graph, in which each vertex v represents in a one-to-one manner a ${ }^{*}$ congruence class C_{v} of $n \times n$ matrices, and there is a directed path from a vertex v to a vertex w if and only if one (and hence each) matrix from C_{v} can be transformed to a matrix form C_{w} by an arbitrarily small perturbation.

The graph G_{n} is the Hasse diagram of the *congruence classes of $n \times n$ matrices with the following partial order: $a \leqslant b$ means that a is contained in the closure of b. Thus, the graph G_{n} shows how the ${ }^{*}$ congruence classes relate to each other in the affine space of $n \times n$ matrices.

Since each $n \times n$ matrix is uniquely represented in the form $P+i Q$ in which P and Q are Hermitian matrices, G_{n} is also the closure graph for ${ }^{*}$ congruence classes

[^0]
Change of the *Congruence Canonical Form of 2-by-2 Matrices Under Perturbations

of Hermitian matrix pencils $P+\lambda Q$.
Note that the closure graph G_{2} for ${ }^{*}$ congruence, which we construct in Theorem 2.2, is more complicated than the closure graphs for congruence classes of 2 -by- 2 and 3 -by- 3 matrices, which were constructed by the authors in [4], since an arrow between * congruence classes in G_{2} may depend on the parameters of their matrices.

Unlike perturbations of matrices under congruence and *congruence, perturbations of matrices under similarity and of matrix pencils have been much studied. For a given matrix A, den Boer and Thijsse [3] and, independently, Markus and Parilis [17] described the set of all Jordan canonical matrices such that for each J from this set there exists a matrix that is arbitrarily close to A and is similar to J. Their description was extended to Kronecker's canonical forms of pencils by Pokrzywa [18]. Edelman, Elmroth, and Kågström [7] developed a comprehensive theory of closure relations for similarity classes of matrices, for equivalence classes of matrix pencils, and for their bundles. The software StratiGraph [8] constructs their closure graphs. The closure graph for 2×3 matrix pencils was constructed and studied by Elmroth and Kågström 9.

The term "* congruence orbit" is often used instead of "*congruence class" (see De Terán and Dopico [2]). The problem that we consider can be called "the stratification of orbits of matrices under *congruence" by analogy with the stratification of orbits of matrices under similarity and of matrix pencils [7, 8, 15. An informal introduction to perturbations of matrices determined up to similarity, congruence, or ${ }^{*}$ congruence is given by Klimenko and Sergeichuk [16.

All matrices that we consider are complex matrices.
2. The closure graph for * congruence classes of 2-by-2 matrices. Define the n-by- n matrices:

$$
J_{n}(\lambda):=\left[\begin{array}{cccc}
\lambda & 1 & & 0 \\
& \lambda & \ddots & \\
& & \ddots & 1 \\
0 & & & \lambda
\end{array}\right], \quad \Delta_{n}:=\left[\begin{array}{llll}
0 & & & 1 \\
& & \because & i \\
& 1 & \because & \\
1 & i & & 0
\end{array}\right] .
$$

We use the following canonical form for *congruence.
Proposition 2.1 ([10, Theorem 4.5.21]). Each square complex matrix is *congruent to a direct sum, uniquely determined up to permutation of summands, of matrices of the form

$$
\left[\begin{array}{cc}
0 & I_{m} \tag{2.1}\\
J_{m}(\lambda) & 0
\end{array}\right](0 \neq \lambda \in \mathbb{C},|\lambda|<1), \quad \mu \Delta_{n}(\mu \in \mathbb{C},|\mu|=1), \quad J_{k}(0)
$$

This canonical form obtained in [11] was based on [21, Theorem 3] and was generalized to other fields in [14]. A direct proof that this form is canonical is given in [12, 13].

The vertices of G_{n} can be identified with the $n \times n$ canonical matrices for $*$ congruence since each ${ }^{*}$ congruence class contains exactly one canonical matrix.

For each $A \in \mathbb{C}^{n \times n}$ and a small matrix $X \in \mathbb{C}^{n \times n}$,

$$
(I+X)^{*} A(I+X)=A+\underbrace{X^{*} A+A X}_{\text {small }}+\underbrace{X^{*} A X}_{\text {very small }}
$$

and so the *congruence class of A in a small neighborhood of A can be obtained by a very small deformation of the real affine matrix space $\left\{A+X^{*} A+A X \mid X \in \mathbb{C}^{n \times n}\right\}$. (By the local Lipschitz property [20], if A and B are close to each other and $B=S^{*} A S$ with a nonsingular S, then S can be taken near I_{n}.) The real vector space

$$
T(A):=\left\{X^{*} A+A X \mid X \in \mathbb{C}^{n \times n}\right\}
$$

is the tangent space to the *congruence class of A at the point A. The numbers

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{R}} T(A), \quad \operatorname{codim}_{\mathbb{R}} T(A):=2 n^{2}-\operatorname{dim}_{\mathbb{R}} T(A) \tag{2.2}
\end{equation*}
$$

are called the dimension and, respectively, codimension over \mathbb{R} of the ${ }^{*}$ congruence class of A.

The following theorem proved in Section 3 is the main result of the paper.
Theorem 2.2. The closure graph for ${ }^{*}$ congruence classes of 2×2 matrices is

in which $\lambda, \mu, \nu, \sigma, \tau \in \mathbb{C}, \mathbb{R}_{+}$denotes the set of nonnegative real numbers, and $\operatorname{Im}(c)$ denotes the imaginary part of $c \in \mathbb{C}$. Each ${ }^{*}$ congruence class is given by its canonical matrix, which is a direct sum of blocks of the form (2.1). The graph is infinite: Each vertex except for $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ represents an infinite set of vertices indexed by the parameters of the corresponding canonical matrix. The *congruence classes of canonical matrices that are located at the same horizontal level in (2.3) have the same dimension over \mathbb{R}, which is indicated to the right.

The arrow $\left[\begin{array}{cc}\lambda & 0 \\ 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{cc}\mu & 0 \\ 0 & \nu\end{array}\right]$ exists if and only if $\lambda=\mu a+\nu b$ for some nonnegative $a, b \in \mathbb{R}$. The arrow $\left[\begin{array}{ccc}\lambda & 0 \\ 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{cc}0 & \tau \\ \tau & i\end{array}\right]$ exists if and only if the imaginary part of $\lambda \bar{\tau}$ is nonnegative. The arrow $\left[\begin{array}{cc}\lambda & 0 \\ 0 & -\lambda\end{array}\right] \rightarrow\left[\begin{array}{cc}0 & \tau \\ \tau & i \tau\end{array}\right]$ exists if and only if $\tau= \pm \lambda$. The arrows $\left[\begin{array}{ll}\lambda & 0 \\ 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{cc}\lambda & 0 \\ 0 & \pm \lambda\end{array}\right]$ exist if and only if the value of λ is the same in both matrices. The other arrows exist for all values of parameters of their matrices.

Remark 2.3. Let M be a 2×2 canonical matrix for * congruence.

- Let N be another 2×2 canonical matrix for *congruence. Each neighborhood of M contains a matrix whose *congruence canonical form is N if and only if there is a directed path from M to N in (2.3) (if $M=N$, then there is the "lazy" path of length 0 from M to N).
- The closure of the * congruence class of M is equal to the union of the ${ }^{*}$ congruence classes of all canonical matrices N such that there is a directed path from N to M (if $M=N$ then the "lazy" path exists).

REmARK 2.4. It is not surprising that $\operatorname{diag}(\lambda, \pm \lambda)$ and $\operatorname{diag}(\mu, \nu)(|\lambda|=|\mu|=$ $|\nu|=1$ and $\mu \neq \pm \nu)$ have different behavior under perturbation: many properties of a nonsingular matrix A with respect to *congruence are determined by its *cosquare $\left(A^{*}\right)^{-1} A$ (see [13, 14, [19]), the ${ }^{*} \operatorname{cosquare~of~} \operatorname{diag}(\lambda, \pm \lambda)$ has a multiple eigenvalue, and the $* \operatorname{cosquare}$ of $\operatorname{diag}(\mu, \nu)$ has two distinct eigenvalues.
3. Proof of Theorem 2.2. The following lemma is a weak form of [6, Example 2.1] (which is a special case of [6, Theorem 2.2] about $n \times n$ matrices).

Lemma 3.1. Let A be any 2×2 matrix. Then all matrices $A+X$ that are sufficiently close to A can be simultaneously reduced by some transformation

$$
\mathcal{S}(X)^{*}(A+X) \mathcal{S}(X), \quad \begin{gathered}
\mathcal{S}(X) \text { is nonsingular and conti- } \\
\text { nuous on a neighborhood of zero, }
\end{gathered}
$$

to one of the following forms:

$$
\begin{array}{ll}
{\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
* & * \\
* & *
\end{array}\right],} & {\left[\begin{array}{ll}
\lambda & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
\varepsilon_{\lambda} & 0 \\
* & *
\end{array}\right](|\lambda|=1)} \\
{\left[\begin{array}{cc}
\lambda & 0 \\
0 & \pm \lambda
\end{array}\right]+\left[\begin{array}{cc}
\varepsilon_{\lambda} & 0 \\
* & \delta_{\lambda}
\end{array}\right](|\lambda|=1),} & {\left[\begin{array}{cc}
\lambda & 0 \\
0 & \mu
\end{array}\right]+\left[\begin{array}{cc}
\varepsilon_{\lambda} & 0 \\
0 & \delta_{\mu}
\end{array}\right](\lambda \neq \pm \mu,} \\
|\lambda|=|\mu|=1), \\
{\left[\begin{array}{ll}
0 & 1 \\
\lambda & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
* & 0
\end{array}\right](|\lambda|<1),} & {\left[\begin{array}{cc}
0 & \lambda \\
\lambda & \lambda i
\end{array}\right]+\left[\begin{array}{cc}
* & 0 \\
0 & 0
\end{array}\right](|\lambda|=1)}
\end{array}
$$

Each of these matrices has the form $A_{\text {can }}+\mathcal{D}$, in which $A_{\text {can }}$ is a direct sum of blocks of the form (2.1), the *'s in \mathcal{D} are complex numbers, all $\varepsilon_{\lambda}, \delta_{\lambda}, \delta_{\mu}$ are either real numbers if $\lambda, \mu \notin \mathbb{R}$ or pure imaginary numbers if $\lambda, \mu \in \mathbb{R}$. (Clearly, \mathcal{D} tends to zero as X tends to zero.) For each $A_{\text {can }}+\mathcal{D}$, twice the number of its stars plus the number of its entries of the form $\varepsilon_{\lambda}, \delta_{\lambda}, \delta_{\mu}$ is equal to the codimension over \mathbb{R} (defined in (2.2)) of the ${ }^{*}$ congruence class of $A_{\text {can }}$.

Note that the codimensions of congruence and *congruence classes were calculated in [1, 5] and [2, 6], respectively.

By [22, Part III, Theorem 1.7], the boundary of each *congruence class is a union of * congruence classes of strictly lower dimension, which ensures the following lemma.

Lemma 3.2. If $M \rightarrow N$ is an arrow in the closure graph G_{2}, then the ${ }^{*}$ congruence class C_{M} of M is contained in the closure of the ${ }^{*}$ congruence class C_{N} of N, and so the dimension of C_{M} is lower than the dimension of C_{N}.

For each vertex M in (2.3), the dimension d_{M} over \mathbb{R} of the *congruence class of M is indicated in (2.3). It was calculated as follows: By (2.2), $d_{M}=8-c_{M}$ in which c_{M} is the codimension of the ${ }^{*}$ congruence class of $M ; c_{M}$ was taken from Lemma 3.1.

The proof of Theorem 2.2 is divided into two steps.
Step 1: Let us prove that each arrow in (2.3) is correct. To make sure that an arrow $M \rightarrow N$ is correct, we need to prove that the canonical matrix M can be transformed by an arbitrarily small perturbation to a matrix whose *congruence canonical form is N. Consider each of the arrows of (2.3).

- The arrows $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{cc}\mu & 0 \\ 0 & \nu\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{ll}\lambda & 0 \\ 0 & 0\end{array}\right]$, and $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{cc}0 & \tau \\ \tau & \tau i\end{array}\right]$ are correct.

Let $A:=\left[\begin{array}{cc}\mu & 0 \\ 0 & \nu\end{array}\right],\left[\begin{array}{cc}\lambda & 0 \\ 0 & 0\end{array}\right]$, or $\left[\begin{array}{cc}0 & \tau \\ \tau & \tau i\end{array}\right]$. Then A is *congruent to εA, in which ε is any positive real number, and each neighborhood of $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ contains εA with a sufficiently small ε.

- The arrow $\left[\begin{array}{ll}\lambda & 0 \\ 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{cc}\mu & 0 \\ 0 & \nu\end{array}\right]$ (with given $\lambda, \mu, \nu \in \mathbb{C}$ such that $|\lambda|=|\mu|=|\nu|=1$)
exists if and only if $\lambda \in \mu \mathbb{R}_{+}+\nu \mathbb{R}_{+}=\{\mu a+\nu b \mid a, b \in \mathbb{R}, a \geqslant 0, b \geqslant 0\}$ (in particular, $\left[\begin{array}{ll}\lambda & 0 \\ 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right]$ and $\left[\begin{array}{ll}\lambda & 0 \\ 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{cc}\lambda & 0 \\ 0 & -\lambda\end{array}\right]$ exist $)$.

The arrow $\left[\begin{array}{ll}\lambda & 0 \\ 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{ll}\mu & 0 \\ 0 & \nu\end{array}\right]$ exists if and only if there exists an arbitrarily small perturbation

$$
\left[\begin{array}{ll}
\lambda & 0 \tag{3.1}\\
0 & 0
\end{array}\right]+E:=\left[\begin{array}{cc}
\lambda+\varepsilon_{11} & \varepsilon_{12} \\
\varepsilon_{21} & \varepsilon_{22}
\end{array}\right] \quad \text { of } \quad\left[\begin{array}{ll}
\lambda & 0 \\
0 & 0
\end{array}\right]
$$

that is *congruent to $\left[\begin{array}{cc}\mu & 0 \\ 0 & \nu\end{array}\right]$. This means that there exists a nonsingular $S=\left[\begin{array}{cc}x & y \\ z & t\end{array}\right]$ such that

$$
\left[\begin{array}{ll}
\bar{x} & \bar{z} \\
\bar{y} & \bar{t}
\end{array}\right]\left[\begin{array}{cc}
\mu & 0 \\
0 & \nu
\end{array}\right]\left[\begin{array}{ll}
x & y \\
z & t
\end{array}\right]=\left[\begin{array}{ll}
\lambda & 0 \\
0 & 0
\end{array}\right]+E,
$$

i.e.,

$$
\begin{align*}
\bar{x} x \mu+\bar{z} z \nu & =\lambda+\varepsilon_{11} & \bar{x} y \mu+\bar{z} t \nu & =\varepsilon_{12} \\
\bar{y} x \mu+\bar{t} z \nu & =\varepsilon_{21} & \bar{y} y \mu+\bar{t} t \nu & =\varepsilon_{22} . \tag{3.2}
\end{align*}
$$

For fixed λ, μ, ν and an arbitrarily small ε_{11}, the first equation with unknowns x and z has a solution only if $\lambda \in \mu \mathbb{R}_{+}+\nu \mathbb{R}_{+}$.

Conversely, let $\lambda \in \mu \mathbb{R}_{+}+\nu \mathbb{R}_{+}$. Take $\varepsilon_{11}=0$ and chose x and z for which the first equality in (3.2) holds. Then take arbitrarily small y, t for which S is nonsingular and get arbitrarily small $\varepsilon_{12}, \varepsilon_{21}, \varepsilon_{22}$ for which the other equalities in (3.2) hold.

- The arrow $\left[\begin{array}{ll}\lambda & 0 \\ 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{ll}0 & 1 \\ \sigma & 0\end{array}\right](|\lambda|=1,|\sigma|<1)$ exists for all λ and σ.

The arrow $\left[\begin{array}{cc}\lambda & 0 \\ 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{ll}0 & 1 \\ \sigma & 0\end{array}\right]$ exists if and only if there exists an arbitrarily small perturbation (3.1) that is *congruent to $\left[\begin{array}{cc}0 & 1 \\ \sigma & 0\end{array}\right]$. This means that there exists a nonsingular $S=\left[\begin{array}{cc}x & y \\ z & t\end{array}\right]$ such that

$$
\left[\begin{array}{cc}
\bar{x} & \bar{z} \\
\bar{y} & \bar{t}
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
\sigma & 0
\end{array}\right]\left[\begin{array}{ll}
x & y \\
z & t
\end{array}\right]=\left[\begin{array}{ll}
\lambda & 0 \\
0 & 0
\end{array}\right]+E,
$$

i.e.,

$$
\begin{align*}
\bar{x} z+\bar{z} x \sigma & =\lambda+\varepsilon_{11} & & \bar{x} t+\bar{z} y \sigma
\end{align*}=\varepsilon_{12} .
$$

Suppose that $\bar{z} x=u+i v, \sigma=\alpha+\beta i$, and $\lambda+\varepsilon_{11}=a+b i$, in which $u, v, \alpha, \beta, a, b \in \mathbb{R}$. Then the first equation in (3.3) takes the form $(u-v i)+(u+v i)(\alpha+\beta i)=a+b i$, which gives the system

$$
\begin{aligned}
& (1+\alpha) u-\beta v=a \\
& \beta u+(\alpha-1) v=b
\end{aligned}
$$

with respect to the unknowns u and v. Its determinant $\alpha^{2}+\beta^{2}-1$ is nonzero since $|\sigma|<1$. Therefore, the first equation in (3.3) holds for some x and z. Taking arbitrarily small y, t for which S is nonsingular, we get arbitrarily small $\varepsilon_{12}, \varepsilon_{21}, \varepsilon_{22}$ for which the other equalities in (3.3) hold.

- The arrow $\left[\begin{array}{cc}\lambda & 0 \\ 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{cc}0 & \tau \\ \tau & \tau i\end{array}\right](|\lambda|=|\tau|=1)$ exists if and only if $\operatorname{Im}(\lambda \bar{\tau}) \geqslant 0$.

The arrow $\left[\begin{array}{ll}\lambda & 0 \\ 0 & 0\end{array}\right] \rightarrow \tau\left[\begin{array}{ll}0 & 1 \\ 1 & i\end{array}\right]$ exists if and only if there exists an arbitrarily small perturbation (3.1) that is *congruent to $\tau\left[\begin{array}{ll}0 & 1 \\ 1 & i\end{array}\right]$. This means that there exists a nonsingular $S=\left[\begin{array}{cc}x & y \\ z & t\end{array}\right]$ such that

$$
\left[\begin{array}{ll}
\bar{x} & \bar{z} \\
\bar{y} & \bar{t}
\end{array}\right] \tau\left[\begin{array}{ll}
0 & 1 \\
1 & i
\end{array}\right]\left[\begin{array}{ll}
x & y \\
z & t
\end{array}\right]=\left[\begin{array}{ll}
\lambda & 0 \\
0 & 0
\end{array}\right]+E,
$$

i.e.,

$$
\begin{align*}
\bar{z} x+\bar{x} z+\bar{z} z i & =\bar{\tau}\left(\lambda+\varepsilon_{11}\right) & \bar{z} y+\bar{x} t+\bar{z} t i & =\bar{\tau} \varepsilon_{12} \\
\bar{t} x+\bar{y} z+\bar{t} z & =\bar{\tau} \varepsilon_{21} & \bar{t} y+\bar{y} t+\bar{t} t i & =\bar{\tau} \varepsilon_{22} \tag{3.4}
\end{align*}
$$

Consider the first equation in (3.4). Since $\bar{\tau}\left(\lambda+\varepsilon_{11}\right) \neq 0, z \neq 0$ too. Thus,

$$
\operatorname{Im}\left(\bar{\tau}\left(\lambda+\varepsilon_{11}\right)\right)=\operatorname{Im}(\bar{z} x+\bar{x} z+\bar{z} z i)=\bar{z} z>0
$$

and so $\operatorname{Im}(\bar{\tau} \lambda) \geqslant 0$.
Conversely, if $\operatorname{Im}(\bar{\tau} \lambda) \geqslant 0$, then we put $\varepsilon_{11}=0$ and take x, z such that the first equation in (3.4) holds. Taking arbitrarily small y, t for which S is nonsingular, we get arbitrarily small $\varepsilon_{12}, \varepsilon_{21}, \varepsilon_{22}$ for which the other equalities in (3.4) hold.

- The arrow $\left[\begin{array}{cc}\lambda & 0 \\ 0 & -\lambda\end{array}\right] \rightarrow\left[\begin{array}{cc}0 & \tau \\ \tau & \tau\end{array}\right](|\lambda|=|\tau|=1)$ exists if and only if $\lambda= \pm \tau$.

The arrow $\left[\begin{array}{cc}\lambda & 0 \\ 0 & -\lambda\end{array}\right] \rightarrow \tau\left[\begin{array}{ll}0 & 1 \\ 1 & i\end{array}\right]$ exists if and only if there exists an arbitrarily small perturbation $\left[\begin{array}{cc}\lambda & 0 \\ 0 & -\lambda\end{array}\right]+E$ of $\left[\begin{array}{cc}\lambda & 0 \\ 0 & -\lambda\end{array}\right]$ that is *congruent to $\tau\left[\begin{array}{cc}0 & 1 \\ 1 & i\end{array}\right]$. This means that there exists a nonsingular S such that

$$
S^{*} \tau\left[\begin{array}{ll}
0 & 1 \\
1 & i
\end{array}\right] S=\left[\begin{array}{cc}
\lambda & 0 \\
0 & -\lambda
\end{array}\right]+E
$$

Equating the determinants of both sides, we find that $-\tau^{2} \operatorname{det}\left(S^{*} S\right)$ is arbitrarily close to $-\lambda^{2}$. Since

$$
\operatorname{det}\left(S^{*} S\right)=\overline{\operatorname{det} S} \operatorname{det} S
$$

is a real positive number, $\left|\tau^{2}\right| \operatorname{det}\left(S^{*} S\right)$ is arbitrarily close to $\left|\lambda^{2}\right|$. Since $|\lambda|=|\tau|=1$, $\operatorname{det}\left(S^{*} S\right)$ is arbitrarily close to 1 . Hence, $-\tau^{2}=-\lambda^{2}$, and so $\lambda= \pm \tau$.

Conversely, let $\lambda= \pm \tau$. Since

$$
\left[\begin{array}{cc}
1 & 1 \\
1 / 2 & -1 / 2
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 / 2 \\
1 & -1 / 2
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

and

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]
$$

$\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ is *congruent to $\pm\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Its arbitrarily small perturbation $\pm\left[\begin{array}{ll}0 & 1 \\ 1 & \varepsilon i\end{array}\right](\varepsilon \in \mathbb{R}$, $\varepsilon>0)$ is *congruent to $\pm\left[\begin{array}{ll}0 & 1 \\ 1 & i\end{array}\right]$ via $\operatorname{diag}(\sqrt{\varepsilon}, 1 / \sqrt{\varepsilon})$. Therefore, $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right] \rightarrow \pm\left[\begin{array}{ll}0 & 1 \\ 1 & i\end{array}\right]$, and so $\left[\begin{array}{cc}\lambda & 0 \\ 0 & -\lambda\end{array}\right] \rightarrow \tau\left[\begin{array}{ll}0 & 1 \\ 1 & i\end{array}\right]$.

Step 2: Let us prove that we have not missed arrows in (2.3). We write $M \rightarrow N$ if the closure graph G_{2} does not have the arrow $M \rightarrow N$; i.e., if each matrix obtained from M by an arbitrarily small perturbation is not *congruent to N. Lemma 3.2 ensures that we need to prove only the absence of the arrows

$$
\left[\begin{array}{cc}
\lambda & 0 \\
0 & \pm \lambda
\end{array}\right] \rightarrow\left[\begin{array}{cc}
\mu & 0 \\
0 & \nu
\end{array}\right], \quad\left[\begin{array}{cc}
\lambda & 0 \\
0 & \pm \lambda
\end{array}\right] \rightarrow\left[\begin{array}{ll}
0 & 1 \\
\sigma & 0
\end{array}\right], \quad\left[\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right] \rightarrow\left[\begin{array}{cc}
0 & \tau \\
\tau & \tau i
\end{array}\right] .
$$

- $\left[\begin{array}{cc}\lambda & 0 \\ 0 & \pm \lambda\end{array}\right] \rightarrow\left[\begin{array}{cc}\mu & 0 \\ 0 & \nu\end{array}\right]$ and $\left[\begin{array}{cc}\lambda & 0 \\ 0 & \pm \lambda\end{array}\right] \rightarrow\left[\begin{array}{ll}0 & 1 \\ \sigma & 0\end{array}\right](|\lambda|=|\mu|=|\nu|=1, \mu \neq \pm \nu,|\sigma|<1)$.

Suppose that there is an arbitrarily small perturbation $A:=\left[\begin{array}{cc}\lambda & 0 \\ 0 & \pm \lambda\end{array}\right]+E$ of $\left[\begin{array}{cc}\lambda & 0 \\ 0 & \pm \lambda\end{array}\right]$ that is *congruent to $B:=\left[\begin{array}{cc}\mu & 0 \\ 0 & \nu\end{array}\right]$ or $C:=\left[\begin{array}{ll}0 & 1 \\ \sigma & 0\end{array}\right]$. Then $A^{-*} A:=\left(A^{-1}\right)^{*} A$ is similar to $B^{-*} B$ or $C^{-*} C$, which is impossible since the eigenvalues of $A^{-*} A$ are arbitrarily close to $\bar{\lambda}^{-1} \lambda=\lambda^{2}$, whereas $B^{-*} B=\operatorname{diag}\left(\mu^{2}, \nu^{2}\right)$ and $C^{-*} C=\operatorname{diag}\left(\sigma, \bar{\sigma}^{-1}\right)$.

- $\left[\begin{array}{cc}\lambda & 0 \\ 0 & \lambda\end{array}\right] \nrightarrow\left[\begin{array}{cc}0 & \tau \\ \tau & \tau\end{array}\right](|\lambda|=|\tau|=1)$.

Let $\left[\begin{array}{cc}\lambda & 0 \\ 0 & \lambda\end{array}\right] \rightarrow \tau\left[\begin{array}{ll}0 & 1 \\ 1 & i\end{array}\right]$; i.e., there exists an arbitrarily small perturbation $A:=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+$ E of $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ that is ${ }^{*}$ congruent to $B:=\lambda^{-1} \tau\left[\begin{array}{ll}0 & 1 \\ 1 & i\end{array}\right]$. This means that there exists a nonsingular S such that

$$
S^{*}\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+E\right) S=\lambda^{-1} \tau\left[\begin{array}{ll}
0 & 1 \\
1 & i
\end{array}\right]
$$

Equating the determinants of both sides, we find that

$$
r(1+\varepsilon)=-\left(\lambda^{-1} \tau\right)^{2}, \quad r:=\operatorname{det}\left(S^{*} S\right)>0
$$

in which ε is arbitrarily small. Since $-\left(\lambda^{-1} \tau\right)^{2}$ is fixed and $\left|\lambda^{-1} \tau\right|=1$, we have $\left(\lambda^{-1} \tau\right)^{2}=-1$, and so $\lambda^{-1} \tau= \pm i$. Then $\operatorname{rank}\left(B+B^{*}\right)=1$, which is impossible since $A+A^{*}$ is *congruent to $B+B^{*}$ and $\operatorname{rank}\left(A+A^{*}\right)=2$.

REFERENCES

[1] F. De Terán and F.M. Dopico. The solution of the equation $X A+A X^{T}=0$ and its application to the theory of orbits. Linear Algebra Appl., 434:44-67, 2011.
[2] F. De Terán and F.M. Dopico. The equation $X A+A X^{*}=0$ and the dimension of *congruence orbits. Electron. J. Linear Algebra, 22:448-465, 2011.
[3] H. den Boer and G.Ph.A. Thijsse. Semi-stability of sums of partial multiplicities under additive perturbation. Integral Equations Operator Theory, 3:23-42, 1980.
[4] A.R. Dmytryshyn, V. Futorny, B. Kågström, L. Klimenko, and V.V. Sergeichuk. Change of the congruence canonical form of 2-by-2 and 3-by-3 matrices under perturbations. Linear Algebra Appl., to appear. Available at arXiv:1004.3590.
[5] A.R. Dmytryshyn, V. Futorny, and V.V. Sergeichuk. Miniversal deformations of matrices of bilinear forms. Linear Algebra Appl., 436:2670-2700, 2012.
[6] A.R. Dmytryshyn, V. Futorny, and V.V. Sergeichuk. Miniversal deformations of matrices of sesquilinear forms. Linear Algebra Appl., 446:388-420, 2014.
[7] A. Edelman, E. Elmroth, and B. Kågström. A geometric approach to perturbation theory of matrices and matrix pencils. Part II: A stratification-enhanced staircase algorithm. SIAM J. Matrix Anal. Appl., 20:667-699, 1999.
[8] E. Elmroth, P. Johansson, and B. Kågström. Computation and presentation of graph displaying closure hierarchies of Jordan and Kronecker structures. Numer. Linear Algebra Appl., 8:381-399, 2001.
[9] E. Elmroth and B. Kågström. The set of 2-by-3 matrix pencils - Kronecker structures and their transitions under perturbations. SIAM J. Matrix Anal. Appl., 17:1-34, 1996.
[10] R.A. Horn and C.R. Johnson. Matrix Analysis, second edition. Cambridge University Press, Cambridge, 2012.
[11] R.A. Horn and V.V. Sergeichuk. Congruence of a square matrix and its transpose. Linear Algebra Appl., 389:347-353, 2004.
[12] R.A. Horn and V.V. Sergeichuk. A regularization algorithm for matrices of bilinear and sesquilinear forms. Linear Algebra Appl., 412:380-395, 2006.
[13] R.A. Horn and V.V. Sergeichuk. Canonical forms for complex matrix congruence and *congruence. Linear Algebra Appl., 416:1010-1032, 2006.
[14] R.A. Horn and V.V. Sergeichuk. Canonical matrices of bilinear and sesquilinear forms. Linear Algebra Appl., 428:193-223, 2008.
[15] S. Johansson. Canonical forms and stratification of orbits and bundles of system pencils. Report UMINF-05.16, Department of Computing Science, Umeå University, Sweden, 2005.
[16] L. Klimenko and V.V. Sergeichuk. An informal introduction to perturbations of matrices determined up to similarity or congruence. São Paulo J. Math. Sci., to appear. Available at arXiv:1311.1144.
[17] A.S. Markus and E.È. Parilis. The change of the Jordan structure of a matrix under small perturbations. Mat. Issled., 54:98-109 1980. English translation: Linear Algebra Appl., 54:139-152, 1983.
[18] A. Pokrzywa. On perturbations and the equivalence orbit of a matrix pencil. Linear Algebra Appl., 82:99-121, 1986.
[19] C. Riehm and M. Shrader-Frechette. The equivalence of sesquilinear forms. J. Algebra, 42:495530, 1976.
[20] L. Rodman. Remarks on Lipschitz properties of matrix groups actions. Linear Algebra Appl., 434:1513-1524, 2011.
[21] V.V. Sergeichuk. Classification problems for system of forms and linear mappings. Math. USSR-Izv., 31:481-501, 1988.
[22] A. Tannenbaum. Invariance and System Theory: Algebraic and Geometric Aspects. Lecture Notes in Math., Vol. 845, Springer, 1981.

[^0]: *Received by the editors on September 13, 2013. Accepted for publication on February 15, 2014. Handling Editor: Roger A. Horn.
 ${ }^{\dagger}$ Department of Mathematics, University of São Paulo, Brazil (futorny@ime.usp.br). Supported by the CNPq (grant 301320/2013-6) and FAPESP (grant 2010/50347-9).
 ${ }^{\ddagger}$ National Technical University of Ukraine "Kyiv Polytechnic Institute", Prospect Peremogy 37, Kiev, Ukraine (e.n.klimenko@gmail.com).
 ${ }^{\S}$ Institute of Mathematics, Tereshchenkivska 3, Kiev, Ukraine (sergeich@imath.kiev.ua). This work was done during the visit of V.V. Sergeichuk to the University of São Paulo supported by FAPESP grant 2012/18139-2.

