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Abstract. Given a graph G, a real orthogonal representation of G is a function from its set of

vertices to Rd such that two vertices are mapped to orthogonal unit vectors if and only if they are

not neighbors. The minimum vector rank of a graph is the smallest dimension d for which such a

representation exists. This quantity is closely related to the minimum semidefinite rank of G, which

has been widely studied. Considering the minimum vector rank as an analogue of the chromatic

number, this work defines critical graphs as those for which the removal of any vertex decreases the

minimum vector rank; and complement critical graphs as those for which the removal of any vertex

decreases the minimum vector rank of either the graph or its complement. It establishes necessary and

sufficient conditions for certain classes of graphs to be complement critical, in the process calculating

their minimum vector rank. In addition, this work demonstrates that complement critical graphs

form a sufficient set to prove the Graph Complement Conjecture, which remains open.
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Complement critical graph, Graph complement conjecture.
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1. Introduction. There is a well-established rich interplay between linear alge-

bra and graph theory. In particular, the association of a graph with a matrix (or a

class of matrices) allows properties of the graph to be encoded with algebraic struc-

ture. It is also often fruitful to define graph parameters, which are functions from

the set of graphs to (for example) the nonnegative integers; perhaps the most famous

of these is the chromatic number of a graph. The minimum rank of a graph is an

example of both of these. It is a graph parameter which is defined in terms of an

associated class of matrices (discussed below). This type of inquiry was initiated in

[15]; and the specific question of minimizing the rank of a matrix with given zero

pattern was the subject of a 2006 American Institute of Mathematics workshop [2]

and has generated much interest since then (e.g., [1, 3, 4, 5, 6, 7, 13, 14]). See [10, 11]
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for thorough surveys of known results and lines of inquiry.

The present work has origins in the work of Haynes, et al. [12], which looked

at orthogonal representations of graphs as an analogue of graph coloring, a strategy

which we will employ here. In particular, we will look for the smallest dimension in

which we can embed an orthogonal representation of a graph. One possible inter-

pretation of such a vector representation is as a set of quantum states, necessarily

unit vectors, in which case the associated graph G is the confusability graph of these

states [8, 9]. We will not pursue this interpretation here, but it motivates our desire

to focus on representations consisting of nonzero vectors. By contrast, much of the

literature focuses on the relation between graphs and their associated matrices (e.g.,

[1, 7, 11]), which do not explicitly give a “coloring” of a graph using vectors. The

ideas are closely related, however, and the differences are mostly linguistic.

The main theme of our current work is complement criticality. Recall that a

critical graph is one such that any proper subgraph has a strictly smaller chromatic

number. We wish to look at analogous graphs with respect to the minimal vector rank,

defining vector critical graphs to be those such that any proper induced subgraph has

a strictly smaller minimum vector rank. In addition, it will also be interesting to

look at complement critical graphs, in which any proper induced subgraph or its

complement has a strictly smaller minimum vector rank. That is, if H is a proper

induced subgraph of G, then mvr(H) + mvr(H) < mvr(G) + mvr(G). These terms

are more formally defined in Section 3.

On question posed during the 2006 AIM workshop has gained much attention:

How large can the sum of the minimum rank of a graph and its complement be? This

question (and its conjectured answer) has become known as the Graph Complement

Conjecture. We will state this conjecture in Section 2 and show its connections to

our current work.

The rest of the paper is organized as follows. Section 2 introduces basic definitions

and properties of the minimum vector rank. In Section 3, we give a precise definition

of complement critical graphs and explore its immediate consequences. Section 4

establishes formulas for the minimum vector rank of the complement of certain sparse

graphs, which allows us in Section 5 to give necessary and sufficient conditions for

certain types of graphs to be complement critical. Finally, in Section 6, we briefly

restate our results in terms of the minimum semidefinite rank, to illuminate the

connection to other work. There is also an Appendix, in which we include some of

the more technical proofs from Section 4.

2. The minimum vector rank of a graph. We recall some standard defini-

tions: A graph is a pair G = (V,E), where V a finite non-empty set of vertices and

E ⊂ V × V is the set of edges. We will restrict our focus to simple graphs, in which
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edges are undirected and no loops or multiple edges are allowed. The order of a graph

G, denoted |G|, is the size of its vertex set. Two vertices u and v in V are neighbors

if and only if uv ∈ E; the neighborhood of v is denoted N(v) := {u ∈ V : uv ∈ E}.

The degree of a vertex is its number of neighbors: deg(v) = |N(v)|. A pendant vertex

has exactly one neighbor, while an isolated vertex has no neighbors. Two vertices u

and v are duplicate vertices if they are neighbors and if they share all other neighbors.

That is, N(u) ∪ {u} = N(v) ∪ {v}.

Building on [2] and works which have followed, we consider the minimum rank

of a graph G on n vertices (denoted mr(G)) as the minimum rank among n × n

Hermitian matrices M such that for all i 6= j, Mij 6= 0 if and only if vertices i and j

are connected by an edge. (This is equivalent to the fact that the off-diagonal entries

of M have the same pattern of zeroes as the adjacency matrix of G.) The minimum

semidefinite rank mr+(G) is similarly defined with the additional requirement that

M be a positive semidefinite matrix; this is also sometimes indicated by the alternate

notation msr(G) [14].

In this work, we wish to assign a nonzero vector to every vertex. This is a well-

studied idea with, unfortunately, inconsistent notation and terminology. We will use

the following definition:

Definition 2.1. Let G = (V,E) be a simple graph. An orthogonal vector

representation of G is a function

φ : V → R
d such that







〈φ(vi), φ(vi)〉 > 0 for all vi ∈ V,

〈φ(vi), φ(vj)〉 = 0 if i 6= j and vivj /∈ E,

〈φ(vi), φ(vj)〉 6= 0 otherwise.

We interpret this as an analogue of vertex coloring in the sense of assigning a

vector to each vertex with conditions on adjacent vertices. This is actually a stronger

condition than coloring, as it is restricted both by a vertex’s neighbors and by its

non-neighbors. Note also that our orthogonal representation is defined as mapping

to a real vector space; and, in fact, [4] has shown a graph for which there exists an

orthogonal vector representation in C
3 but not in R

3. However, all of the results in

this paper hold whether the underlying field is R or C.

We note that in other settings, Orthogonal Vector Representations allow some

vertices to be assigned the zero vector. We explicitly disallow this here; this means

that we can always renormalize any representation to include only unit vectors. These

vector representations give us our graph parameter of primary interest for this paper,

in which we follow the definition given in [14]:

Definition 2.2. The minimum vector rank of a graph G is the smallest integer
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d such that there exists an orthogonal vector representation of G in Rd. We denote

this as mvr(G).

The minimum vector rank is closely related to the minimum semidefinite rank

described above. To make this connection with other parameters explicit, we offer

the following observations:

Observation 2.3. For a simple graph G, the following hold:

1. mvr(G) ≥ mr+(G), and mvr(G) = mr+(G) unless G contains isolated

vertices.

In fact, if G contains r isolated vertices, then r = mvr(G)−mr+(G) [14].

2. mvr(G) = jmr+(G) := mr+(G ∨K1), as in [10].

3. mvr(G) ≥ χv(G), defined in [12].

We can easily adapt known properties of the minimum semidefinite rank (from

[10, 12], et al.) to give properties of the minimum vector rank. Recall that if two

graphsG1 = (V1, E1) and G2 = (V2, E2) have disjoint sets of vertices, then their union

G1∪G2 has vertices V = V1∪V2 and edges E = E1∪E2. If G1 and G2 are connected

graphs, then they are the connected components of G1 ∪ G2. Similarly, G1 ∨ G2 is

called the join of G1 and G2 and contains all the vertices and edges as G1 ∪ G2 but

additionally has each vertex in G1 adjacent to each vertex in G2. We note that for

any nonempty graphs G1, G2, G1 ∨G2 is connected and G1 ∨G2 = G1 ∪G2.

Observation 2.4. Let G be a graph on n ≥ 1 vertices.

1. If H is an induced subgraph of G, then mvr(H) ≤ mvr(G).

2. If G = G1 ∪G2, then mvr(G) = mvr(G1) + mvr(G2).

3. If G = G1 ∨G2, then mvr(G) = max(mvr(G1),mvr(G2)).

4. In particular, if Kn is the complete graph on n vertices, then mvr(Kn) = 1

and mvr(Kn) = n.

Proof. (1) is immediate, since any orthogonal representation of G restricts to an

orthogonal representation of H . (2) also follows immediately from the definition. (3)

is equivalent to Theorem 3.2 in [11]. (4) follows from the fact that Kn is the join of

n copies of K1 and Kn is the union of n copies of K1.

3. Complement critical graphs. One can consider the minimum vector rank

as a generalization of ordinary graph coloring in which we assign vectors to the ver-

tices instead of colors. This approach was taken in [12], although they defined their

quantities differently. The primary study of this paper is a further extension of the

analogy with graph coloring. Recall that if χ(G) denotes the chromatic number of G,

a graph G is critical if χ(H) < χ(G) for all proper subgraphs H of G. We propose
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the following as a natural generalization:

Definition 3.1. A graph G is vector critical if, for any proper induced subgraph

H of G, mvr(H) < mvr(G).

We know that mvr(H) ≤ mvr(G) for any induced subgraph H ; G is vector critical

if this inequality is strict for all H 6= G. We will refer to such graphs simply as critical

when there is no ambiguity.

The class of critical graphs is fairly restrictive. Since we are looking at induced

subgraphs, which are defined in terms of a particular vertex subset, it makes sense

to consider a graph and its complement as a pair; the vertices of H determine the

structure of H. This suggests the following definition:

Definition 3.2. A graph G is complement critical if, for any proper induced

subgraph H of G,

mvr(H) + mvr(H) < mvr(G) + mvr(G).(3.1)

The sum in this inequality is a convenient shorthand for saying that either

mvr(H) < mvr(G) or mvr(H) < mvr(G); removing any vertices from G will de-

crease at least one of the minimum vector ranks. Complement criticality is clearly a

weaker condition than criticality. Every vector critical graph is complement critical,

but we will see examples in Section 5 of graphs which are complement critical but not

vector critical.

Writing the definition this way also connects it with the larger conversation about

the Graph Complement Conjectures (see, e.g., [3, 11]), which were initially proposed

at the 2006 AIM workshop. Despite many positive contributions, the conjecture and

several variants remain unproven. We state the two primary conjectures and append

a third given in the language of minimum vector rank.

Conjecture 3.3 (Graph Complement Conjectures). For any simple graph G

on n vertices,

mr(G) +mr(G) ≤ n+ 2,(3.2)

mr+(G) +mr+(G) ≤ n+ 2,(3.3)

mvr(G) + mvr(G) ≤ n+ 2.(3.4)
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Since mr(G) ≤ mr+(G) ≤ mvr(G) for any graph G, it is clear that (3.4) implies

(3.3), which in turn implies (3.2). What is less obvious is that if (3.3) holds for all

simple graphs G, then so does (3.4). This is good news, since we are considering mvr

to be a small tweak of mr+.

The equivalence follows in a straightforward way: Suppose there exists a graph

G for which mvr(G) +mvr(G) > n+2. Without loss of generality, we assume that G

is connected (since for any graph at least one of G and G must be connected [16]). If

we then look at the graph G′ = G ∪K1, then mr+(G
′) = mr+(G) + 1 = mvr(G) + 1

since G is connected; and mr+(G′) = mr+(G ∨K1) = mvr(G). This implies that

mr+(G
′) + mr+(G′) = mvr(G) + 1 +mvr(G) > 1 + n+ 2 = |G′|+ 2.(3.5)

So, if there is a counterexample to (3.4), then we can build one for (3.3). Thus, the

validity of (3.3) for all graphs is equivalent to the validity of (3.4) for all graphs.

None of these inequalities has been proven to date, but the idea of complement

critical graphs gives yet another way to think about this.

Proposition 3.1. If the inequality (3.4) holds for all complement critical graphs

G, then it holds for all simple graphs and Conjecture 3.3 is true.

This means that in order to prove the validity of (3.4) for all graphs, it is only

necessary to verify it for all of the complement critical graphs.

Proof. Suppose G is a graph which is not complement critical. Define the set

S(G) := {H : H is a proper induced subgraph of G,mvr(H) + mvr(H) = mvr(G) +

mvr(G)}. Since G is not complement critical, S(G) is not empty. Choose a graph

H ∈ S(G) with the minimum number of vertices. For any proper induced subgraph

K of H , K /∈ S(G), which implies that K /∈ S(H) ⊆ S(G). This means that S(H) is

empty and H is complement critical.

Note that this argument follows from the fact that the minimum vector rank

is monotone on induced subgraphs; an analogous property exists for critical graphs

based on chromatic number (mentioned in [16]) or on any similarly defined quantity.

It is not inherently about the minimum vector rank.

The proposition follows quickly from this simple fact. Suppose our graph G

violates the graph complement conjecture: mvr(G) +mvr(G) > |G|+2. We consider

the complement critical induced subgraph H from above and see that

mvr(H) + mvr(H) = mvr(G) + mvr(G) > |G|+ 2 ≥ |H |+ 2,(3.6)

which implies that the graph H also violates the inequality (3.4).

Thus, if (3.4) is violated by a graph which is not complement critical, it must
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also be violated for some complement critical graph. Taking the contrapositive gives

us Proposition 3.1.

Proposition 3.1 says that in order to prove the graph complement conjectures, we

need only prove (3.4) for complement critical graphs. In the remainder of the paper,

we explore classes of complement critical graphs.

4. Minimum vector rank of graph complements. In preparation for our

discussion of families of complement critical graphs, it will be useful to establish

formulas for the minimum rank of the complement of certain types of graphs. This

work starts with the bounds given in [13] on the minimum ranks of several families

of graph complements. In particular, if we let Cn be the cycle on n vertices, then

mvr(Cn) ≤ 4; as a result, it is shown in [13] that mvr(U ) ≤ 4 for any unicyclic graph

U . We give precise conditions which dictate the minimum vector rank of these graph

complements and then extend them to larger classes of graphs.

4.1. Trees and cycles. The simplest sparse graphs are trees. For a tree T ,

the complement was shown to satisfy mvr(T ) = mr+(T ) ≤ 3 in Theorem 3.16 of [1].

They also show that the minimum rank of T depends only on whether T contains an

induced copy of P4; the same logic applies in considering the minimum vector rank.

We include the full result for completeness:

Proposition 4.1. Let T be a tree of order n ≥ 2, then

mvr(T ) =

{

2 if T = K1,n−1,

3 otherwise.

Our other starting point is graphs which are cycles. The authors of [1] give a proof

that mr(Cn) = 3 for n ≥ 5. Their proof gives an explicit orthogonal representation,

which implies that in fact mr+(Cn) = mvr(Cn) = 3 for n ≥ 5. A different proof of

this fact was given in [6]. Direct calculation shows that mvr(C3) = mvr(3K1) = 3 and

mvr(C4) = mvr(2P2) = 2, which gives us a complete characterization of mvr(Cn):

Proposition 4.2. [1, 6] Let Cn be the cycle on n ≥ 3 vertices. Then mvr(Cn) =

3 if n 6= 4.

In the case n = 4, mvr(C4) = 2.

We note that, in the case n 6= 4, the orthogonal representation in [1] consists of

pairwise linearly independent vectors, while the minimum dimension for an orthogonal

representation for C4 is 2 but jumps up to 4 if we insist that all vectors be pairwise

linearly independent. Such representations satisfy the hypotheses of Theorem 2.1 in

[13], allowing us to extend the methods of that paper relating to the complements of
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Fig. 4.1. The unicyclic graph L4, whose complement has minimum vector rank 4.

unicyclic graphs.

Proposition 4.3. Let U be a unicyclic graph, then

mvr(U) =







4 if L4 is an induced subgraph of U,

2 if U = C4,

3 otherwise.

The graph L4 is the complement of a 2-tree as described in [13] and is shown in

Figure 4.1. Although this proposition can be seen as a special case of Proposition 4.7,

the direct proof is an immediate application of the methods in [13], so we include it

here:

Proof. Suppose that U is built on a cycle of length n 6= 4. It follows from

Proposition 4.2 that the complement of this cycle has an orthogonal representation in

R3 in which any two vectors are linearly independent. Using the method of Corollary

3.4 from [13], a unicyclic graph U can be constructed from the cycle Cn by adding

one vertex at a time, with the new vertex adjacent to at most one prior vertex in U .

The orthogonal representation of U can similarly be built up one vector at a time.

Thus, mvr(U) = mvr(Cn) = 3 given that n 6= 4.

If n = 4, then there are two possibilities. If U contains L4 as an induced subgraph,

then mvr(U) ≥ mvr(L4) = 4. Since mvr(U) ≤ 4 from [13], we see that mvr(U) = 4 if

U contains L4 as an induced subgraph.

If a unicyclic graph contains a 4-cycle but does not have L4 as an induced sub-

graph, then it contains a pair of diagonally opposite vertices of degree 2, as seen in

Figure 4.2. These are duplicate vertices in U . Removing one of these vertices leaves

a tree, which means that mvr(U − v) = 3 unless (U − v) is a star, in which case

U = C4. We can then reinstate the vertex v and assign it the same vector as its

duplicate. Thus, any unicyclic graph that does not have L4 as an induced subgraph

will have mvr(U) = 3 or 2, depending on whether U = C4, which is what we wished

to show.
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Fig. 4.2. Examples of unicyclic graphs with 4-cycles but no induced copies of L4.

4.2. Adding long ears to graphs. We would like to extend these ideas to

calculate the minimum rank of the complement of graphs with more than one cycle.

The following proposition will be a useful tool for this and is of interest in its own

right. Recall that an ear of a graph is a maximal path subgraph whose internal

vertices each have degree 2 in G [16].

Proposition 4.4 (Ear Decomposition). Let G be a connected graph, and let P

be an ear of G containing at least five vertices. Let H be the subgraph of G induced

by removing the internal vertices of P .

If H has an orthogonal representation in R3 consisting of pairwise linearly inde-

pendent vectors, then so does G.

Proof. Suppose our ear consists of the path u,w1, w2, . . . , wn−2, v, where u and v

are vertices in H . We can sequentially build the ear by adding vertices along the path,

working from both endpoints, extending our three-dimensional vector representation

at every step. Let V ′ be the set of vertices in H , and H = G[V ′] be the induced

subgraph on those vertices. Using Theorem 2.1 of [13] twice, we find vectors w1 and

wn−2 in R
3 to give a vector representation of G[V ′ ∪ {w1, wn−2}] since w1 and wn−2

are pendant vertices in this graph. We can similarly add vectors for w2, w3, . . . , wn−4

in sequence, since these are added as pendant vertices.

When we reach the final step, this method is no longer sufficient, as wn−3 will

have two neighbors in G and two non-neighbors in G. To find a vector representation

that completes G, we need Lemma 4.5, which allows for tweaking the vectors assigned

to the neighbors of wn−3. This lemma is stated below and proved in Appendix A.1.

The requirement that n ≥ 5 ensures that when the two paths meet in the middle,

that vertex is sufficiently isolated from the rest of the graph that we can adjust our

representation to include it; and Lemma 4.5 shows us how to do this. This completes

the proof that mvr(G) = mvr(G− wn−3) = 3.

Lemma 4.5. Let H be a graph with vertices v and w such that

• deg(v) = deg(w) = 1;
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Fig. 4.3. A necklace graph with four cycles.

• v and w have no neighbors in common.

Let G be the graph formed from H by adding a new vertex u of degree 2 which is

adjacent to v and w.

If there is an orthogonal representation of H in R3 which assigns distinct nonzero

vectors to each vertex, then there is such an orthogonal representation of G in R3.

Hence, mvr(G) ≤ 3.

We provide another simple result in the style of [13] to cover ears of length 3.

This will allow us to attach 3-cycles onto pendant vertices in the next section. The

lemma is also proved in the Appendix.

Lemma 4.6. Let H be a connected graph with pendant vertex w, and let G be the

graph formed by adding two new vertices u and v which are adjacent to w and to each

other but have no other neighbors.

If H has an orthogonal representation in R3 consisting of pairwise linearly inde-

pendent vectors, then so does G.

4.3. Applications of Proposition 4.4. Our motivation for Proposition 4.4

was to calculate the minimum vector rank of graphs defined in terms of cycles. The

first family of graphs we will study are called necklaces:

Definition 4.1. A necklace is a simple connected graph on at least two vertices

such that no vertex lies on more than one cycle.

These graphs include trees, cycle graphs, and unicyclic graphs; a generic example

is shown in Figure 4.3. Any induced subgraph of a necklace is a union of necklaces and

isolated vertices. Necklaces can be built up step by step by either adding a pendant

vertex adjacent to an existing one or building a cycle by adding ears between an
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existing pair of vertices. Hence, we can use Proposition 4.4 to establish a complement

formula.

Proposition 4.7. Let N be a necklace as defined above. Then

mvr(N) =







4 if L4 is an induced subgraph,

2 if N = C4 or N = K1,n for n ≥ 1,

3 otherwise.

Proof. The proposition has already been shown to be true for trees and unicyclic

graphs. The proof then proceeds by induction on the number of cycles. Let us assume

that the formula works for necklaces with fewer than c ≥ 2 cycles.

Let N be a necklace with c cycles which has no induced 4-cycles, and let u be

a cut-vertex such that (N − u) = N ′ ∪ F is the union of a necklace N ′ on c − 1

cycles and a forest F . (Such a cut-vertex must exist; its cycle is the analogue of a

leaf in this “tree of cycles.”) By assumption, mvr(N ′) = 3. If u is on a 3-cycle, we

can apply Lemma 4.6 to extend the representation of N ′ to the entire cycle. If u is

on a larger cycle and v is one of its neighbors, we can start with the representation

of N ′ and use Theorem 2.1 from [13] to extend the representation and show that

mvr(N ′ + u+ v) = 3. We can then reconstruct the cycle by drawing a long ear from

v back to u and use Proposition 4.4 to show that the minimum vector rank is not

increased. Finally, we can reinstate the rest of the forest F , one pendant vertex at

a time, without increasing the minimum vector rank until we have reconstructed our

original graph N . Thus, mvr(N) = 3 for all necklace graphs which are 4-cycle-free.

Now, suppose that N is a necklace on c ≥ 2 cycles which contains 4-cycles but

no induced copies of L4. Repeating the argument from the proof of Proposition 4.3,

every 4-cycle contains a pair of diagonally opposite vertices of degree 2. Removing

one vertex from each such pair yields a necklace N ′ with no 4-cycles and hence

mvr(N ′) ≤ 3; and since N has more than one cycle, N ′ cannot be a star, implying

that mvr(N ′) ≥ 3. We then reinstate the duplicate vertices by duplicating its vector

assignment and finding that mvr(N) = 3.

Finally, we consider the case where N has an induced L4 subgraph. This im-

mediately implies that mvr(N) ≥ 4. We will show that mvr(N) ≤ 4 by building

with a 4-cycle-free necklace. For each 4-cycle in N , split one of its edges into two by

introducing a new vertex in the middle: uv → {uw,wv}. This turns every four-cycle

into a five-cycle and creates a new necklace N ′ which is 4-cycle-free, implying that

mvr(N ′) = 3. Now, embed this three-dimensional vector representation of N in R4

by setting the fourth coordinate equal to zero. In order to make this a valid vec-

tor representation of the original necklace N , for each 4-cycle Ci, we need to adjust

the vectors assigned to our vertices ui and vi by assigning them respective fourth
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coordinates xi and yi so that xiyi = −〈ui,vi〉 6= 0. Since we have infinitely many in-

dependent choices for each pair (xi, yi), we can find a labelling such that 〈ui,vj〉 6= 0

for i 6= j. This guarantees that a representation can be found in R4, which implies

that mvr(N) = 4.

A different generalization of unicyclic graphs are those in which all induced cycles

share a single common edge. These are called books in Section 5.5.

Definition 4.2. A book is a connected graph on n ≥ 3 vertices, which has a

unique edge e such that the intersection of any two induced cycles of B is exactly the

edge e and its vertices. The endpoints of e are called the binding vertices.

This definition is discussed more in Section 5.5. Note that the uniqueness of e

implies that B contains at least two cycles. The minimum rank of book complements

is given in terms of the 4-cycle C4 and the kite κ, which is shown in Figure 4.4.

Proposition 4.8. For a book B as defined above,

mvr(B) =

{

4 if either C4 or the kite κ is an induced subgraph of B,

3 otherwise.

Proof. Let B be a book which does not have any induced kite or 4-cycles. Start

with a single 3-cycle (if there is one) or else any other induced unicyclic graph. From

here, we can build B up one cycle at a time by adding long ears using Proposition

4.4 to show that mvr(B) = 3. If B has multiple 3-cycles, then each contains the two

binding vertices and a third vertex of degree 2 in B (since B is kite-free). In this case,

the set of “third vertices” in B consists of all duplicate vertices, and we can assign

the same vector to each of them.

The kite κ on five vertices is the only book whose complement is a connected tree.

As such, mvr(κ) = |κ| − 1 = 4, implying that mvr(B) ≥ 4 if it contains an induced

kite. Likewise, if B has more than one cycle and contains C4 as an induced subgraph,

it implies that B must have an induced subgraph isomorphic to at least one of the

graphs shown in Figure 4.4, each of which has complement minimum vector rank of 4.

Since each of these four graphs has an orthogonal representation in R
4 which satisfies

the conditions of Theorem 2.2 of [13], we can build up the rest of B one vertex at

a time and maintain mvr(B) ≤ 4. This means that if B contains either a kite or a

four-cycle as a subgraph, then mvr(B) = 4.

5. Families of complement critical graphs. In an arbitrary graph G, it is

not obvious in general whether it is complement critical. However, if the graph has

nice properties, we can sometimes formulate simple criteria. This section focuses

on identifying families of vector critical and complement critical graphs. The initial
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Fig. 4.4. Books for which mvr(B) = 4: Kite κ, L4, Domino, P5.

section shows that complement critical graphs which are not connected must be built

from smaller complement critical graphs. We then derive necessary and sufficient

conditions for certain types of graphs to be complement critical based on their induced

cycles.

Although the definition of complement critical graphs uses a property of all in-

duced subgraphs of G, it is sufficient to consider only those induced by removing a

single vertex of G, since G is vector critical if and only if mvr(G − v) < mvr(G)

for all vertices v. Likewise for complement criticality. We will make use of this fact

repeatedly in what follows, writing (G− v) to indicate the induced subgraph of G on

all of its vertices except v.

5.1. Disconnected graphs. The first result shows that disconnected comple-

ment critical graphs are composed of complement critical components. This will allow

us to focus the remainder of our work on connected graphs.

Proposition 5.1. Let G be a graph which is not connected. We can write

G = G1 ∪G2 with mvr(G1) ≤ mvr(G2). Then G is vector critical if and only if both

G1 and G2 are vector critical.

In addition, G is complement critical if and only if the following three conditions

are all satisfied:

• mvr(G1) < mvr(G2);

• G1 is vector critical;

• G2 is complement critical.

Note that there is a possible ambiguity in the labelling of G1 and G2 if mvr(G1) =

mvr(G2); but in this case, G cannot be complement critical.

Proof. We proceed by removing a single vertex v and looking at the induced

subgraph. This vertex may be removed from G1 or from G2.

In the case where v is removed from G1, we note that mvr(G1 − v) ≤ mvr(G1) ≤
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mvr(G2), which implies that

mvr(G− v) = mvr((G1 − v) ∨G2) = mvr(G2) = mvr(G).(5.1)

This means that removing a vertex from G1 will never reduce the minimum vector

rank of G. Likewise, we can see that

mvr(G)−mvr(G1) = mvr(G2) = mvr(G− v)−mvr(G1 − v).(5.2)

Therefore, mvr(G − v) + mvr(G− v) < mvr(G) + mvr(G) if and only if mvr(G1) >

mvr(G1 − v). This condition holds for all vertices v of G1 if and only if G1 is vector

critical.

In the case where v is removed from G2, we see that

mvr(G− v) = max(mvr(G1),mvr(G2 − v)).(5.3)

This means that mvr(G− v) = mvr(G) if and only if either mvr(G1) = mvr(G2) or

mvr(G2) = mvr(G2 − v).

So, in order for G to be complement critical, either mvr(G2 − v) < mvr(G2) for

all v (i.e., G2 is vector critical), or else we need G2 to be complement critical and

have mvr(G1) < mvr(G2).

By repeated application of this result, we can see that every connected component

of a complement critical graph must be complement critical; and, in fact, all but one

of them must be vector critical as well. This allows us to focus our remaining results

on graphs for which both G and G are connected.

5.2. Trees. Trees are the simplest connected graphs, and it is straightforward to

characterize them in terms of criticality. Recall that a tree is a star if it is a complete

bipartite graph K1,n−1.

Proposition 5.2. Any tree is complement critical. Any tree which is not a star

is vector critical.

Proof. If T is a tree on n vertices, then mvr(T ) = n − 1; if we remove a single

vertex v, then mvr(T − v) ≤ |T − v| − 1 = n− 2 unless (T − v) contains only isolated

vertices. In this case, T must be a star and v must be the central vertex.

Conclusion: If T is not a star, then for any vertex v mvr(T−v) ≤ n−2 < mvr(T ),

so T is vector critical.

If T = K1,n−1 and the vertex being removed is the dominating vertex, then

mvr(T − v) = mvr(T ) but mvr(T − v) = mvr(Kn−1) = 1. Since mvr(T ) = 2 by

Proposition 4.1, we see that a star is complement critical.
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5.3. Unicyclic graphs. Following the discussion of trees, which contain no

cycles, it is natural to look at graphs which contain only one. For a connected unicyclic

graph U , it was shown in [5] that mvr(U) = |U |−2. We use this result and Proposition

4.3 to characterize connected unicyclic graphs which are complement critical.

Proposition 5.3. A connected unicyclic graph U is complement critical if and

only if at least one of the following three conditions is true:

1. Each vertex on the cycle of U is adjacent to at least three vertices of degree

greater than 1. In this case, U is vector critical.

2. L4 is an induced subgraph of U .

3. U = S3
n, which is the graph formed from the star graph K1,n−1 by connecting

two of the leaves with an edge, as shown in Figure 5.1.

Fig. 5.1. Generic unicyclic graph (left) and the graph S3

8
(right).

Proof. We first observe that if v is not on the cycle of U , then (U−v) is the union

of a connected unicyclic graph U ′ and a (possibly empty) forest F . This implies that

mvr(U − v) = mvr(U ′) + mvr(F ) ≤ |U ′| − 2 + |F | = |U | − 3.(5.4)

Thus, removing a vertex not on the cycle will always reduce mvr(U). This reduces the

question of U ’s complement criticality to what happens when you remove a vertex on

the cycle. To do this, we can check directly that each of the three conditions implies

that U is complement critical:

Condition (1) implies that for every v on the cycle, (U − v) is a forest containing

at least two proper trees. This means that mvr(U − v) ≤ |U − v| − 2 < mvr(U).

Condition (2) implies that mvr(U) = 4. If v is on the cycle, then (U − v) is a

forest and mvr(U − v) ≤ 3 < mvr(U).

Finally, (3) implies that if v is on the cycle, then either (U − v) = K1,n−2 or

(U − v) = Kn−1. In either case, mvr(U − v) ≤ 2 < mvr(U).

We conclude that any one of these three conditions implies that U is complement

critical. Now, we wish to show that they are in fact necessary. Assume that U is a
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connected unicyclic graph which is complement critical for which the conditions (1)

and (2) do not hold. We wish to show that U = S3
n for some n.

Since condition (1) does not hold, there is at least one vertex v on the cycle for

which (U − v) is the union of a tree T plus a collection of r ≥ 0 isolated vertices.

This means that mvr(U − v) = |T | − 1 + r = |U | − 2 = mvr(U). By assumption, U

is complement critical, so mvr(U − v) < mvr(U). Condition (2) does not hold, which

means that mvr(U) ≤ 3 by Proposition 4.3. This forces mvr(U − v) ≤ 2. Proposition

4.1 then tells us that T must be a star.

Let u be the center vertex of T , and let w /∈ {u, v} be any vertex from the cycle in

U . w is necessarily a leaf in T , which means that deg(w) ≤ 2 in U . This means that

w does not satisfy condition (1), so we can repeat our argument (interchanging the

roles of v and w) to show that (U − w) must also include a star with v as a leaf and

that deg(v) ≤ 2. Since v and w are degree two vertices which are adjacent to each

other and to u, we see that U must be built on a 3-cycle and that only one of these

three vertices can have degree greater than 2, leading us to conclude that U = S3
n for

some n ≥ 3.

Conclusion: If U is complement critical and neither condition (1) nor (2) holds,

then condition (3) must be true. This gives us the biconditional in the proposition.

As an immediate consequence, we see that a cycle graph Cn is complement critical

if and only if n = 3. The three-cycle C3 = S3
3 is a degenerate form of Figure 5.1; its

complement C3 = 3K1 is vector critical.

5.4. Necklaces. The next graphs we consider are necklaces, which were defined

in Section 4.4. Recall that a necklace is a connected graph in which each vertex

belongs to at most one cycle, as shown in Figure 4.3. Graphs in which each edge

appears in at most one cycle are called cactus graphs and are well-studied [16], but

there does not appear to be as much attention to graph in which cycles do not intersect

even on the vertices. Necklaces can be thought of as a “tree of cycles,” since we can

form a tree by collapsing the vertices of each cycle into a single vertex. Such graphs

are planar and, since each cycle is in fact an induced cycle, the infinite face of this

graph touches every vertex. This implies that necklaces are outerplanar, which allows

us to use results from [5].

In order to characterize complement critical necklaces, it will be useful to have

formulas for the minimum rank. The minimum rank of the complement was described

in Proposition 4.7, while the minimum rank of a necklace itself generalizes the formula

for trees and unicyclic graphs:

Proposition 5.4. If N is a proper necklace on c cycles, then mvr(N) = |N | −

c− 1.
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Proof. Note that the formula specifies to unicyclic graphs and proper trees (with

c = 1 and c = 0, respectively) but does not apply if N = K1. The simplest proof

of this formula uses the result from [5], which states that since N is outerplanar and

connected, mvr(N) = mr+(N) = |N | − T (N), where T (N) is the minimum number

of vertex-disjoint induced trees of N needed to cover all of its vertices. If we choose

one vertex from each cycle and delete its two edges on the cycle, what remains is a

forest consisting of c + 1 induced trees. This is a tree cover, hence T (N) ≤ c + 1.

On the other hand, in any a tree covering of N , each cycle must be covered using at

least two induced trees. As a result, the covering must omit at least two edges from

each cycle (where the induced trees connect to each other). Since N has |N | − 1 + c

edges, the tree covering has at most |N | − 1 − c edges. A union of k trees covering

|N | vertices has exactly |N |− k edges, which implies that any tree covering of N uses

at least c+ 1 trees. Thus, T (N) = 1 + c and mvr(N) = |N | − c− 1.

The following proposition gives the main result of this section.

Proposition 5.5. A necklace N is vector critical if and only every vertex on a

cycle of N is adjacent to at least three vertices of degree greater than 1.

A necklace N is complement critical if and only if one of the following three

conditions is true:

1. N is vector critical.

2. N has L4 as an induced subgraph; every induced copy of L4 is built on the

same 4-cycle; and every vertex which lies on a cycle other than this 4-cycle

is adjacent to at least three vertices of degree greater than 1.

3. N = S3
n (see Figure 5.1).

Proof. This is a generalization of Proposition 5.3, although the conclusions are

not as simple. As in the unicyclic case, if v is a vertex which is not on a cycle,

then (N − v) =
⋃k

i=1
Ni ∪Kr is the union of k ≥ 1 proper necklaces plus r ≥ isolated

vertices. The total number of cycles is this same as in the original graph. This implies

that mvr(N−v) = r+
∑

i mvr(Ni) = r+
∑

i(|Ni|−ci−1) = |N |−1−c−k < mvr(N)

since k ≥ 1.

Likewise, if v is on a cycle and has at least three neighbors of degree greater than

1, then (N − v) is a union of k > 1 proper necklaces plus r ≥ 0 isolated vertices; and

the total number of cycles is now one less. Thus, mvr(N − v) = r +
∑

imvr(Ni) =

|N | − 1− (c− 1)− k < |N | − c− k < mvr(N).

On the other hand, if v is on a cycle and has only two neighbors of degree greater

than 1, then k = 1 in the above calculation and we get mvr(N − v) = |N | − 1− (c−

1)− k = mvr(N). This implies that if v is on a cycle, then mvr(N − v) < mvr(N) if

and only if v has at least three vertices of degree greater than 1. This implies that N
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Fig. 5.2. A book with four induced cycles.

is vector critical if and only if every vertex that lies on a cycle satisfies the neighbor

condition.

When we look at the complement N , we see that the proof for unicyclic graphs

shows both ways in which mvr(N − v) < mvr(N):

• mvr(N) = 4 and mvr(N − v) < 4, which happens when L4 is an induced

subgraph of N but not (N − v).

• mvr(N) = 3 and mvr(N − v) < 3, which happens when (N − v) is a star.

This explains why N can only have one copy of L4 and limits the possibilities for

having mvr(N − v) < mvr(N) to those listed in the proposition.

5.5. Books. The last type of graph we explore is a book, which is defined in

Section 4.4 to be a graph with a distinguished edge e such that the intersection of

any two induced cycles in B is the edge e and its endpoints. This generalizes the

definition in [4], in which it was assumed that all the cycles were the same size and

that every edge of B was on a cycle. Figure 5.2 shows a book with a 3-cycle, a 5-

cycle, and two 4-cycles; it is apparent that such graphs are always planar. Books are

outerplanar only when there are only two induced cycles, but like outerplanar graphs,

the chromatic number of the complement is at most 3.

We will assume in what follows that B is connected and that it contains more than

one cycle. This uniquely defines the edge e and its vertices, which are called binding

vertices and denoted as vb. This is a different direction in which to generalize

unicyclic graphs; but we derive results similar to those in previous sections.

First, we observe that the proof of Proposition 3.11 in [4] extends to our graphs,

as the binding vertices form a positive zero forcing set for the any book B, which
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implies that mvr(B) ≥ |B|− 2. Since B is not a tree, this is also an upper bound and

mvr(B) = |B| − 2. A description of the minimum vector rank of the complement of a

book were given in Proposition 4.8. Armed with these results, we can give necessary

and sufficient conditions for a book to be complement critical:

Proposition 5.6. A book B with at least two cycles is complement critical if

and only if it satisfies one of the following conditions:

1. Each binding vertex has at least one neighbor which does not lie on a cycle

and which has degree greater than 1. In this case, B is vector critical.

2. Either the four-cycle C4 or the kite κ is an induced subgraph of B.

3. Every cycle of B is a 3-cycle and every vertex of B is adjacent to at least one

of the binding vertices.

Proof. One simplifying observation if that if v is not one of the binding vertices,

then mvr(B − v) < mvr(B). This is because the induced subgraph (B − v) has a

connected component B′ which is still a book. We write (B − v) = B′ ∪ F , where F

is the (possibly empty) remainder of the graph (which is a forest) and which has the

trivial bound mvr(F ) ≤ |F |. Therefore we have mvr(B − v) = mvr(B′) + mvr(F ) ≤

|B′| − 2 + |F | = |B| − 3 < mvr(B).

This means that the complement criticality of a book depends solely on its binding

vertices. The removal of a binding vertex vb will give a forest with t ≥ 1 nontrivial

trees and some isolated vertices. This means that mvr(B−vb) = |B|−1− t < mvr(B)

if and only if t > 1. Thus, B will be vector critical if and only if each binding vertex

has a neighbor which lies off the cycle and which has degree at least 2.

Otherwise, we need to ask whether mvr(B − vb) < mvr(B). Since (B − vb) is

a forest, mvr(B − vb) ≤ 3; thus, if mvr(B) = 4, we automatically have complement

criticality. Using Proposition 4.8, this gives the second condition.

The only other possibility would be for mvr(B − vb) = 2. This will happen only

if each tree in (B − vb) is a star. In particular, the other binding vertex must be

adjacent to every other vertex in its component, which means that each cycle must

be a triangle with no extra vertices attached. Also, the remaining binding vertex

cannot have any other neighbors of degree greater than 1. This specifically precludes

the first condition, which means that if we need mvr(B − vb) = 2 for one of the

binding vertices, we need it for the other. This inevitably leads us to the 3-cycle

graph B3
m (m ≥ 2), possibly with leaves attached to the binding vertices, as shown

in Figure 5.3.

Because books can be treated as gluing multiple unicyclic graphs together by one

common edge, it is not surprising that their properties resemble those of unicyclic
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Fig. 5.3. B3
m is a set of m 3-cycles built on a common edge. We can then attach an arbitrary

number of pendant vertices to each binding vertex. The graph shown is built from B3

4
.

graphs. Returning to the examples from [4], we get the following corollary:

Corollary 5.7. The graphs Bt
m described in [4] with m ≥ 2 are complement

critical if and only if t = 3 or t = 4.

Proof. These graphs consist of m copies of a t-cycle glued together along a single

edge. There are no vertices which do not lie on a cycle. Looking at the Proposition, we

see that the graph B3
m clearly meets the third condition while B4

m meets the second.

For any other value of t, Bt
m is complement critical if and only if it meets the first

condition, which it cannot since there are no vertices away from the cycles. Thus, no

Bt
m is complement critical if t > 4.

6. Complement critical graphs and the minimum semidefinite rank.

The notion of a critical graph must always be defined in terms of some graph function;

in the previous section, all calculations were done with respect to the minimum vector

rank. This brief section is meant to point out that all of our results can be readily

adapted using the minimum semidefinite rank (mr+), which is more widely used

in the literature. The only significant difference between the two measures is on a

single isolated vertex, where mvr(K1) = 1 but mr+(K1) = 0; and the inequality

mvr(G) ≥ mr+(G) always holds, with equality guaranteed for connected graphs.

This gives an immediate indication that being complement critical with respect

to mvr is a stronger one than being complement critical with respect to mr+:

Proposition 6.1. Let G be any connected graph such that G is also connected.

If G is vector critical with respect to the minimum vector rank, then it is vector

critical with respect to the minimum semidefinite rank. If G is complement critical

with respect to the minimum vector rank, then it is complement critical with respect

to the minimum semidefinite rank.

The proof is immediate. If G is connected and mvr(G − v) < mvr(G), then

mr+(G−v) ≤ mvr(G−v) < mvr(G) = mr+(G); and the same argument can be made

for G.
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In terms of the results for families of complement critical graphs given in Section

5, we no longer need to worry about the appearance of isolated vertices in induced

subgraphs of G. This simplifies some of the conditions:

Proposition 6.2. Let G be a connected graph which is not complement critical

with respect to the minimum vector rank.

1. If G is a unicyclic graph or a necklace and each vertex on its cycle has degree

at least three, then G is vector critical with respect to the minimum semidef-

inite rank.

2. If G is a necklace graph which has L4 as an induced subgraph such that every

induced copy of L4 is built on the same 4-cycle; and every vertex which lies

on a cycle other than this 4-cycle has degree at least 3, then G is complement

critical with respect to the minimum semidefinite rank.

3. If G is a book in which each binding vertex has at least one neighbor which does

not lie on a cycle, then G is critical with respect to the minimum semidefinite

rank.

Examples of graphs which are critical and complement-critical with respect to the

minimum semidefinite rank but not the minimum vector rank are shown in Figure 6.1.

The simplest of these is the n-sun (discussed in [5, 10]), which is the cycle Cn with a

pendant vertex attached to each vertex on the cycle. This graph is critical since for

any vertex v on the cycle, mr+(G− v) = (|G| − 2)− 1 < mr+(G). However, since the

isolated vertex in (G−v) has minimum vector rank equal to 1, mvr(G−v) = mvr(G).

The figure also shows examples of graphs which meet conditions (2) and (3) from the

Proposition.

Fig. 6.1. Examples of graphs which are complement critical with respect to the minimum

semidefinite rank but not the minimum vector rank.

7. Conclusion. In this paper, we introduce the notion of complement critical

graphs defined with respect to the minimum vector rank. These objects occupy an

important place in the set of graphs when partially ordered by induced subgraphs.

We showed a link between complement critical graphs and the Graph Complement

Conjectures, showing that these graphs are sufficient to prove or disprove the conjec-
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ture. We provided a list of general properties of complement graphs and necessary

and sufficient conditions for graphs which are built on cycles to be complement crit-

ical. In the process, we gave explicit formulas for the complements of certain sparse

graphs. We anticipate that this work will be useful in understanding the structure of

the set of graphs given by the minimum rank.
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Appendix A. Appendix on necklace properties.

A.1. Proof of Lemma 4.5. Assume that there exists a vector labelling of the

vertices of H in R
3 that assigns pairwise linearly independent nonzero vectors to each

vertex. Let v and w be the vectors corresponding to the vertices v and w; let y1

and y2 be the vectors corresponding to the respective neighbors of v and w; and

let y3, . . . ,yk be the vectors corresponding to the remaining vertices of H . This is

represented schematically in Figure A.1. Note that the edge y1y2 may or may not be

present.

v

w

y1

y2

uy3, y4, . . . yk

Fig. A.1. Schematic Representation of Graph in Lemma 4.5.

It will be convenient to take advantage of being in R3 and use the cross product.

For any real number t, define

ut := tv +w, vt := ut × y1, wt := ut × y2.(A.1)

We wish to show that there exists a real value of t for which {ut,vt,wt,y1, . . . ,yk}

is an orthogonal representation of G.

By construction, for all t,

〈ut,vt〉 = 〈ut,wt〉 = 〈vt,y1〉 = 〈wt,y2〉 = 0.

Since these are the only non-neighbors of our vertices u, v, w, we require only that no

other inner product be zero. Specifically, we need to show that there exists a value of

t such that:

(I) 〈ut,yi〉 6= 0 for all i = 1, . . . , k;

(II) 〈vt,yi〉 6= 0 for i 6= 1 and 〈wt,yi〉 6= 0 for i 6= 2;

(III) 〈vt,wt〉 6= 0.

These inner products are linear and quadratic functions of t. The result is proved as

long as none of them is identically zero.

Looking at line (I), 〈ut,yi〉 is identically zero if and only if 〈v,yi〉 = 〈w,yi〉 = 0,

which would imply that v and w share a common neighbor. In line (II), 〈vt,yi〉 =

t det(v,y1,yi) + det(w,y1,yi) = 0 for all t if and only if yi is in both the plane
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spanned by v and y1 and in the plane spanned by w and y1. This means that yi

and y1 are dependent, which implies that i = 1. The second part of (II) is similarly

shown.

Finally, in (III), we note that 〈vt,wt〉 = 〈y1,y2〉〈ut,ut〉 − t〈y1,w〉〈v,y2〉. We

know that 〈y1,w〉〈v,y2〉 6= 0, by assumption, so 〈vt,wt〉 is a non-degenerate linear

or quadratic function, depending on whether 〈y1,y2〉 = 0. Thus, there are at most

two values of t for which this is zero.

Since each condition excludes finitely many values of t, there exists a value of t

which makes {ut,vt,wt,y1, . . . ,yk} an orthogonal representation of G in R
3.

A.2. Proof of Lemma 4.6. Suppose that we have an orthogonal representation

of H in R3 in which w is represented by the unit vector w. Observation 1.3 in [13]

guarantees that there exists a unit vector u0 in R3 which is orthogonal to w but not

to any other vector in the representation. Let v0 = u0×w. As in the previous proof,

we define

ut = u0 + tv0, vt = tu0 − v0.

The vectors ut,vt and w are mutually orthogonal for all t, and for any other vector y

in the orthogonal representation, 〈y,ut〉 and 〈y,vt〉 are not identically zero because

〈y,u0〉 6= 0. Therefore, we can find a value of t for which ut and vt extend the

orthogonal representation of H to G.
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