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Abstract. Hamiltonian matrices with respect to a nondegenerate skewsymmetric or skewher-

mitian indefinite inner product in finite dimensional real, complex, or quaternion vector spaces are

studied. Subspaces that are simultaneously invariant for the matrices and neutral in the indefinite

inner product are of special interest. The dimension of maximal (by inclusion) such subspaces is

identified in terms of the canonical forms and sign characteristics. Criteria for uniqueness of maximal

invariant neutral subspaces are given. The important special case of invariant Lagrangian subspaces

is treated separately. Comparisons are made between real, complex, and quaternion contexts; for

example, for complex Hamiltonian matrices with respect to a nondegenerate skewhermitian inner

product in a finite dimensional complex vector space, the (complex) dimension of (complex) maxi-

mal invariant neutral subspaces is compared to the (quaternion) dimension of (quaternion) maximal

invariant neutral subspaces, and necessary and sufficient conditions are given for the two dimensions

to coincide (this is not always the case).
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1. Introduction. Let F be the real field R, the complex field C, or the skew

field of real quaternions H. The set Fn×1 of n-component column vectors with entries

in F is understood as an F-vector space (right H-vector space in case F = H), in

the standard way. Denote by F
m×n the set of all m × n matrices with entries in F,

understood as an F-vector space (left H-vector space in case F = H). Thus, A ∈ Fm×n

can be interpreted in the standard way as an F-linear transformation on Fn×1.

Fix an involution φ of F, in other words, a bijective map φ : F −→ F having

the properties that

φ(xy) = φ(y)φ(x), φ(x + y) = φ(x) + φ(y), and φ(φ(x)) = x, ∀ x, y ∈ F.

We assume furthermore that φ is continuous. (Note that in contrast to the complex

case F = C, every antiautomorphism of R and of H is automatically continuous.)

In particular, φ is the identity map if F = R, and φ is either the identity map or
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the complex conjugation if F = C. Let Sφ ∈ Fn×m stand for the matrix (or vector

if m = 1) obtained from S ∈ Fm×n by applying entrywise the involution φ to the

transposed matrix ST ∈ Fn×m.

It will be convenient to introduce the classification of involutions to be used in

the present paper into 5 cases, as follows. Let φ be a fixed continuous involution of

F. The 5 cases are:

(I) F = R, φ = id; (II) F = C, φ = id; (III) F = C, φ = complex conjugation;

(IV) F = H, φ = quaternion conjugation;

(V) F = H, φ = involution different from quaternion conjugation.

In the sequel, the involutions of H different from the quaternion conjugation will be

termed nonstandard. We note that all nonstandard involutions of H are similar to

each other (and are not similar to the quaternion conjugation): If τ1, τ2 are two such

involutions, then there exists an automorphism σ of H such that

τ1(α) = σ−1(τ2(σ(α))), ∀ α ∈ H.(1.1)

This property, as well as many other properties of involutions to be used later on in

the present paper, follows easily from the following description of involutions (see [21]

and [22], for example):

Proposition 1.1. A map φ : H −→ H is an involution if and only if φ is real

linear, and representing φ as a 4 × 4 real matrix with respect to the basis {1, i, j, k},
where i, j, k are the standard imaginary units in H, we have:

φ =

[
1 0

0 T

]
,

where either T = −I3 (in which case φ is the quaternion conjugation) or T is a 3× 3

real orthogonal symmetric matrix with eigenvalues 1, 1, −1.

In view of (1.1), indeed all nonstandard involutions can be treated in one category

(V).

We also note that if φ is a nonstandard involution of H, then there is a unique

(up to multiplication by −1) quaternion β = β(φ) such that β2 = −1 (this equality

holds if and only if β has norm 1 and zero real part) and φ(β) = −β. Conversely, for

every β ∈ H with β2 = −1, there exists a unique nonstandard involution φ of H such

that

φ(β) = −β.(1.2)
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Let φ be a continuous involution of F ∈ {R,C,H}. If S ∈ Fm×n we denote by

Sφ ∈ Fn×m the matrix obtained by applying φ entrywise to the transposed matrix

ST .

1.1. Neutral subspaces. Let there be given an invertible matrix H ∈ F
n×n

such that Hφ = −H (thus, n is even if φ is of type (I) or (II)).

A subspace M ∈ Fn×1 is said to be (H,φ)-neutral if xφHy = 0 for all x, y ∈ M.

Maximal (by inclusion) (H,φ)-neutral subspaces can be identified in terms of their

dimensions:

Proposition 1.2. Let H = −Hφ ∈ F
n×n be invertible. Then an (H,φ)-neutral

subspace M ⊆ Fn×1 is a maximal (H,φ)-neutral subspace if and only if:

(a) dimM = ⌊n/2⌋, where ⌊x⌋ denotes the maximal integer not exceeding x, in

the cases (I), (II) and (IV);

(b) the minimum, call it ν(H), between the number of positive and the number

of negative eigenvalues (counted with multiplicities) of the complex hermitian

matrix iH (case (III)), or of the quaternion hermitian matrix β(φ)H (case

(V)).

In particular, there exist (H,φ)-neutral subspaces of dimension ⌊n/2⌋ in cases (I),

(II), and (IV), and of dimension ν(H) in cases (III) and (V).

For the case (III) the result of Proposition 1.2 is well known, see [6] and [7], for

example; see also [1], where a proof is given in the context of quaternion hermitian

matrices. Case (V) is easily reduced to that context using the easily verifiable equality

x∗(β(φ)Y )z = β(φ)xφY z, ∀ x, z ∈ H
n×1, ∀ Y ∈ H

n×n,

where φ is a nonstandard involution on H. Finally, in cases (I), (II), and (IV) ob-

serve that there cannot be (H,φ)-neutral subspaces of dimension larger than ⌊n/2⌋
(this would contradict invertibility of H). We omit the proof that an (H,φ)-neutral

subspace of dimension smaller than ⌊n/2⌋ is not maximal.

Of particular interest are Lagrangian subspaces. A subspace M ⊆ Fn×1 is said

to be (H,φ)-Lagrangian if M is (H,φ)-neutral and dimM = n/2 (it is assumed here

that n is even). Clearly, (H,φ)-Lagrangian subspaces (if exist) are maximal (H,φ)-

neutral. Criteria for existence of (H,φ)-Lagrangian subspaces can be easily obtained

from Proposition 1.2.

1.2. Hamiltonian matrices. If H ∈ Fn×n is an invertible matrix such that

Hφ = −H , then a matrix A ∈ Fn×n is called (H,φ)-Hamiltonian if the equality

HA = −AφH holds true, in other words if (HA)φ = HA.
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For an (H,φ)-Hamiltonian matrix A, an F-subspace M ⊆ Fn×1 is said to be

maximal A-invariant (H,φ)-neutral if it is simultaneously A-invariant and (H,φ)-

neutral and if no strictly larger subspace is simultaneously A-invariant and (H,φ)-

neutral. For short, we say that maximal A-invariant (H,φ)-neutral subspaces are

MIN (A,H, φ)-subspaces. Clearly, the set of MIN (A,H, φ)-subspaces (for a fixed A,

H , φ) is closed and hence compact.

Maximal invariant neutral subspaces, and in particular, Lagrangian subspaces

that are invariant for (H,φ)-Hamiltonian matrices, play an important role in many

applications, such as optimal control systems, differential equations, factorizations of

matrix valued functions and have been extensively studied (see [4], [12], [16], [17],

[20], and [27]).

In this paper, we focus on the MIN (A,H, φ)-subspaces. It turns out that (for

fixed A, H , and φ) all of them have the same dimension. We give formulas for this

dimension; in several particular situations, such formulas are known in the literature

(see [10], [11], and [12]). Also, parametrization of all MIN (A,H, φ)-subspaces is given

in terms of certain invariant subspaces of A, under suitable hypotheses. The case of

invariant Lagrangian subspaces is of special interest, and necessary and sufficient

conditions for existence of those are provided, as well as criteria for uniqueness.

The main tool in our investigation are canonical forms for Hamiltonian matrices.

These forms, in various contexts and appearances, are well known for real and complex

matrices, and are known (perhaps not well known) for quaternion matrices. Some

references for these forms, by no means a complete list, are [2], [8], [9], [14], [15], [22],

[23], [24], [28], and [29]. For the reader’s convenience, the canonical forms needed are

reproduced in the present paper.

Besides the canonical forms, basic results on the quaternion algebra will be used,

in particular, the following well-known description of similar quaternions. Quater-

nions x, y ∈ H are said to be similar if x = α−1yα for some α ∈ H \ {0}. For
a quaternion x = a0 + a1i + a2j + a3k, a0, a1, a2, a3 ∈ R, we let R(x) := a0 and

V(x) := a1i+ a2j+ a3k be the real and the vector parts of x, respectively.

Proposition 1.3. Two quaternions x and y are similar if and only if R(x) =

R(y) and |V(x)| = |V(y)|.

We now briefly describe the contents of the paper section by section. Besides the

introduction, the paper consists of 10 sections, numbered 2 through 11.

Sections 2–4 are of preparatory character, and the results there apply to all five

cases (I)–(V). In Section 2, the root subspaces of square size matrices with entries in F

are introduced and studied. This material is standard for real and complex matrices,

but perhaps less so for quaternion matrices. The special case of Hamiltonian matrices

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 55-99, February 2014



ELA

Invariant Neutral Subspaces for Hamiltonian Matrices 59

is given a particular emphasis, and important orthogonality property of root subspaces

is proved. In Section 3, the order of neutrality is introduced, based on the result that

for a fixed (H,φ)-Hamiltonian matrix, the MIN (A,H, φ)-subspaces have the same

dimension. In Section 4, we collect a few general results on invariant subspaces to be

used throughout the paper.

Sections 5–9 are devoted to the detailed treatment of each case (I)–(V) separately.

Namely, in Sections 5, 6, 7, 8, and 9, we treat the real case, the complex case with the

identity involution, the complex case with the conjugation involution, the quaternion

case with the conjugation involution, and the quaternion case with the involution

other than conjugation, respectively. In each of these sections, we give a formula

for the order of neutrality of Hamiltonian matrices (in terms of the suitable canonical

form), parametrization of all MIN (A,H, φ)-subspaces (under appropriate conditions),

and criteria for uniqueness of such subspaces. In Sections 8 and 9, we also compare

with the orders of neutrality of real and complex matrices, in the following sense,

as illustrated by example of complex (H,∗ )-Hamiltonian matrices A: The matrix A

can be also considered as an (H,∗ )-Hamiltonian quaternion matrix; how the orders of

neutrality in the context of C and in the context of H are related? Complete answers

to that question and similar ones are given in Sections 8 and 9.

Finally, in the short Section 10, we indicate results on existence and uniqueness

of invariant Lagrangian subspaces for Hamiltonian matrices, and in the concluding

remarks we show how the results of the paper can be extended to the case of singular

H (i.e., degenerate indefinite inner products).

1.3. Notation. We conclude the introduction with notation to be used through-

out the paper. The standard imaginary units in H will be denoted i, j, k; thus,

i2 = j2 = k2 = −1 and jk = −kj = i, ij = −ji = k, ki = −ik = j. We of-

ten consider C as embedded in H, via identifying the complex imaginary unit i

with i ∈ H. The conjugate quaternion a0 − a1i − a2j − a3k is denoted by x or

by x∗, and |x| =
√
a20 + a21 + a22 + a23 stands for the norm of x. We denote by

diag (X1, X2, . . . , Xp), or by X1 ⊕ X2 ⊕ · · · ⊕ Xp, the block diagonal matrix with

diagonal blocks X1, . . . , Xp (in that order). The notation AT , resp., A∗, stands for

the transpose, resp., conjugate transpose, of the matrix or vector A. The real subspace

of H spanned by α, β ∈ H is denoted SpanR {α, β}. More generally, SpanF {x1, . . . , xp}
stands for the F-vector subspace spanned by the vectors x1, . . . , xp.

The spectrum σ(A) of a matrix A ∈ Fn×n is the set of all (right) eigenvalues of A

in C (if F = R or F = C) or in H (if F = H).

⌊x⌋ denotes the maximal integer not exceeding x ∈ R.

We use ep,q to denote the vector in Fq×1 with 1 in the pth position and zeros
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elsewhere; for example, e3,5 = [0 0 1 0 0]T .

The following matrices in standard forms and fixed notation will be used. The

subscript in notation for a square size matrix always denotes the size of the matrix.

I and 0 (possibly with subscripts indicating the size) stand for the identity and

the zero matrix, respectively.

The Jordan blocks:

Jm(λ) =




λ 1 0 · · · 0

0 λ 1 · · · 0
...

...
. . .

. . . 0
...

... λ 1

0 0 · · · 0 λ



∈ H

m×m, λ ∈ H.

The real Jordan blocks:

J2m(a± ib) =




a b 1 0 · · · 0 0

−b a 0 1 · · · 0 0

0 0 a b · · · 0 0

0 0 −b a · · ·
...

...
...

...
...

... 1 0
...

...
...

... 0 1

0 0 0 0 · · · a b

0 0 0 0 · · · −b a




∈ R
2m×2m, a ∈ R, b ∈ R \ {0}.

Real symmetric matrices:

Fm =




0 · · · · · · 0 1
... 1 0
...

...

0 1
...

1 0 · · · · · · 0




, Gm =

[
Fm−1 0

0 01

]
.(1.3)

Ξk =




0 0 0 · · · 0 0 1

0 0 0 · · · 0 −1 0

0 0 0 · · · 1 0 0
...

... . . .
...

...
...

0 1 0 · · · 0 0 0

(−1)k−1 0 0 · · · 0 0 0




= (−1)k−1ΞT
k .(1.4)
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Thus, Ξk is symmetric if k is odd, and skew-symmetric if k is even. More generally,

Ξm(α) =




0 0 · · · 0 α

0 0 · · · −α 0
...

... . .
. ...

...

0 (−1)m−2α · · · 0 0

(−1)m−1α 0 · · · 0 0



∈ H

m×m, α ∈ H.(1.5)

2. Root subspaces. Let F ∈ {R,C,H}, and consider a matrix A ∈ Fn×n.

The minimal polynomial of A is a polynomial pA(t) having leading coefficient 1 and

minimal degree, with real coefficients (if F = R or F = H) or complex coefficients (if

F = C) such that pA(A) = 0. It is easy to see that pA(t) is uniquely determined by

A. Write pA(t) as product of powers of irreducible factors:

pA(t) = p1(t)
m1 · · · pk(t)mk ,(2.1)

where the pj(t)’s are distinct monic irreducible real polynomials (i.e., of the form t−a,

a real, or of the form t2 + pt + q, where p, q ∈ R, with no real roots) if F = R or

F = H, or the pj(t)’s are of the form t− a, a ∈ C, if F = C, and the mj ’s are positive

integers. The subspaces

Mj := {u : u ∈ F
n×1, pj(A)

mju = 0}, j = 1, 2, . . . , k,

are called the root subspaces of A. Since Apj(A)
mj = pj(A)

mjA, the root subspaces

of A are A-invariant. The root subspace Mj is said to be associated with eigenvalues

aj of A if pj(t) = (t− aj)
mj or eigenvalues aj ± ibj, where aj is real and bj is positive

if pj(t) = (t2−2ajt+a2j + b2j)
mj , and we denote Mj = Maj

(a) or Mj = Maj±ibj (A),

as appropriate. Note that aj ± ibj are indeed eigenvalues of A in the case F = H; in

general, the eigenvalues of quaternion matrices are closed under quaternion similarity

x 7→ y−1xy, y ∈ H \ {0}. See, for example, [3] and [30] for more information about

eigenvalues, eigenvectors, and Jordan forms of quaternion matrices.

Proposition 2.1. Let A ∈ Fn×n, with the minimal polynomial factored as in

(2.1). Then:

(a) The root subspaces decompose Fn×1 into a direct sum:

F
n×1 = M1+̇M2+̇ · · · +̇Mk.(2.2)

(b) For every A-invariant subspace M ⊆ Fn×1,

M = (M∩M1)+̇ · · · +̇(M∩Mk).(2.3)

The proposition is well known in the real and complex cases, and can be proved

in essentially the same way for the quaternion case.
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2.1. Root subspaces for Hamiltonian matrices and orthogonality. We

now specialize the study of root subspaces for Hamiltonian matrices.

Let A be (H,φ)-Hamiltonian. Write pA(t) = po(t) + pe(t), where po(t) is the odd

part (consisting of terms with odd powers of t) of pA(t), and pe(t) is the even part of

pA(t). Since HAm = (−1)mAm
φ H (m is a nonnegative integer), we have

0 = HpA(A) = H(po(A) + pe(A)) = (−po(Aφ) + pe(Aφ))H.

Thus, −po(Aφ) + pe(Aφ) = 0. If φ is one of the types (I), (II), (IV), or (V), then

(−po(A) + pe(A))φ = −po(Aφ) + pe(Aφ) = 0.

Hence, −po(A) + pe(A) = 0, and by the uniqueness of the minimal polynomial, we

conclude that po(t) ≡ 0 if the degree m of pA(t) is even and pe(t) ≡ 0 if m is odd. It

is easy to see that then we can factorize pA(t) as follows:

pA(t) = ± (q1(t)q1(−t))m1 · · · (qℓ(t)qℓ(−t))mℓ

× tr(t2 + αℓ+1)
mℓ+1 · · · (t2 + αℓ+s)

mℓ+s .(2.4)

Here q1(t), . . . , qℓ(t) are distinct irreducible polynomials over R (if F = R or F = H)

or over C (if F = C) having roots with positive real parts, αj ’s are distinct positive

numbers, and r is even (odd) if m is even (odd). The sign ± appears because for

qj(t) = t− β, β ∈ R \ {0}, the product qj(t)qj(−t) has the form −t2 + β2. Note that

the ℓ+ s+ 1 polynomials

(q1(t)q1(−t))m1 , . . . , (qℓ(t)qℓ(−t))mℓ , tr, (t2 + αℓ+1)
mℓ+1 , . . . , (t2 + αℓ+s)

mℓ+s

in (2.4) are pairwise coprime. Also, the factorization of the form (2.4) is unique up

to permutation of factors.

If φ is of type (III) (in particular, F = C), then, denoting by p∗(t) the polynomial

whose coefficients are complex conjugates of the coefficients of the polynomial p(t),

we have

(−p∗o(A) + p∗e(A))φ = −po(Aφ) + pe(Aφ) = 0,

and so −p∗o(A) + p∗e(A) = 0. Comparing with the minimal polynomial pA(t) of A, we

see that

−p∗o(t) + p∗e(t) = po(t) + pe(t) if m is even,

and

−p∗o(t) + p∗e(t) = −po(t)− pe(t) if m is odd.
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Assuming first that m is even, we have

pA(−t) = pe(−t) + po(−t) = pe(t)− po(t) = −p∗o(t) + p∗e(t) = pA(t),

therefore pA(t) factors as follows:

pA(t) = ± ((−t− α1)(t− α1))
m1 · · · ((−t− αℓ)(t− αℓ))

mℓ

× (t− αℓ+1)
mℓ+1 · · · (t− αℓ+s)

mℓ+s ,(2.5)

where α1, . . . , αℓ are distinct complex numbers with positive real parts, αℓ+1, . . . , αℓ+s

are distinct complex numbers with zero real parts (the number zero not excluded),

and m1, . . . ,mℓ+s are positive integers. If m is odd, we analogously obtain

pA(−t) = pe(−t) + po(−t) = pe(t)− po(t) = −p∗o(t) + p∗e(t) = −pA(t),

and a factorization of type (2.5) follows again.

For an invertible H ∈ Fn×n such that H = −Hφ, denote by [·, ·]H,φ the H-inner

product with respect to φ:

[x, y]H,φ := yφHx = −φ([y, x]H,φ), x, y ∈ F
n×1.

If L is a subset of Fn×1, we define

L[⊥]H,φ := {x ∈ F
n×1 : [x, y]H,φ = 0 for all y ∈ L},

the H-orthogonal companion of L. Clearly, L[⊥]H,φ is a subspace of Fn×1. For an

(H,φ)-Hamiltonian matrix A ∈ Fn×n, we have

[Ax, y]H,φ = [x,Ay]H,φ, ∀ x, y ∈ F
n×1.(2.6)

Note also that if L ⊆ Fn×1 is an A-invariant subspace, then L[⊥]H,φ is A-invariant

as well. In the sequel, we often abbreviate [·, ·]H = [·, ·]H,φ, L[⊥]H = L[⊥]H,φ , with φ

understood from the context.

Theorem 2.2. Assume φ is one of the types (I), (II), (IV), or (V), and let

A ∈ Fn×1 be (H,φ)-Hamiltonian. With factorization (2.4) of pA(t), let Nj be the sum

of root subspaces for A corresponding to the factor (qj(t)qj(−t))mj if j = 1, 2, . . . , ℓ,

and to the factor (t2 + αj)
mj if j = ℓ+ 1, . . . , ℓ+ s. Let also N0 be the root subspace

for A corresponding to the factor tr. For j = 1, 2, . . . , ℓ, denote by M+
j , resp. M−

j ,

the root subspace for A corresponding to the factor (qj(t))
mj , resp. (qj(−t))mj ; thus,

Nj = M+
j +̇M−

j for j = 1, 2, . . . , ℓ.

Then:

(1) The subspaces Nj are mutually (H,φ)-orthogonal:

xφHy = 0 ∀ x ∈ Nj , y ∈ Nk, j, k ∈ {0, 1, . . . , ℓ+ s}, j 6= k.
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(2) The subspaces M+
1 +̇ · · · +̇M+

ℓ and M−
1 +̇ · · · +̇M−

ℓ are (H,φ)-neutral.

(3) If M ⊆ M±
1 +̇ · · · +̇M±

ℓ is an A-invariant subspace, then the subspace

M̃ :=
(
M[⊥]H ∩

(
M∓

1 +̇ · · · +̇M∓
ℓ

))
+̇M(2.7)

is A-invariant and (H,φ)-neutral, and moreover M̃ is a MIN (A′, H ′, φ)-

subspace, where A′ and H ′ are restrictions of A and H, respectively, to

N1+̇ · · · +̇Nℓ.

Conversely, every MIN (A′, H ′, φ)-subspace M̃ has the form (2.7), for some

A-invariant subspace

M ⊆ M±
1 +̇ · · · +̇M±

ℓ ,

which is uniquely determined by M̃.

Proof. Let

fj(t) =





(qj(t)qj(−t))mj for j = 1, . . . , ℓ;

(t2 + αj)
mj for j = ℓ+ 1, . . . , ℓ+ s;

tr for j = 0,

and let pj(t) = pA(t)/fj(t), j = 0, 1, . . . , ℓ + s. Then for x ∈ Nj , y ∈ Nk, where

j, k = 0, 1, . . . , ℓ + s, j 6= k, we have x = pj(A)x
′, y = pk(A)y

′ for some x, y ∈ Fn×1,

and

xφHy = x′
φpj(Aφ)Hpk(A)y

′ = ±x′Hpj(A)pk(A)y
′ = 0;

the last equality follows because the polynomial pj(t)pk(t) is divisible by pA(t).

For part (2), the proof is analogous: Let wj(t) = fA(t)/(qj(t)
mj ), j = 1, 2, . . . , ℓ.

Then for x ∈ M+
j , y ∈ M+

k , where j, k = 1, . . . , ℓ, we have x = wj(A)x
′, y = wk(A)y

′

for some x, y ∈ Fn×1, and

xφHy = x′
φwj(Aφ)Hwk(A)y

′ = ±x′Hwj(−A)wk(A)y
′ = 0;

the last equality follows again because wj(−t)wk(t) is divisible by pA(t). The proof

for M−
1 +̇ · · · +̇M−

ℓ is similar.

Part (3). The subspace (2.7) is clearly A-invariant. It is also (H,φ)-neutral in

view of parts (1) and (2). To prove the maximality of (2.7), we first notice that

M[⊥]H = N0+̇Nℓ+1+̇ · · · +̇Nℓ+s

+̇
(
(M∩N1)

[⊥]H1 ∩ N1

)
+̇ · · · +̇

(
(M∩Nℓ)

[⊥]Hℓ ∩ Nℓ

)
,(2.8)
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where Hj is a restriction of H to Nj (i.e., Hj is a matrix relative to a fixed basis in

Nj such that [x, y]Hj
= [x, y]H for all x, y ∈ Nj). Observe that each Hj is invertible,

in view of invertibility of H and part (1). Equality (2.8) is easily verified using the

(H,φ)-orthogonality property established in (1). Thus,

M[⊥]H ∩ (M∓
1 +̇ · · · +̇M∓

ℓ ) = +̇
ℓ
j=1

(
(M∩Nj)

[⊥]Hj ∩M∓
j

)
.

Therefore, it suffices to prove that for each j = 1, 2, . . . , ℓ and for M ⊆ M±
j , the

subspace
(
M[⊥]Hj ∩M∓

j

)
+̇M

is maximal Hj-neutral. We may assume that ℓ = 1 and N1 = Fn×1; thus, H1 = H .

Since both M+
1 and M−

1 are (H,φ)-neutral by (2), we must have dimM+
1 = dimM−

1

(otherwise there would be an (H,φ)-neutral subspace of dimension larger than n/2,

a contradiction with the invertibility of H). Therefore n is even and

dimM+
1 = dimM−

1 = n/2.

Next, observe that

M[⊥]H = M±
1 +̇(M[⊥]H ∩M∓).(2.9)

Indeed, the inclusion ⊇ in (2.9) is obvious in view of (H,φ)-neutrality of M±
1 (recall

that we suppose M ⊆ M±
1 ). For the opposite inclusion, let x = x1 + x2 ∈ M[⊥]H

with x1 ∈ M±
1 , x2 ∈ M∓

1 . Then x2 = x − x1 ∈ M[⊥]H , and (2.9) follows. Note also

that dimM[⊥]H = n− dimM (because H is invertible), hence in view of (2.9)

dim
(
M[⊥]Hj ∩M∓

j

)
+̇M = ((n− dimM)− n/2) + dimM = n/2,

and the direct statement of part (3) is proved.

Conversely, if M̃ is a MIN (A′, H ′, φ)-subspace, then M̃ is given by formula (2.7)

with

M = M̃ ∩
(
M±

1 +̇ · · · +̇M±
ℓ

)
.(2.10)

Uniqueness of M is obvious because of formula (2.10).

Corollary 2.3. Assume the hypotheses and notation of Theorem 2.2. Then the

general form of MIN (A,H, φ)-subspaces is

M+̇
(
M[⊥]H ∩

(
M∓

1 +̇ · · · +̇M∓
ℓ

))
+̇M̃0+̇M̃ℓ+1+̇ · · · +̇M̃ℓ+s,(2.11)

where M is an arbitrary A-invariant subspace contained in M±
1 +̇ · · · +̇M±

ℓ , and M̃j

is an arbitrary MIN (Aj , Hj , φ)-subspace, where Aj and Hj are the restrictions of A

and H, respectively, to Nj, for j = 0, ℓ+ 1, . . . , ℓ+ s.
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Theorem 2.2 and Corollary 2.3 admit analogues for complex conjugation (i.e.,

involution of type (III)):

Theorem 2.4. Assume φ is of the type (III) (complex conjugation), and let A ∈
Cn×n be (H,∗ )-Hamiltonian. With factorization (2.5) of pA(t), let Nj be the sum of

root subspaces for A corresponding to the factor ((−t−αj)(t−αj))
mj if j = 1, 2, . . . , ℓ,

and the root subspace corresponding to the factor (t − αj)
mj if j = ℓ + 1, . . . , ℓ + s.

For j = 1, 2, . . . , ℓ, denote by M+
j , resp. M−

j , the root subspace for A corresponding

to the factor (t− αj)
mj , resp. (−t− αj)

mj . Then the statements (1), (2) and (3) of

Theorem 2.2 hold true.

The proof of Theorem 2.4 can be obtained similarly to that of Theorem 2.2. The

result of Theorem 2.4 is well known and is found for example in [6] and [7].

Corollary 2.5. Assume the hypotheses and notation of Theorem 2.4. Then the

general form of MIN (A,H,∗ )-subspaces is given by formula (2.11), with M̃0 omitted.

2.2. Invariant Lagrangian subspaces. Recall that a subspace M ⊆ Fn×1 is

said to be (H,φ)-Lagrangian if M is (H,φ)-neutral and dimM = n/2 (it is assumed

here that n is even). Clearly, invariant Lagrangian subspaces are, in particular, maxi-

mal invariant neutral subspaces (the maximality of Lagrangian subspaces follows from

our standing hypothesis that H is invertible). Corollaries 2.3 and 2.5 when specialized

to invariant Lagrangian subspaces, give the following results:

Corollary 2.6. Assume the hypotheses and notation of Theorem 2.2. Then the

general form of A-invariant (H,φ)-Lagrangian subspaces is

M+̇
(
M[⊥]H ∩

(
M∓

1 +̇ · · · +̇M∓
ℓ

))
+̇M̃0+̇M̃ℓ+1+̇ · · · +̇M̃ℓ+s,(2.12)

where M is an arbitrary A-invariant subspace contained in M±
1 +̇ · · · +̇M±

ℓ , and M̃j

is an arbitrary A-invariant (H,φ)-neutral subspace in Nj of dimension (1/2)dimNj,

for j = 0, ℓ+ 1, . . . , ℓ+ s.

In particular, there exist A-invariant (H,φ)-Lagrangian subspaces if and only

if such subspaces exist for every restriction of A and H to every root subspace for

A corresponding to the zero eigenvalue or to a pair of nonzero complex conjugate

eigenvalues with zero real parts.

Corollary 2.7. Assume the hypotheses and notation of Theorem 2.4. Then

the general form of A-invariant (H,φ)-Lagrangian subspaces is given by (2.12), with

M̃0 omitted. In particular, there exist A-invariant (H,∗ )-Lagrangian subspaces if and

only if such subspaces exist for every restriction of A and H to every root subspace

for A corresponding to an eigenvalue with zero real part.
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3. Order of neutrality. Let F be R, C orH, and let φ be a continuous involution

of F.

Theorem 3.1. If H = −Hφ ∈ Fn×n is invertible, and A is (H,φ)-Hamiltonian,

then all MIN (A,H, φ)-subspaces have the same dimension (as F-vector subspaces).

We omit the proof. For a particular φ a proof is given in [11]. In general, the

proof follows the same outline as in [11].

The dimension identified in Theorem 3.1 is called the order of neutrality of the pair

(A,H), and denoted γF,φ(A,H), or in short γ(A,H) where F and φ are understood

from context. (This terminology was introduced in [10] for complex matrices that are

selfadjoint with respect to an indefinite inner product.)

4. Preliminary results. The following obvious but important proposition al-

lows us to reduce many proofs to the canonical forms of the pair A, H .

Proposition 4.1. Let H and A be as in Theorem 3.1, and let S ∈ F
n×n. Then

an A-invariant subspace M ∈ Fn×1 is (H,φ)-neutral, resp., MIN (A,H, φ)-subspace

or (H,φ)-Lagrangian subspace, if and only if the S−1AS-invariant subspace S−1M
is SφHS-neutral, resp., MIN (S−1AS, SφHS, φ)-subspace or (SφHS, φ)-Lagrangian

subspace. In particular,

γ(A,H) = γ(S−1AS, SφHS).

In the study of MIN (A,H, φ)-subspaces, the following result will be useful; in

combination with Proposition 4.1 it allows us to reduce sometimes proofs for quater-

nion cases to complex cases.

Theorem 4.2. Let X ∈ Cn×n, and suppose that X has no real eigenvalues or

pairs of complex conjugate nonreal eigenvalues. (The eigenvalues are understood over

C, i.e., with complex eigenvectors.) Then every X-invariant subspace M ⊆ H
n×1 has

a complex basis, i.e., a basis for M as an H-vector subspace that consists of complex

vectors.

Theorem 4.2 is proved in [26, Theorem 4.5].

Under the hypotheses of Theorem 4.2, we may identify the subspace M with

M̃ ⊆ Cn×1 spanned by a complex basis in M. Note that M̃ is independent of the

choice of the complex basis. Indeed, let f1, . . . , fk and g1, . . . , gk be two complex bases

in M. Then we have

[f1 f2 . . . fk] = [g1 g2 . . . gk]B
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for some invertible B ∈ Hk×k. Write B = B1 + jB2, where B1, B2 ∈ Ck×k. It is easy

to see that

[f1 f2 . . . fk] = [g1 g2 . . . gk]B1

and that B1 is invertible. Thus, SpanC {f1, . . . , fk} = SpanC {g1, . . . , gk}.

We will often implicitly use the easily verifiable fact that a subspace M of Rn×1

or of Cn×1 is (H,φ)-neutral if and only if MH is (H,φ)-neutral as a subspace of H;

here MH = SpanH {v1, . . . , vp}, where v1, . . . , vp is a basis for M.

In the rest of the paper, we consider each case (I)–(V) separately.

5. The real case. In this section, we assume F = R and φ = id, so Aφ = AT

for any real matrix A. The canonical form of (H, id)-Hamiltonian matrices is given

in the next theorem.

Theorem 5.1. Let F = R. Let A be (H, id)-Hamiltonian. Then there is an

invertible real matrix S such that S−1AS and STHS are block diagonal matrices

S−1AS = A1 ⊕ · · · ⊕As, STHS = H1 ⊕ · · · ⊕Hs,(5.1)

where each pair of diagonal blocks (Ai, Hi) is of one of the following five types:

(i)

Ai = J2n1
(0)⊕J2n2

(0)⊕· · ·⊕J2np
(0), Hi = κ1Ξ2n1

⊕κ2Ξ2n2
⊕· · ·⊕κpΞ2np

,

where κj are signs ±1;

(ii)

Ai = J2m1+1(0)⊕−J2m1+1(0)
T ⊕ · · · ⊕ J2mq+1(0)⊕−J2mq+1(0)

T ,

Hi =

[
0 I2m1+1

−I2m1+1 0

]
⊕ · · · ⊕

[
0 I2mq+1

−I2mq+1 0

]
;

(iii)

Ai = Jℓ1(a)⊕−Jℓ1(a)
T ⊕ · · · ⊕ Jℓr(a)⊕−Jℓr(a)

T ,

Hi =

[
0 Iℓ1

−Iℓ1 0

]
⊕ · · · ⊕

[
0 Iℓr

−Iℓr 0

]
,

where a > 0, and the number a, the total number 2r of Jordan blocks, and

the sizes ℓ1, . . . , ℓr may depend on the particular diagonal block (Ai, Hi);
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(iv)

Ai = J2k1
(a± ib)⊕−J2k1

(a± ib)T ⊕ · · · ⊕ J2ks
(a± ib)⊕−J2ks

(a± ib)T ,

Hi =

[
0 I2k1

−I2k1
0

]
⊕ · · · ⊕

[
0 I2ks

−I2ks
0

]
,

where a, b > 0, and again the numbers a and b, the total number 2s of Jordan

blocks, and the sizes 2k1, . . . , 2ks may depend on (Ai, Hi);

(v)

Ai = J2h1
(±ib)⊕ J2h2

(±ib)⊕ · · · ⊕ J2ht
(±ib),

Hi = η1




0 0 · · · 0 Ξh1

2

0 0 · · · −Ξh1

2 0
...

... . . .
...

...

0 (−1)h1−2Ξh1

2 · · · 0 0

(−1)h1−1Ξh1

2 0 · · · 0 0



⊕ · · ·

⊕ ηt




0 0 · · · 0 Ξht

2

0 0 · · · −Ξht

2 0
...

... . . .
...

...

0 (−1)ht−2Ξht

2 · · · 0 0

(−1)ht−1Ξht

2 0 · · · 0 0



,

where b > 0 and η1, . . . , ηt are signs ±1. The parameters b, t, h1, . . . , ht, and

η1, . . . , ηt may depend on the particular diagonal block (Ai, Hi).

The form (5.1) is uniquely determined by the pair (A,H), up to a simultaneous per-

mutation of diagonal blocks in the right hand sides of (5.1).

Theorem 5.1 is found in many sources, see for example [14].

The signs κj and ηt constitute the sign characteristic of the pair (A,H). Thus,

the sign characteristic assigns a sign 1 or −1 to every partial multiplicity of A cor-

responding to eigenvalues with zero real parts and positive imaginary parts, and to

every even partial multiplicity corresponding to the zero eigenvalue (if A is singular).

Partial multiplicities of a matrix here and everywhere in the paper are taken with

repetitions, i.e., each partial multiplicity is repeated as many times as the number of

Jordan blocks in the Jordan form of the matrix with given eigenvalue and given size.
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5.1. Order of neutrality and uniqueness. To identify the order of neutrality,

we introduce the following notation: If A ∈ Rn×n is (H,φ)-Hamiltonian, for a fixed

nonzero pure imaginary eigenvalue ibk with bk > 0 of A, let {hj,k}pk

j=1 be the partial

multiplicities associated with ibk, each hj,k repeated as many times as the block

J2hj,k
(±ibk) appears in the real Jordan form of A, and let Wk be the set of all indices

j such that hj,k is odd. Then define

m(A,H ;±ibk) :=
1

2
dimR(A;±ibk)−

∣∣∣∣∣∣
∑

j∈Wk

ηj,k

∣∣∣∣∣∣
,

where ηj,k is the sign as in type (v) corresponding to the Jordan block J2hj,k
(±ibk),

and where R(A;±ibk) ⊆ Rn×1 is the root subspace of A corresponding to the pair of

eigenvalues ±ibk.

In terms of the canonical form, the order of neutrality is identified as follows:

Theorem 5.2. Let F = R, and let A ∈ Rn×n be (H, id)-Hamiltonian. Let S

be the sum of root subspaces of A corresponding to all eigenvalues of A except the

nonzero pure imaginary eigenvalues. Then

γ(A,H) =

r∑

k=1

m(A,H ;±ibk) +
1

2
dimS =

1

2
n−

r∑

k=1

∣∣∣∣∣∣
∑

j∈Wk

ηj,k

∣∣∣∣∣∣
,(5.2)

where ib1, . . . , ibr are all distinct pure imaginary eigenvalues of A with positive imag-

inary parts.

Theorem 5.2 was proved in [12].

Next, consider the problem of uniqueness of maximal neutral subspaces.

Theorem 5.3. Let A ∈ R
n×n be H-Hamiltonian, where H = −HT ∈ R

n×n is

invertible. Then:

(1) If σ(A) = {0}, then a MIN (A,H, id)-subspace is unique if and only if there

are no blocks of odd size in the Jordan form of A, and the signs corresponding

to the blocks of size divisible by 4 in the sign characteristic of (A,H) are all

the same, the signs corresponding to the blocks of even size not divisible by 4

are all the same, and signs corresponding to the blocks of size divisible by 4

are opposite to the signs corresponding to the blocks of even size not divisible

by 4.

(2) If σ(A) = {±ib}, where b > 0, then a MIN (A,H, id)-subspace is unique if and

only if all blocks in the canonical form of (A,H) with even hi as in Theorem

5.1(v) (i.e., Jordan blocks in the Jordan form of A of size divisible by 4)

have the same sign in the sign characteristic of (A,H), and all blocks in the
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canonical form of (A,H) with odd hi (i.e., Jordan blocks in the Jordan form

of A of (necessarily even) size not divisible by 4) also have the same sign in

the sign characteristic of (A,H).

Note that under the conditions in part (2), the blocks with even hi may have sign

different form that of the blocks with odd hi.

A lemma will be needed for the proof of Theorem 5.3.

Lemma 5.4. Let X ∈ Rp×p, and assume that p is even and X = [Xi,j ]
p/2
i,j=1 can

be partitioned into blocks Xi,j ∈ R
2×2, where each Xi,j belongs to the subalgebra

C0 :=

{[
a b

−b a

]
∈ R

2×2 : a, b ∈ R

}
.

Assume also that X has no real eigenvalues. Then every nonzero X-invariant subspace

L ⊆ Rp×1 is spanned by the columns of a left invertible matrix Y of the form

Y = [Yi,j ]
p/2,q/2
i,j=1 ∈ R

p×q, where Yi,j ∈ C0, ∀ i = 1, 2, . . . , p; j = 1, 2, . . . , q.

Note that C0 is isomorphic to C.

Proof. The lemma is likely to be known; we provide a proof anyway. To this end,

define the map χ : C → R2×2 by

χ(a+ ib) =

[
a b

−b a

]
, a, b ∈ R,

and extend it to matrices (also denoted by χ):

χ : Cm×n → R
2m×2n,

where

χ
(
[aj,k + ibj,k]

m,n
j,k=1

)
= [χ(aj,k + ibj,k)]

m,n
j,k=1, aj,k, bj,k ∈ R.

The map χ is one-to-one, real linear, multiplicative, unital (maps I to I), and χ(Z∗) =

(χ(Z))T for every Z ∈ Cm×n.

Let now X be as in Lemma 5.4, and let K be the (complex) Jordan form of

χ−1(X), so χ−1(X)S = SK for some invertible S ∈ C
p/2×p/2. Applying χ we obtain

Xχ(S) = χ(S)χ(K),(5.3)

and note that χ(K) is the real Jordan form of X . Now, if L is X-invariant, then

clearly L is even dimensional, and letting J be the real Jordan form of the restriction
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X |L, we have XY = Y J for some left invertible matrix Y whose columns span L.
Combining with (5.3) we see that

χ(K) · χ(S)−1Y = χ(S)−1Y · J,

and it follows from the proof of [5, Theorem 12.4.2] that χ(S)−1Y is in the range of

χ. Then Y is in the range of χ as well.

Proof. Theorem 5.3. Without loss of generality we may (and do) assume that A

and H are given by the right hand sides of the formulas in (5.1).

Part (1) follows from [19, Theorem 3.2], taking into account that by Theorem 5.2

in this case MIN (A,H, φ)-subspaces are Lagrangian.

For the proof of (2) we will use Lemma 5.4. Let A and H be given by the formulas

in the right hand side of (v) of Theorem 5.1. We use the map χ defined in the proof

of Lemma 5.4, and we take advantage of A and H being in the range of χ, and let

Â = χ−1(A) = Jh1
(ib)⊕ · · · ⊕ Jht

(ib) ∈ C
(n/2)×(n/2),

Ĥ = χ−1(H) = η1Ξh1
(ih1)⊕ · · · ⊕ ηtΞht

(iht) ∈ C
(n/2)×(n/2).

Then Ĥ is skewhermitian invertible and ĤÂ is hermitian. Note that the pair (Â, Ĥ)

is already in the canonical form of Theorem 6.1. Letting Â = iÃ, Ĥ = iH̃ , where Ã,

H̃Ã are hermitian, we see from the proof of Theorem 6.1 that the sign characteristic

of (Ã, H̃) coincides with that of the pair (Â, Ĥ). Thus, the conditions on the sizes

of Jordan blocks and the sign characteristic in (2) can be recast as follows: The

signs in the sign characteristic of (Ã, H̃) corresponding to blocks of even size hi

are all the same, and the signs in the sign characteristic of (Ã, H̃) corresponding

to blocks of odd size hi are all the same. By Theorems 2.2 and 2.4 in [18] this is

the exact criterion for uniqueness of a MIN (Ã, H̃, φ)-subspace, or what is the same,

a MIN (Â, Ĥ, φ)-subspace. (The context in [18] is complex selfadjoint matrices in

indefinite inner products and maximal invariant positive (or negative) semidefinite

subspaces, but the proofs are essentially the same for MIN (Ã, H̃,∗ )-subspaces.) It

remains to observe that by Lemma 5.4 there is a one-to-one correspondence between

Â-invariant Ĥ-neutral subspaces M̂ and A-invariant H-neutral subspaces M given

by the formula

M̂ = SpanC{v1, . . . , vp} ⇐⇒ M = SpanR{columns of [χ(v1) χ(v2) . . . χ(vp)]},

where v1, . . . , vp ∈ C(n/2)×1 are linearly independent (over C).

Combining Corollary 2.3 with Theorem 5.3, we obtain:

Theorem 5.5. Assume that H = −HT ∈ Rn×n is invertible, A ∈ Rn×n is H-

Hamiltonian, and the conditions in Theorem 5.3(1) are satisfied (if A is singular), as
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well as the conditions in Theorem 5.3(2) for every pure imaginary nonzero eigenvalue

of A with positive imaginary part. Let λ0 = 0 and λℓ+1, . . . , λℓ+s be all distinct pure

imaginary eigenvalues of A with positive imaginary part, and for j = 0, ℓ+1, . . . , ℓ+s,

let M̃j be the unique (in view of Theorem 5.3) MIN (Aj , Hj , id)-subspace, where Aj

and Hj are the restrictions of A and H, respectively, to the root subspace for A

corresponding to λj.

Then all MIN (A,H, id)-subspaces M̃ are parameterized by the A-invariant sub-

spaces M such that M is contained in the sum of root subspaces for A corresponding

to the eigenvalues with positive real parts. The parametrization is given by the formula

M+̇
(
M[⊥]H ∩R−

)
+̇M̃0+̇M̃ℓ+1+̇ · · · +̇M̃ℓ+s,

where R− is the sum of the root subspaces for A corresponding to the eigenvalues with

negative real parts.

In a similar fashion, under the hypotheses and notation of Theorem 5.5, a descrip-

tion of all MIN (A,H, id)-subspaces can be given, parameterized by the A-invariant

subspaces M contained in the sum of root subspaces for A corresponding to the

eigenvalues with negative real parts.

6. The case of φ of type (III). We assume here F = C and φ the complex

conjugation. Most of this case is essentially known in the literature. We present the

results in the form suitable for the present paper, with a view of using these results

later on.

We start with a canonical form.

Theorem 6.1. Let Ĥ ∈ Cn×n be an invertible skewhermitian matrix, and let

X̂ ∈ Cn×n be (Ĥ,∗ )-Hamiltonian. Then for some invertible complex matrix S, the

matrices S∗ĤS and S−1X̂S have simultaneously the following form:

S∗ĤS =

r⊕

j=1

ηjΞℓj (i
ℓj )⊕

s⊕

v=1

[
0 Fpv

−Fpv
0

]
⊕

q⊕

u=1

ζuΞmu
(imu),(6.1)

S−1X̂S =

r⊕

j=1

Jℓj (0)⊕
s⊕

v=1

[ −Jpv
(αv) 0

0 Jpv
(αv)

]
⊕

q⊕

u=1

Jmu
(γu),(6.2)

where ηj, ζu are signs ±1, the complex numbers α1, . . . , αs have positive real parts,

and the complex numbers γ1, . . . , γq are nonzero with zero real parts.

The form (6.1), (6.2) is uniquely determined by the pair (X̂, Ĥ), up to a permu-

tation of associated pairs of primitive blocks.
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Conversely, if Ĥ, X̂ have the forms (6.1), (6.2), then Ĥ is invertible skewhermi-

tian and the equality ĤX̂ = (ĤX̂)∗ holds.

The signs ηj , ζu form the sign characteristic of the pair (X̂, Ĥ). Thus, the sign

characteristic attaches a sign ±1 to every Jordan block in the Jordan form of X̂

corresponding to a pure imaginary or zero eigenvalue of X̂.

Proof. Let X̂ = iX̃, Ĥ = iH̃, then H̃ is complex hermitian and H̃X̃ is hermitian.

The well-known canonical form (given in many sources, see for example [6] and [7])

for the pair (X̃, H̃) under the transformations

X̃ 7→ S−1X̃S, H̃ 7→ S∗H̃S, S ∈ C
n×n invertible,

has primitive pairs of blocks of the following two types:

(1) X̃1 = Jp(λ), H̃1 = ±Fp, where λ is real and p positive integer;

(2) X̃2 = Jp(α)⊕ Jp(α), H̃2 = F2p, where α is nonreal with negative imagi-

nary part, and p positive integer.

For (X̃1, H̃1), we have

S−1(iX̃1)S = Jp(iλ), S∗(iH̃1)S =





±Ξp(i
p) if p is odd,

∓Ξp(i
p) if p is even,

(6.3)

where S = diag (1,−i, (−i)2, . . . , (−i)p−1). For (X̃2, H̃2), we have

T−1

[
iJp(α) 0

0 iJp(α)

]
T =

[ −Jp(γ) 0

0 Jp(γ)

]
,

T ∗

[
0 iFp

iFp 0

]
T =

[
0 Fp

−Fp 0

]
,(6.4)

where γ = iα and

T =

[
diag (1, i, . . . , ip−1) 0

0 diag ((−i)s, (−i)s+1, . . . , (−i)s+p−1)

]
,

and where the integer s is adjusted so that i(−i)s+2 = 1. Formulas (6.3), (6.4)

transform the canonical form for pairs (X̃, H̃) such that the matrices H̃, H̃X̃ are

hermitian with invertible H̃ to the form (6.1), (6.2).

The uniqueness statement follows from that of the above mentioned canonical

form for the pair (X̃, H̃) .
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6.1. Order of neutrality and uniqueness. A formula for the order of neu-

trality is given in the next theorem.

Theorem 6.2. For invertible skewhermitian matrix Ĥ ∈ Cn×n and (Ĥ,∗ )-

Hamiltonian matrix X̂ ∈ Cn×n, the order of neutrality of the pair (X̂, Ĥ) is equal

to

γ(X̂, Ĥ) := p+

a∑

k=1






∞∑

j=1

⌊ j
2
⌋pk,j


+min{

∑

j odd

p+k,j ,
∑

j odd

p−k,j}


 .(6.5)

Here, in reference to the canonical form (6.1), (6.2) of (X̂, Ĥ), γ1, . . . , γa are all

the distinct γu’s, together with zero (if blocks ηjΞℓj (i
ℓj ), Jℓj (0) are present in (6.1),

(6.2)), for each γk, where k = 1, 2, . . . , a, we let pk,j be the number of Jordan blocks

in (6.2) of size j× j and eigenvalue γk, where among those blocks p+k,j and p−k,j stands

for the number of blocks that have sign +1 and −1, respectively, in the corresponding

block of (6.1); finally, p = p1 + · · ·+ ps is half of the sum of the sizes of Jordan blocks

with eigenvalues with nonzero real parts in (6.2).

See [25] for a particular case of formula (6.5), given in the context of matrices

−iĤ (hermitian) and −iX̂.

Proof. It will be convenient to work instead with the matrices H̃ = −iĤ and

X̃ = −iX̂. In view of Corollary 2.5, we need to consider only two cases: (1) σ(X̃)

is nonreal; (2) σ(X̃) = {λ} is real singleton. The first case is handled by the same

Corollary 2.5 (the order of neutrality in this case is equal to n/2). Consider the case

(2), and using the canonical form of the pair (X̃, H̃) we can assume without loss of

generality (Proposition 4.1) that λ = 0, and

X̃ = Jℓ1(0)⊕ · · · ⊕ Jℓr(0), H̃ = η1Fℓ1 ⊕ · · · ⊕ ηrFℓr ,

where we assume without loss of generality, using simultaneous permutation of con-

stituent blocks in X̃ and H̃ if necessary, that ℓ1, . . . , ℓs are even, ℓs+1, . . . , ℓr are odd,

ℓs+2v−1 ≥ ℓs+2v for v = 1, 2, . . . , u, and the signs are as follows:

ηs+1 · ηs+2 = −1, . . . , ηs+2u−1 · ηs+2u = −1,

and all ηj ’s with j = s+ 2u+ 1, . . . , r are the same; here u is the minimum between

the number of 1’s among the ηj ’s for those indices j for which ℓj is odd, and the

number of −1’s among such ηj ’s. Formula (6.5) gives

γ(X̃, H̃) =




r∑

j=1

⌊ℓj
2
⌋


+ u.(6.6)
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Clearly, there cannot be X̃-invariant H̃-neutral subspace of dimension larger than

γ(X̃, H̃), because it is not difficult to see that the right hand side of (6.6) is equal

to the maximal possible dimension of H̃-neutral subspaces (Proposition 1.2). To

construct a X̃-invariant H̃-neutral subspace M of dimension equal to γ(X̃, H̃), we

define subspaces in Cn×1 as follows:

Mj =





SpanC {e1,ℓj , . . . , eℓj/2,ℓj} for j = 1, . . . , s;

SpanC {e1,ℓs+2v−1+ℓs+2v
, . . . , e(1/2)(ℓs+2v−1−1),ℓs+2v−1+ℓs+2v

,

eℓs+2v−1+1,ℓs+2v−1+ℓs+2v
, . . . , eℓs+2v−1+(1/2)(ℓs+2v−1),ℓs+2v−1+ℓs+2v

,

e(1/2)(ℓs+2v−1+1),ℓs+2v−1+ℓs+2v
+ eℓs+2v−1+(1/2)(ℓs+2v+1),ℓs+2v−1+ℓs+2v

}
for v = 1, 2, . . . , u, and we set j = s+ 2v − 1;

SpanC {e1,ℓj , . . . , , e(1/2)(ℓj−1),ℓj} for j = s+ 2u+ 1, . . . , r.

Let

M = M1⊕· · ·⊕Ms⊕Ms+1⊕Ms+3⊕· · ·⊕Ms+2u−1⊕Ms+2u+1⊕Ms+2u+2⊕· · ·⊕Mr.

A straightforward inspection shows that M has all the required properties.

The cases of uniqueness of a MIN (X̂, Ĥ,∗ )-subspace are described as follows:

Theorem 6.3. Let X̂ and Ĥ be as in Theorem 6.1. Assume that σ(X̂) = {ib},
where b ∈ R, a singleton. Then a MIN (X̂, Ĥ,∗ )-subspace is unique if and only if the

signs in the sign characteristic of (X̂, Ĥ) corresponding to the Jordan blocks of even

size in the Jordan form of X̂ are all the same, and the signs corresponding to the

Jordan blocks of odd size in the Jordan form of X̂ are also all the same.

For the proof of Theorem 6.3 see the proofs of Theorems 2.2 and 2.4 in [18].

(The context in [18] is complex selfadjoint matrices in indefinite inner products and

maximal invariant positive (or negative) semidefinite subspaces, but the proofs are

essentially the same for MIN (X̂, Ĥ,∗ )-subspaces; at some point in the proof formula

(6.5) will be used.)

Analogously to Theorem 5.5, a parametrization can be given of all MIN (A,H,∗ )-

subspaces in terms of A-invariant subspace contained in the sum of all root subspaces

corresponding to eigenvalues with positive real parts, alternatively with negative real

parts, under the conditions described in Theorem 6.3. We leave the statement of this

parametrization to the interested readers.

7. The case of φ of type (II). In this section, we assume F = C and φ = id;

thus, Aφ = AT .

We start with the canonical form for complex (H, id)-Hamiltonian matrices which
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is available in many sources, e.g. [15], and in terms of pairs of complex symmet-

ric/skewsymmetric matrices it is given in [29], for example. We present the canonical

form as given in [16].

Theorem 7.1. Let H ∈ Cn×n be skew-symmetric and invertible (in particular,

n is even), and let A ∈ Cn×n be (H, id)-Hamiltonian. Then there exists an invertible

matrix P ∈ Cn×n such that P−1AP and PTHP are block diagonal matrices

P−1AP = A1 ⊕A2 ⊕A3, PTHP = H1 ⊕H2 ⊕H3,(7.1)

where the blocks have the following forms:

(i) A1 = J2n1
(0)⊕ · · · ⊕ J2np

(0), H1 = Ξ2n1
⊕ · · · ⊕ Ξ2np

,

with n1, . . . , np are positive integers;

(ii) A2 =

[
J2m1+1(0) 0

0 J2m1+1(0)

]
⊕ · · · ⊕

[
J2mq+1(0) 0

0 J2mq+1(0)

]
,

H2 =

[
0 Ξ2m1+1

−Ξ2m1+1 0

]
⊕ · · · ⊕

[
0 Ξ2mq+1

−Ξ2mq+1 0

]
,

with m1, . . . ,mq nonnegative integers;

(iii) A3 = A3,1 ⊕ · · · ⊕A3,k, H3 = H3,1 ⊕ · · · ⊕H3,k ,

where

A3,j =

[
Jℓj,1(λj) 0

0 −Jℓj,1(λj)
T

]
⊕ · · · ⊕

[
Jℓj,qj (λj) 0

0 −Jℓj,qj (λj)
T

]
,

H3,j =

[
0 Iℓj,1

−Iℓj,1 0

]
⊕ · · · ⊕

[
0 Iℓj,qj

−Iℓj,qj 0

]
,

with positive integers ℓj,1, . . . , ℓj,qj , and λj ∈ C with R(λj) > 0 or R(λj) = 0

and I(λj) > 0 for j = 1, . . . , k. Moreover, λ1, . . . , λk are pairwise distinct.

The form (7.1) is uniquely determined by the pair (A,H), up to a simultaneous per-

mutation of primitive diagonal blocks in the right hand sides of (7.1).

By inspection of the canonical form (7.1), and using Proposition 4.1, we obtain

the following formula for the order of neutrality:

Theorem 7.2. Let (A,H) be as Theorem 7.1. Then the order of neutrality of

(A,H) is equal to n/2.

Thus, in this case, the MIN (A,H, id)-subspaces are J-Lagrangian.
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A description of all A-invariant (H, id)-Lagrangian subspaces was obtained in

[4], using the Schur canonical form (different from the canonical form above). In

particular, we have the following criterion for uniqueness of MIN (A,H, id)-subspaces.

Theorem 7.3. Let (A,H) be as in Theorem 7.1. If σ(A) = {λ,−λ}, where

λ is nonzero with zero real part, then a MIN (A,H, id)-subspace is non-unique. If

σ(A) = {0}, then a MIN (A,H, id)-subspace is unique if and only if A is unicellular,

i.e., its Jordan form consists of only one Jordan block, necessarily of even size.

Proof. We verify only the part of Theorem 7.3 under the hypothesis that σ(A) =

{0}. The “if” part is obvious: If A is unicellular, then there exists a unique A-invariant

subspace of dimension n/2. We prove the “only if” part. Without loss of generality we

may assume that A andH are given by the right hand sides of formulas (ii) in Theorem

7.1. If there are blocks of odd size in the Jordan form of A, then an inspection of the

formulas (ii) reveals the non-uniqueness of a MIN (A,H, id)-subspace. Assume now

that A has more than Jordan block of even size. For notational convenience suppose

A = J2n1
(0)⊕ J2n2

(0), H = Ξ2n1
⊕ Ξ2n2

,

and assume without loss of generality that n1 ≥ n2. Then

M1 := SpanC {e1,2n1+2n2
, . . . , en1,2n1+2n2

, e2n1+1,2n1+2n2
, . . . , e2n1+n2,2n1+2n2

}

and

M2 := SpanC {en1+1,2n1+2n2
+ ie2n1+n2+1,2n1+2n2

, en1,2n1+2n2
+ ie2n1+n2,2n1+2n2

,

en1−1,2n1+2n−2, . . . , e1,2n1+2n2
, e2n1+n2−1,2n1+2n2

, . . . , e2n1+1,2n1+2n2
}

are two different (n1 + n2)-dimensional J2n1
(0)⊕ J2n2

(0)-invariant (Ξ2n1
⊕ Ξ2n2

, id)-

neutral subspaces.

Theorem 7.4. Let A and H be as in Theorem 7.1. Assume that A has no

nonzero pure imaginary eigenvalues, and dim (KerA) ≤ 1. Then all MIN (A,H, id)-

subspaces, equivalently all A-invariant H-Lagrangian subspaces, are parameterized by

the A-invariant subspaces M contained in the sum of root subspaces for A correspond-

ing to the eigenvalues with positive real parts. The parametrization is given by the

formula

M+̇
(
M[⊥]H ∩R−

)
+̇M̃0,

where R− is the sum of the root subspaces for A corresponding to the eigenvalues with

negative real parts, and (if A is singular) M̃0 is the unique A-invariant subspace of

dimension (1/2)dim (Ker (An)).

Theorem 7.4 is an immediate corollary of Theorem 7.3 and Corollary 2.3.
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8. The case of φ of type (IV). In this section, we assume that F = H and

φ is the conjugation. Fix an invertible H = −H∗ ∈ Hn×n, and let A ∈ Hn×n be

H-Hamiltonian. We study here subspaces M ⊆ Hn×1 that are MIN (A,H,∗ ).

A canonical form comes first.

Theorem 8.1. Let H ∈ Hn×n be an invertible skewhermitian matrix, and let

X ∈ Hn×n be (H,∗ )-Hamiltonian. Then for some invertible quaternion matrix S, the

matrices S∗HS and S−1XS have simultaneously the following form:

S∗HS =

r⊕

j=1

ηjΞℓj (i
ℓj )⊕

s⊕

v=1

[
0 Fpv

−Fpv
0

]
⊕

q⊕

u=1

ζuΞmu
(imu),(8.1)

S−1XS =

r⊕

j=1

Jℓj (0)⊕
s⊕

v=1

[ −Jpv
(αv) 0

0 Jpv
(αv)

]
⊕

q⊕

u=1

Jmu
(γu),(8.2)

where ηj, ζu are signs ±1 with the additional condition that ηj = 1 if ℓj is odd,

the complex numbers α1, . . . , αs have positive real parts, and the complex numbers

γ1, . . . , γq are with zero real parts and positive imaginary parts.

The form (8.1), (8.2) is uniquely determined by the pair (X,H), up to an arbitrary

simultaneous permutation of primitive blocks in each of the three parts:



r⊕

j=1

ηjΞℓj (i
ℓj ),

r⊕

j=1

Jℓj (0)


 ,

(
q⊕

u=1

ζuΞmu
(imu),

q⊕

u=1

Jmu
(γu)

)
,

and (
s⊕

v=1

[
0 Fpv

−Fpv
0

]
,

s⊕

v=1

[ −Jpv
(αv) 0

0 Jpv
(αv)

])
,

and up to replacements of some αk’s with their complex conjugates.

Conversely, if H, X have the forms (8.1), (8.2), then H is invertible skewhermi-

tian, and X is (H,∗ )-Hamiltonian.

Theorem 8.1 is given in many sources, see, for example, [2], [24], and [28]. The

formulation as in Theorem 8.1 is taken from [24].

Remark 8.2. As seen from the canonical form (8.1), (8.2), the sign characteristic

of anH-Hamiltonian matrix A assigns a sign ±1 to every even partial multiplicity of A

corresponding to the zero eigenvalue, and to all partial multiplicities of every nonzero

eigenvalue with zero real part (recall that under quaternions, if λ0 ∈ H is an eigenvalue

of A, then so is every µ0 ∈ H with R(µ0) = R(λ0) and |V(µ0)| = |V(λ0)|).

Remark 8.3. One can take all γu in Theorem 8.1 to have negative imaginary

parts. Indeed, the following formulas make explicit the replacement of γu by its
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complex conjugate:

S−1Jmu
(−γu)S = Jmu

(γu),

S∗(Ξmu
(imu))S =





−Ξmu
(imu) if mu is odd,

Ξmu
(imu) if mu is even,

where S = jI. Note that under this replacement ζu reverses to its negative if mu is

odd, and remains invariant if mu is even.

8.1. Formula for the order of neutrality. Given an (H,∗ )-Hamiltonian X ∈
Hn×n, in the next theorem we identify the order of neutrality γ(X,H) in terms of

the canonical form. Let (8.1), (8.2) be the canonical form of the pair (X,H). Let

γ1, . . . , γa be all the distinct γu’s. For each γk, k = 1, 2, . . . , a, let pk,j be the number

of blocks Jmu
(γu) in (8.2) of size j × j and eigenvalue γk. Among those blocks let

p+k,j and p−k,j be the number of blocks that have sign +1 and −1, respectively, in the

corresponding block ζuΞmu
(imu) of (8.1); thus, pk,j = p+k,j + p−k,j , for j = 1, 2, . . . ,

and k = 1, 2, . . . , a. For the eigenvalue zero, let r be the number of nilpotent Jordan

blocks in (8.2), let qm be the number of blocks Jℓj (0) in (8.2) of size m×m. Finally,

let p = p1 + · · · + ps, half of the sum of the sizes of blocks with eigenvalues with

nonzero real parts in (8.2).

Theorem 8.4. The order of neutrality of (X,H) is given by

γ(X,H) = p+

a∑

k=1






∞∑

j=1

⌊ j
2
⌋pk,j


+min{

∑

j odd

p+k,j ,
∑

j odd

p−k,j}




+

( ∑

m even

(m/2)qm

)
+

( ∑

m odd

((m− 1)/2)qm

)
+ ⌊(

∑

m odd

qm)/2⌋.(8.3)

Proof. We assume that H and X are given by the right hand sides of (8.1) and

(8.2), respectively (Proposition 4.1). For m odd, we replace ⌊(∑m odd qm)/2⌋ pairs

of blocks Ξm(im), Jm(0) in (8.1), (8.2) by −Ξm(im), Jm(0), using the formulas

(−j)Im · Jm(0) · jIm = Jm(0), (−j)Im · Ξm(im) · jIm = −Ξm(im), m odd.

Formula (6.5) now yields anX-invariantH-neutral complex subspaceM of dimension

equal to the right hand side of (8.3). It is easy to see that complex vectors are linearly

independent over C if and only if they are linearly independent over H. Thus, M has

the same dimension as a subspace of Hn×1.

It remains to show that there do not exist quaternion X-invariant H-neutral

subspaces of larger dimension. In view of Corollary 2.3 we need only to consider two
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cases:

(1) X =

q⊕

u=1

Jmu
(γ), H =

q⊕

u=1

ζuΞmu
(imu),

where γ is a complex number with zero real part and positive imaginary part;

(2) X =
r⊕

j=1

Jℓj (0), H =
r⊕

j=1

ηjΞℓj (i
ℓj ),

where the signs ηj are taken to be 1 for odd ℓj.

If (1) holds true, then by Theorem 4.2 we are done in view of the formula (6.5).

It remains to consider case (2). In this case, observe that the right hand side of (8.3)

is equal to n/2 if n is even, and to (n− 1)/2 if n is odd. This is exactly the maximal

dimension of an H-neutral subspace (Proposition 1.2), so obviously no X-invariant

H-neutral subspace can have a larger dimension.

8.2. Uniqueness of maximal invariant neutral subspaces. Theorem 4.2,

combined with Theorem 6.3, and taking advantage of the canonical form of (X,H)

given in Theorem 8.1, yields the first part of the following uniqueness result:

Theorem 8.5. Let H, X be as in Theorem 8.1.

(a) Assume σ(X)∩C = {±ib}, b > 0. Then a MIN (X,H,∗ )-subspace is unique if

and only if the signs in the sign characteristic of (X,H) corresponding to the Jordan

blocks of even size in the Jordan form of X are all the same, and the signs corre-

sponding to the Jordan blocks of odd size in the Jordan form of X are also all the

same.

(b) Assume X is nilpotent. Then a MIN (X,H,∗ )-subspace is unique if and only

if the signs in the sign characteristic of (X,H) corresponding to the Jordan blocks of

even size in the Jordan form of X are all the same, and there is at most one Jordan

block of odd size.

Proof. It remains to prove (b). The “only if” part. If the condition on the sign

characteristic is not satisfied then by Theorem 6.3 a MIN (A,H,∗ )-subspace is not

unique already among complex subspaces. If there are at least two Jordan blocks of

odd size, then by using the formulas

(−jI)Jℓ(0)(jI) = Jℓ(0), (jI)Ξℓ(i
ℓ)(jI), ℓ odd,

we replace one pair of corresponding blocks Ξℓ(i
ℓ), Jℓ(0) with −Ξℓ(i

ℓ), Jℓ(0), thereby

creating two opposite signs in the sign characteristic corresponding to nilpotent Jordan
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blocks of odd sizes. Now clearly a MIN (X,H,∗ )-subspace is not unique as it is not

unique already among complex subspaces, by Theorem 6.3.

The “if” part. We argue analogously to the proof of Theorem 1 in [25]. Replacing

if necessary H with −H , we may assume that

X = Jℓ1 ⊕ · · · ⊕ Jℓr , H = Ξℓ1(i
ℓ1)⊕ · · · ⊕ Ξℓr−1

(iℓr−1)⊕ ηΞℓr (i
ℓr ),

where ℓ1, . . . , ℓr−1 are even and the sign η is equal to 1 if ℓr is even as well. (If

ℓr is odd, then η = ±1.) For i = 1, 2, . . . , r and j = 1, 2, . . . , ℓi, denote by fi,j the

(ℓ1+· · ·+ℓi−1+j)th unit coordinate vector (ℓ0 = 0 by convention). Thus, fi,1, . . . , fi,ℓi
is a Jordan chain of X .

Now let N ⊆ Hn×1 be an X-invariant (H,∗ )-neutral subspace, and let

x =

r∑

i=1

ℓi∑

j=1

fi,jxi,j ∈ N , xi,j ∈ H.

We claim that if j > ⌊ℓi/2⌋, then xi,j = 0. Suppose not. Let K be the set of all

indices i, 1 ≤ i ≤ r, for which the set

{j : ⌊ℓi/2⌋ < j ≤ ℓi, xi,j 6= 0}

is non-void, and the difference

(max {j : ⌊ℓi/2⌋ < j ≤ ℓi, xi,j 6= 0})− ⌊ℓi/2⌋

is maximal. Denote this maximal difference by ν. Since N is X-invariant, we have

y :=

r∑

i=1

ℓi∑

j=ν

fi,j−ν+1xi,j ∈ N , z :=

r∑

i=1

ℓi∑

j=ν+1

fi,j−(ν+1)+1xi,j ∈ N .

A computation shows that

y∗Hz = −
∑

i∈K, i≤r−1

|xi,ν+ℓi/2|2.

Since N is H-neutral, it follows that xi,ν+ℓi/2 = 0 for all i ∈ K, i < r. Thus, we must

have K = {r}. However, then

y∗Hy = ±x∗
r,ν+(ℓr−1)/2ixr,ν+(ℓr−1)/2,

which must be zero, and we obtain a contradiction with the definition of K. Thus,

xi,j = 0 if j > ⌊ℓi/2⌋, for i = 1, 2, . . . , r.

On the other hand, the H-vector subspace N0 spanned by fi,j with i = 1, 2, . . . , r

and j = 1, 2, . . . , ⌊ℓi/2⌋, is clearly X-invariant H-neutral. In view of the claim proved

in the preceding paragraph, N0 must be a unique MIN (X,H,∗ )-subspace.
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A result analogous to Theorem 5.5 (a parametrization of all MIN (A,H,∗ )-

subspaces for quaternion matrices in cases of uniqueness when restricted to a root

subspace corresponding to eigenvalue zero or to similar nonzero eigenvalues with zero

real parts) is valid. We omit the statement of this result.

8.3. Comparison with the complex case (III). As a corollary of Theorem

8.4 we can characterize the difference (if any) between the order of neutrality for

complex and for quaternion X-invariant H-neutral subspaces. If Ĥ ∈ Cn×n is in-

vertible skewhermitian and X̂ ∈ Cn×n is (Ĥ,∗ )-Hamiltonian, we denote temporarily

by γH(X̂, Ĥ) and γC(X̂, Ĥ) the order of neutrality of (X̂, Ĥ) when the quaternion

subspaces and when only the subspaces in Cn×1 are considered, respectively. Clearly,

γH(X̂, Ĥ) ≥ γC(X̂, Ĥ).

We need some preparation to state the result. Let Ĥ ∈ Cn×n be invertible

skewhermitian, and let X̂ ∈ Cn×n be (Ĥ,∗ )-Hamiltonian, having the canonical form

as in Theorem 6.1. Let

γ1,−γ1, γ2,−γ2, . . . , γb,−γb

be all the distinct pairs of nonzero complex conjugate eigenvalues of X̂ with zero real

parts (if any), where we take γ1, . . . , γb to have positive imaginary parts. For each

pair (γk,−γk), and for every positive odd integer j, let pk,j be the number of blocks of

size j with eigenvalue γk in (6.2), and let p+k,j and p−k,j be the number of Jordan blocks

of size j with eigenvalue γk that have sign ζu equal to +1 and to −1, respectively,

in the corresponding block of (6.1); thus, pk,j = p+k,j + p−k,j . We let p±k,j be zero if

there are no Jordan blocks of size j with eigenvalue γk having sign ±1. Analogously,

for every positive odd integer j, let qk,j be the number of Jordan blocks of size j

with eigenvalue −γk in (6.2), and let q+k,j and q−k,j be the number of such blocks that

have sign ζu equal to +1 and to −1, respectively, in the corresponding block of (6.1).

Define the number

Γk := −min




∑

j odd

p+k,j ,
∑

j odd

p−k,j



−min




∑

j odd

q+k,j ,
∑

j odd

q−k,j





+ min




∑

j odd

(p+k,j + q−k,j),
∑

j odd

(p−k,j + q+k,j)



 ,

and Γ := Γ1 + · · ·+ Γb.

Corollary 8.6. Let p± be the number of Jordan blocks Jℓj (0) of odd size with

the sign ηj = ±1 in the canonical form (6.1), (6.2) of (X̂, Ĥ). Then

γH(X̂, Ĥ)− γC(X̂, Ĥ) = Γ + ⌊(p+ + p−)/2⌋ −min{p+, p−}.(8.4)
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Proof. It follows from Remark 8.3 that the canonical form of the pair X̂, Ĥ

under simultaneous congruence with quaternion congruence matrices (Theorem 8.1)

is obtained from (6.1), (6.2) upon replacing −γk with γk (k = 1, 2, . . . , b) and changing

the signs for odd size blocks, as well as changing the signs −1 (if any) for nilpotent

blocks of odd sizes into +1. Comparing the formulas for the order of neutrality of

(X̂, Ĥ) under simultaneous congruence with quaternion congruence matrices (8.3)

and that with complex congruence matrices (6.5), the result follows.

Corollary 8.7. In the notation defined before and in Corollary 8.6, the equality

γH(X̂, Ĥ) = γC(X̂, Ĥ)(8.5)

holds true if and only if


 ∑

j odd

(
p+k,j − p−k,j

)

 ·


 ∑

j odd

(
q+k,j − q−k,j

)

 ≤ 0(8.6)

for k = 1, . . . , b, and

min{p+, p−} = ⌊(p+ + p−)/2⌋.(8.7)

Proof. By Corollary 8.6, the equality (8.5) holds true if and only if (8.7) and

min




∑

j odd

p+k,j ,
∑

j odd

p−k,j



+min




∑

j odd

q+k,j ,
∑

j odd

q−k,j





= min




∑

j odd

(p+k,j + q−k,j),
∑

j odd

(p−k,j + q+k,j)



(8.8)

hold true, for k = 1, . . . , b. Letting

pk :=
∑

j odd

(p+k,j − p−k,j), qk :=
∑

j odd

(q+k,j − q−k,j),

the equality (8.8) takes the following form (after subtracting


 ∑

j odd

p−k,j


 +


 ∑

j odd

q−k,j
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from both sides):

min{pk, 0}+min{qk, 0} = min{pk, qk}.(8.9)

A straightforward analysis shows that (8.9) is equivalent to pkqk ≤ 0.

Example 8.8. Let

Ĥ =

[
i 0

0 i

]
, X̂1 = 02, X̂2 = i

[
a b+ ic

b− ic d

]
6= 0,

where a, b, c, d ∈ R. Then Ĥ has no nonzero neutral complex subspaces, but

SpanH

[
1

j

]
is a one-dimensional quaternion Ĥ-neutral subspace, in accordance with

formula (8.4), which for this example gives γH(X̂1, Ĥ)− γC(X̂1, Ĥ) = 1.

On the other hand, all nonzero Ĥ-neutral subspaces are of the form

SpanH

[
1

xj+ yk

]
, where x, y ∈ R and x2 + y2 = 1.(8.10)

A calculation shows that all the subspaces (8.10) are X̂2-invariant if and only if one

of them is A-invariant which happens if and only if a+ d = 0. Indeed, the equality

i

[
a b+ ic

b− ic d

] [
1

xj+ yk

]
=

[
1

xj+ yk

]
z, z ∈ H,(8.11)

gives z = ia + i(b + ic)(xj + yk), which upon substituting in the bottom equation in

(8.11) yields a+ d = 0. Observe that a+ d = 0 happens if and only if either X̂2 = 0

or X̂2 has two nonzero complex conjugate eigenvalues. This confirms the result of

Corollary 8.6.

8.4. Comparison with the real case. We conclude this section with the com-

parison with the real case. We start with a lemma.

Lemma 8.9. (1) Let

A = J2h(±ib), H = η




0 0 · · · 0 Ξh
2

0 0 · · · −Ξh
2 0

...
... . .

. ...
...

0 (−1)h−2Ξh
2 · · · 0 0

(−1)h−1Ξh
2 0 · · · 0 0




be real matrices, where b 6= 0 and η = ±1 (thus, A is (H, id)-Hamiltonian). Then

there exists an invertible matrix S ∈ H2h×2h such that

S−1AS = Jh(ib)⊕ Jh(ib), S∗HS = ζ1Ξh(i
h)⊕ ζ2Ξh(i

h),(8.12)
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where the signs ζ1 and ζ2 are opposites if h is odd, and the signs ζ1 and ζ2 are equal

to η if h is even.

(2) Let

A = J2m+1(0)⊕−J2m+1(0)
T , H =

[
0 I2m+1

−I2m+1 0

]
;

thus, A is (H, id)-Hamiltonian. Then there exists an invertible matrix

S ∈ H
(4m+2)×(4m+2) such that

S−1AS = J2m+1(0)⊕ J2m+1(0), S∗HS = Ξ2m+1(i
2m+1)⊕ Ξ2m+1(i

2m+1).(8.13)

Proof. Part (2) is evident, because the right hand sides of (8.13) must form

the canonical matrices of the pair (A,H) under simultaneous congruence over the

quaternions (Theorem 8.1); note that J2m+1(0) ⊕ J2m+1(0) is the Jordan form of

J2m+1(0)⊕−J2m+1(0)
T .

Part (1). The existence of such S, for some signs ζ1 and ζ2 follows from the

canonical form (8.1), (8.2). To determine the signs, consider the real symmetric matrix

HA. The signature (i.e., the difference between the number of positive eigenvalues

and the number of negative eigenvalues, counted with multiplicities) of HA is zero;

indeed, the central 2×2 block in HA is

[
0 b

b 1

]
if h is even, and

[
0 −b

−b 0

]
if h is

odd, the signature of both 2× 2 matrices being zero. Because of the inertia theorem

(which is valid for quaternion hermitian matrices), we should have also the signature

of the matrix Y equal to zero, where Y = S∗HS · S−1AS is the product of matrices

in the right hand sides of (8.12). A calculation shows that for odd h, the signature of

Ξh(i
h)Jh(ib) is 1 if b < 0 and −1 if b > 0. Thus, we must have ζ1 and ζ2 opposites to

ensure that the signature of Y is zero.

Now assume h is even. Then the signature of Ξh(i
h)Jh(ib) is zero, so the signature

of Y is zero no matter the signs ζj . So we have to argue differently. We will construct

explicitly the matrix S in two steps. The first step is adapted from [13]. Define an

invertible 2h× 2h matrix

C2h =
1√
2
·
([

1 1

−i i

]
⊕
[

1 1

−i i

]
⊕ · · · ⊕

[
1 1

−i i

])
,

whose inverse is easily computed:

C−1
2h =

√
2

2i

([
i −1

i 1

]
⊕ · · · ⊕

[
i −1

i 1

])
.
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Use the unit coordinate vectors ej,2h, j = 1, 2, . . . , 2h, to define the permutation

matrix

D2h = [e1,2h e3,2h e5,2h . . . e2h−1,2h e2,2h e4,2h . . . e2h,2h] ∈ R
2h×2h,

and observe that D−1
2h = DT

2h. A computation serves to establish the equalities

(C2hD2h)
−1J2h(±ib)(C2hD2h) = Jh(−ib)⊕ Jh(ib)

and

(C2hD2h)
∗




0 0 · · · 0 Ξh
2

0 0 · · · −Ξh
2 0

...
... . . .

...
...

0 (−1)h−2Ξh
2 · · · 0 0

(−1)h−1Ξh
2 0 · · · 0 0




× (C2hD2h) = (−1)h/2
[

Ξh 0

0 Ξh

]
.

In the second step, use the equalities

(−jI)Jh(−ib)(jI) = Jh(ib), (−jI) · Ξh · (jI) = Ξh = (−1)h/2Ξh(i
h).(8.14)

Combining the two steps, we obtain formula (8.12) for h even.

Theorems 5.2 and 8.4 yield, taking into account Lemma 8.9:

Corollary 8.10. Let A ∈ Rn×n be (H, id)-Hamiltonian, where H = −HT ∈
Rn×n is invertible. Then the maximal dimension γR (A,H) of a real A-invariant

(H, id)-neutral subspace, and the maximal (quaternion) dimension γH (A,H) of a

quaternion A-invariant (H,∗ )-neutral subspace, are related as follows:

γH (A,H)− γR (A,H) =
r∑

k=1

|the sum of signs corresponding

to blocks J2hj,k
(±ibk) with odd hj,k

∣∣ ,(8.15)

where ib1, . . . , ibr are all distinct eigenvalues of A with positive b1, . . . , br. Here the

blocks J2hj,k
(±ibk) refer to the canonical form of (A,H) given in Theorem 5.1.

Proof. By Corollary 2.3 we may assume that either σ(A) = {±ib}, b ∈ R \ {0}, or
σ(A) = {0}. Suppose the latter case holds. Formula (5.2) gives γR (A,H) = n/2. On

the other hand, Lemma 8.9(2) together with formula (8.3) gives also γH (A,H) = n/2.

Suppose σ(A) = {±ib}. Lemma 8.9(1) and formula (8.3) yield γH, (A,H) = n/2, and

applying (5.2) the result follows.
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9. The case of φ having form (V). In this section, we assume F = H and

φ is a fixed involution of H different from the quaternion conjugation. Then there

is β = β(φ) ∈ H such that β2 = −1 and φ(β) = −β; moreover such β is uniquely

determined by φ up to negation (i.e., replacement of β with −β). We denote by

Inv (φ) the set of quaternions α which are fixed by φ: φ(α) = α. The set Inv (φ) is a

three dimensional real vector space of H that contains the reals (see Proposition 1.1).

Again, we start with the canonical form. We describe first the primitive pairs of

blocks.

(A) L = κβ(φ)Fk, A = β(φ)Jk(0), where κ = 1 if k is even, and κ = ±1 if k is

odd;

(B)

L =

[
0 Fℓ

−Fℓ 0

]
, A =

[ −Jℓ(α) 0

0 Jℓ(α)

]
,

where α ∈ Inv (φ), R(α) > 0.

(C) L = δβ(φ)Fs, A = β(φ)Js(τ), where δ = ±1 and τ is a negative real

number.

Remark 9.1. One can replace “negative” by “positive” in (C). Indeed, if γ ∈ H

is such that γ−1β(φ)γ = −β(φ) and |γ| = 1, then

(
diag (γ−1,−γ−1, . . . , (−1)s−1γ−1)

)
β(φ)Js(τ)

(
diag (γ,−γ, . . . , (−1)s−1γ)

)

= β(φ)Js(−τ),(9.1)

and

(
diag (φ(γ),−φ(γ), . . . , (−1)s−1φ(γ))

)
Fs (diag (γ,−γ, . . . , (−1)sγ)) = (−1)s−1Fs,

where τ > 0. Note that γ2 = −1 and φ(γ) = γ. Also,

(
diag (φ(γ),−φ(γ), . . . , (−1)s−1φ(γ))

)
(β(φ)Fs)

(
diag (γ,−γ, . . . , (−1)s−1γ)

)

= (−1)s−1(β(φ)Fs).

Note that the replacement of τ by its negative in (C) will reverse the sign δ if s is

even, and will leave the sign invariant if s is odd.

Theorem 9.2. Let A ∈ H
n×n be (H,φ)-Hamiltonian, where H = −Hφ ∈ H

n×n

is invertible. Then there exists an invertible quaternion matrix S such that SφHS

and S−1AS have the following block diagonal form:

SφHS = L1 ⊕ L2 ⊕ · · · ⊕ Lm, S−1AS = A1 ⊕A2 ⊕ · · · ⊕Am,(9.2)
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where each pair of matrices (Li, Ai) has one of the forms (A), (B), (C). Moreover, the

form (9.2) is uniquely determined by the pair (A,H), up to an arbitrary simultaneous

permutation of blocks and up to a replacement of α in each block of the form (B) with

a similar quaternion α′ such that φ(α′) = α′.

Conversely, if H and A are given as in formula (9.2), then H = −Hφ is invertible

and A is (H,φ)-Hamiltonian.

The result of Theorem 9.2 is found in [2], [23], and [28], among many sources.

For a detailed proof of the theorem, see for example [23].

The sign characteristic of an (H,φ)-Hamiltonian matrix A assigns a sign ±1 to

every partial multiplicity corresponding to a nonzero eigenvalue of A with zero real

part (if any), and to every odd partial multiplicity corresponding to the eigenvalue zero

of A (if A is not invertible). Note that the set of (right) eigenvalues of a quaternion

matrix is invariant under similarity: If α is an eigenvalue, then so is every quaternion

of the form γ−1αγ, where γ ∈ H\{0}. If A is (H,φ)-Hamiltonian, then every nonzero

eigenvalue λ of A with zero real part is similar to β(φ)τ for some (unique) negative τ ,

and the signs in the sign characteristic of (A,H) which are attributed to the partial

multiplicities corresponding to λ are, by definition, those that appear in the canonical

form (9.2) for the eigenvalue β(φ)τ .

9.1. Order of neutrality and uniqueness of maximal invariant neutral

subspaces. The next theorem gives a formula for the order of neutrality in terms of

the canonical form of Theorem 9.2.

Theorem 9.3. Let A ∈ Hn×n be (H,φ)-Hamiltonian. Then the order of neutral-

ity γ(A,H) is given by formula (6.5), where in reference to the canonical form (9.2)

of (A,H), γ1, . . . , γa are all the distinct eigenvalues of A of the form β(φ)τ , where τ

is a nonpositive real number, and pk,j, p
+
k,j , p

−
k,j have the same meaning as in (6.5).

For the proof of Theorem 9.3, as well as for later proofs, we need comparison

between the primitive blocks of the canonical form of Theorem 9.2 and those of

Theorem 6.1. This comparison is accomplished in the following lemma.

Lemma 9.4. For each of the following quadruples of matrices (Ai, Hi, A
′
i, H

′
i),

i = 1, 2, 3, 4, there exists an invertible quaternion matrix Si such that

S−1
i AiSi = A′

i, (Si)φHiSi = H ′
i,

where in parts (2), (3), and (4) it is assumed that φ is a nonstandard involution such

that φ(i) = −i and β(φ) = i:

(1)

A1 = Jℓ(0), H1 = ηΞℓ(i
ℓ), A′

1 = β(φ)Jℓ(0), H ′
1 = β(φ)Fℓ,
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where ℓ is even and η is sign ±1;

(2)

A2 = Jℓj (0), H2 = ηΞℓ(i
ℓ), A′

2 = β(φ)Jℓ(0), H ′
2 = ηβ(φ)Fℓ,

where ℓ is odd and η is sign ±1;

(3) A3 =

[ −Jp(λ) 0

0 Jp(λ)

]
, H3 =

[
0 Fp

−Fp 0

]
,

A′
3 =

[ −Jp(α) 0

0 Jp(α)

]
, H ′

3 =

[
0 Fp

−Fp 0

]
,

where λ is a complex number with positive real part, and α ∈ Inv (φ) is such

that R(α) = R(λ) and |V(α)| = |V(λ)|.
(4)

A4 = Jm(γ), H4 = ζΞm(im), A′
4 = β(φ)Jm(τ), H ′

4 = ζ′β(φ)Fm,

where the complex number γ is nonzero with zero real part, τ = −|γ| < 0,

and ζ, ζ′ are signs ±1 related as follows: If m is odd or if m is even and the

imaginary part of γ is positive, then ζ′ = ζ. If m is even and the imaginary

part of γ is negative, then ζ′ = −ζ.

Note that for a given nonstandard involution φ, a normalized quaternion q such

that φ(q) = −q is unique up to negation; thus, the condition φ(i) = −i forces β(φ) = i

or β(φ) = −i. We make the choice β(φ) = i.

Proof. Part (1) follows from the following equalities (where ℓ is even):

diag (1,−β(φ), · · · , (−β(φ))ℓ−1)Jℓ(0)diag (1, β(φ), · · · , β(φ)ℓ−1) = β(φ)Jℓ(0),

diag (1,−β(φ), · · · , (−β(φ))ℓ−1)Ξℓdiag (1, β(φ), · · · , β(φ)ℓ−1) = ±β(φ)Fℓ,

with sign +1 if ℓ/2 is odd and −1 if ℓ/2 is even; and

diag (q,−q, q, . . . ,−q)β(φ)Jℓ(0)diag (−q, q,−q, . . . , q) = β(φ)Jℓ(0),

diag (−q, q,−q, . . . , q)β(φ)Fℓdiag (−q, q,−q, . . . , q) = −β(φ)Fℓ,

where q ∈ H is such that q2 = −1, φ(q) = q and qβ(φ)q = β(φ). (Such q exists: In

terms of Proposition 1.1, q is any normalized eigenvector of T corresponding to the

eigenvalue 1.)

For part (2) take S2 = diag (1, β(φ), . . . , β(φ)ℓ−1.

Part (3). Observe that α is similar to λ, therefore the Jordan form of A3 and of

A′
3 over the quaternions is the same. Thus, the canonical form of the pair (A3, H3)
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under the transformations A3 7→ S−1A3S, H3 7→ SφH3S, where S ∈ H2p×2p is

invertible, must be (A′
3, H

′
3), by Theorem 9.2.

Part (4). Let γ = iτ ′, where τ ′ ∈ R \ {0}. Then, with

S4 = diag (1, β(φ), . . . , β(φ)m−1),

we have

(S4)φΞ(i
ℓ)S4 =





iFℓ if ℓ is odd;

−iFℓ if ℓ is even;

and

S−1
4 Jm(γ)S4 = β(φ)Jm(τ ′).

If τ ′ < 0 we are done. Otherwise, use Remark 9.1 to replace τ ′ with −τ ′.

Proof. Theorem 9.3. By Corollary 2.3 we need to consider only two cases: (1)

A is nilpotent (only one eigenvalue, and it is equal to zero); (2) A has only one

eigenvalue (up to similarity), and this eigenvalue is nonreal. In the second case, we

identify the real linear span of 1 and β(φ) with C (note that φ acts as complex

conjugation in SpanR {1, β(φ)}), and assume by Proposition 4.1 that A and H are

given by their canonical form (9.2). It follows that there exists an A-invariant (H,φ)-

neutral subspace of the dimension required by formula (6.5), because by Theorem

6.2 such subspace exists already among subspaces of Cn×n. Note that by Lemma 9.4

the number produced by (6.5) is the same whether we use the canonical form (9.2)

or the canonical form (6.1) for (A,H). Conversely, there cannot be an A-invariant

(H,φ)-neutral subspace of larger dimension, in view of the same Theorem 6.2 and

Theorem 4.2.

Suppose now A is nilpotent. As in case (2) we see that there exists an A-invariant

(H,φ)-neutral subspace of dimension



∞∑

j=1

⌊ j
2
⌋pj


+min




∑

j odd

p+j ,
∑

j odd

p−j



 ,(9.3)

where pj is the number of Jordan blocks in the Jordan form of A of size j × j, and,

for j odd, among those blocks p+j and p−j are the numbers of blocks that have sign

+1 and −1, respectively, in the sign characteristic of (A,H). It remains to show

that there cannot be an A-invariant (H,φ)-neutral subspace of larger dimension. To

this end observe that by Proposition 1.2, the maximal dimension of an (H,φ)-neutral

subspace is equal to (9.3), for

H = ⊕∞
j=1

(
δj,1β(φ)Fj ⊕ · · · ⊕ δj,pj

β(φ)Fj

)
,
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where δj,q are signs ±1, and for each j, exactly p±j of them are equal to ±1’s.

Uniqueness of MIN (A,H, φ)-subspaces is characterized similarly to Theorem 6.3:

Theorem 9.5. Let A and H be as in Theorem 9.2.

(a) Assume that A has only one eigenvalue in the closed upper complex half-

plane and that this eigenvalue has zero real part and positive imaginary part. Then a

MIN (A,H, φ)-subspace is unique if and only if the signs in the sign characteristic of

(A,H) corresponding to the Jordan blocks of even size in the Jordan form of A are all

the same, and the signs corresponding to the Jordan blocks of odd size in the Jordan

form of A are also all the same.

(b) Assume that A is nilpotent. Then a MIN (A,H, φ)-subspace is unique if and

only if the signs in the sign characteristic of (A,H) corresponding to the Jordan blocks

of odd size in the Jordan form of A are all the same.

Proof. We may assume (Proposition 4.1) that A and H are given in the canonical

form of Theorem 9.2. If (A′
i, H

′
i) is a primitive pair of blocks in (A,H), we associate

with it a pair of blocks (Ai, Hi) as in Lemma 9.4, choosing all signs η in part (1)

to be equal, and choosing all γ’s in part (4) to have imaginary parts of the same

sign, either all positive or all negative. Collecting the blocks (Ai, Hi) in a direct

sum, we obtain a canonical form given by the right hand sides of (6.1) and (6.2) as

in Theorem 6.1. Denote this canonical form by Ĥ and Â, respectively. In view of

Lemma 9.4 and Theorems 6.2 and 9.3, the dimensions of MIN (A,H, φ)-subspaces and

of MIN (Â, Ĥ,∗ )-subspaces is the same. Also, by Proposition 4.1, a MIN (A,H, φ)-

subspace is unique if and only if a MIN (Â, Ĥ,∗ )-subspace is unique among quaternion

subspaces.

We now consider the two parts (a) and (b) separately. Suppose the hypotheses

of (a) hold true. If the condition on sign characteristic of (A,H) in part (a) is

satisfied, then by Lemma 9.4 the condition on the sign characteristic of (Â, Ĥ) given

in Theorem 6.3 is satisfied (here it is essential that the γ’s have imaginary parts of

the same sign). Thus, by Theorem 6.3 a MIN (Â, Ĥ,∗ )-subspace is unique among

complex subspaces. But by Theorem 4.2 the MIN (Â, Ĥ,∗ )-subspace is unique also

among quaternion subspaces, and the uniqueness in Theorem 9.5(a) follows in view

of the observations made in the preceding paragraph. If a MIN (A,H, φ)-subspace is

unique, then a MIN (Â, Ĥ,∗ )-subspace is unique among quaternion subspaces, hence

a fortiori it is unique among complex subspaces (cf. the observations made in the

preceding paragraph), and so the conditions on the sign characteristic of Theorem 6.3

are satisfied for (Â, Ĥ). By Lemma 9.4, these conditions translate to the conditions

on the sign characteristic of (A,H) given in part (a).

Suppose now the hypotheses of (b) hold true. If a MIN (A,H, φ)-subspace is
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unique, then arguing as in the case (a), we obtain that the conditions on the sign

characteristic given in (b) are satisfied. Conversely, if the conditions given in (b) are

satisfied, then an argument similar to that employed in the proof of Theorem 8.5 (the

“if” part) shows that a MIN (A,H, φ)-subspace is unique.

Combining Corollary 2.3 with Theorem 9.5, we obtain:

Theorem 9.6. Let A and H be as in Theorem 9.2. Assume that the conditions

in Theorem 9.5(2) are satisfied (if A is singular), as well as the conditions in Theorem

9.5(1) for every complex pure imaginary nonzero eigenvalue of A with positive imagi-

nary part. Let λ0 = 0 and λℓ+1, . . . , λℓ+s be all distinct pure imaginary eigenvalues of

A with positive imaginary part, and for j = 0, ℓ+1, . . . , ℓ+s, let M̃j be the unique (in

view of Theorem 9.5) MIN (Aj , Hj , φ)-subspace, where Aj and Hj are the restrictions

of A and H, respectively, to the root subspace for A corresponding to λj.

Then all MIN (A,H, φ)-subspaces M̃ are parameterized by the A-invariant sub-

spaces M such that M is contained in the sum of root subspaces for A corresponding

to the eigenvalues with positive real parts. The parametrization is given by the formula

M+̇
(
M[⊥]H ∩R−

)
+̇M̃0+̇M̃ℓ+1+̇ · · · +̇M̃ℓ+s,

where R− is the sum of the root subspaces for A corresponding to the eigenvalues with

negative real parts.

An analogous result holds if “positive real” and “negative real” are interchanged

in the statement of Theorem 9.6.

9.2. Comparison with the complex case (III). Let Ĥ ∈ Cn×n be an invert-

ible skewhermitian matrix, and let Â be (Ĥ,∗ )-Hamiltonian. We may also consider Ĥ

as an n× n quaternion φ-skewhermitian matrix, and Â as a (Ĥ, φ)-Hamiltonian ma-

trix, where φ is a nonstandard involution such that φ(i) = −i. Denoting by γC(Â, Ĥ)

the order of neutrality of (Ĥ, Â) when the matrices are considered over C, and by

γH(Â, Ĥ) the order of neutrality of the same pair of matrices considered over H as

above, we have actually the equality

γC(Â, Ĥ) = γH(Â, Ĥ).(9.4)

Indeed, Lemma 9.4 shows that the canonical forms of (A,H) given by Theorems 6.1

and 9.2 can possibly differ only in the signs corresponding to Jordan blocks of even

sizes associated with eigenvalues with zero real parts. But these signs do not play a

role in the formulas for the order of neutrality ((6.5), Theorem 9.3), so equality (9.4)

follows.

9.3. Comparison with the real case. In this subsection, we compare with real

Hamiltonian matrices. Thus, let H = −HT ∈ Rn×n be invertible, and let A ∈ Rn×n
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be (H, id)-Hamiltonian. Then we have γR(A,H) := γ(A,H) given by Theorem 5.2.

On the other hand, considering A as a (H,φ)-Hamiltonian quaternion matrix, where

φ is a nonstandard involution, we have the order of neutrality γH(A,H) given by

Theorem 9.3. It turns out that

γR(A,H) = γH(A,H)−
r∑

k=1

∣∣∣∣∣∣
∑

j∈Wk

ηjk

∣∣∣∣∣∣
,(9.5)

where r, Wk, ηj,k are defined as in (5.2) (thus, only nonzero pure imaginary eigenvalues

ofA may contribute to the sum in (9.5)).

As in the preceding subsection, to verify formula (9.5), we need to compare the

canonical forms of the pair (A,H) over the reals and over the quaternions. This is

done in the next lemma.

Lemma 9.7. For each of the following quadruples of matrices (Ai, Hi, A
′
i, H

′
i),

i = 1, 2, 3, 4, 5, there exists an invertible quaternion matrix Si such that

S−1
i AiSi = A′

i, (Si)φHiSi = H ′
i :

(1) A1 = J2m+1(0)⊕−J2m+1(0)
T , H1 =

[
0 I2m+1

−I2m+1 0

]
,

A′
1 = β(φ)(J2m+1(0)⊕ J2m+1(0)), H ′

1 = (β(φ)F2m+1)⊕ (−β(φ)F2m+1);

(2)

A2 = J2m(0), H1 = κΞ2m, A′
2 = β(φ)J2m(0), H ′

2 = β(φ)F2m,

where κ = ±1;

(3) A3 = Jℓ(a)⊕−Jℓ(a)
T , H3 =

[
0 Iℓ

−Iℓ 0

]
,

A′
3 = (−Jℓ(a))⊕ Jℓ(a), H ′

3 =

[
0 Fℓ

−Fℓ 0

]
, where a > 0;

(4) A4 = J2k(a± ib)⊕ (−J2k(a± ib)T ), H4 =

[
0 I2k

−I2k 0

]
,

A′
4 = (−Jk(α))⊕ Jk(α)⊕ (−Jk(α)) ⊕ Jk(α),

H ′
4 =

[
0 Fk

−Fk 0

]
⊕
[

0 Fk

−Fk 0

]
,

where a > 0, b > 0, and α = a+ ib;

(5) A5 = J2h(±ib), H5 = η




0 0 · · · 0 Ξh
2

0 0 · · · −Ξh
2 0

...
... . . .

...
...

0 (−1)h−2Ξh
2 · · · 0 0

(−1)h−1Ξh
2 0 · · · 0 0



,
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A′
5 = β(φ)Jh(τ) ⊕ β(φ)Jh(τ), H ′

5 = β(φ)Fh ⊕ (−β(φ)Fh),

where b > 0 and τ = −b.

Note that (Ai, Hi), resp. (A′
i, H

′
i), represent the primitive pairs of blocks of the

canonical form of (A,H) under simultaneous real, resp. quaternion φ-, congruence.

Proof. Part (2) follows from the proof of Part (1) in Lemma 9.4.

For part (3), take

S3 =

[
0 Iℓ

−Fℓ 0

]
.

Part (1). We identify SpanR {1, β(φ)} with C via the identification of β(φ) with

i. Then φ acts as complex conjugation on SpanR {1, β(φ)}. The canonical form

represented by the right hand sides of (6.1) and (6.2) of both pairs (A1, H1) and

(A′
1, H

′
1) is easily seen to be the same, namely,

J2m+1(0)⊕ J2m+1(0), (η1Ξ2m+1(i
2m+1))⊕ η2Ξ2m+1(i

2m+1),

where the signs η1 and η2 must be opposite (otherwise, the complex hermitian matrices

iH1, iH2, and i((η1Ξ2m+1(i
2m+1))⊕ η2Ξ2m+1(i

2m+1))

would not have the same inertia, which is precluded by the inertia theorem). In view

of Theorem 6.1 existence of S1 with the required properties is guaranteed.

Part (4). The complex Jordan form of both A4 and A′
4 is Jk(α)⊕Jk(−α)⊕Jk(α)⊕

Jk(−α). By Theorem 6.1 the H4-Hamiltonian matrix A4 and the H ′
4-Hamiltonian

matrix A′
4 have the same canonical form over the complex numbers, and existence of

S4 follows.

Part (5). Note that A5 and A′
5 are similar over the quaternions, therefore by

Theorem 9.2 there exists invertible S ∈ H2h×2h such that

S−1A5S = A′
5, SφH5S = δ1β(φ)Fh ⊕ δ2β(φ)Fh,(9.6)

where δ1, δ2 are signs ±1. It remains to prove that δ1δ2 = −1.

Suppose first h is odd. It is easy to see by inspection that there is an h-dimensional

(H5, φ)-neutral subspace. By (9.6), the same should hold for δ1β(φ)Fh ⊕ δ2β(φ)Fh,

which in view of Proposition 1.2 is possible only if δ1 6= δ2.
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Second, suppose h is even. We follow the argument in the proof of Lemma 8.9

part (1), the case of even h, where we substitute β(φ) for i, and instead of (8.14) use

the equalities

(−q)Jh(β(φ)b)(qI) = Jh(−β(φ)b),

(qI) · Ξh · (qI) = −Ξh = (−1)h/2−1Ξh(β(φ)
h),(9.7)

where q ∈ H is such that q2 = −1 and qβ(φ) = −β(φ)q. As a result, we can replace

A5 and H5 with

A′′
5 := Jh(−β(φ)b)⊕ Jh(−β(φ)b) and H ′′

5 := Ξh(β(φ)
h)⊕ (−Ξh(β(φ)

h)),

respectively. Finally, to transform the pair of matrices (A′′
5 , H

′′
5 ) to (A5,±H5), use

the matrix

S := diag (1, β(φ), . . . , β(φ)h−1)⊕ diag (1, β(φ), . . . , β(φ)h−1).

This completes the proof of Lemma 9.7.

Proof. (9.5). Lemma 9.7 and Theorem 9.3 show that γH (A,H) = n/2. Now (9.5)

follows from Theorem 5.2.

9.4. Comparison with the complex case (II). If A ∈ C
n×n is (H, id)-

Hamiltonian, where H = −HT ∈ Cn×n is invertible, then by Theorem 7.2 the index

of neutrality of (A,H) is n/2. Let φ be a nonstandard involution on H such that

φ(i) = i. Considering A as an (H,φ)-Hamiltonian quaternion matrix, we obtain that

its index of neutrality is at least n/2. But it cannot exceed n/2, because n/2 is the

maximal dimension of an (H,φ)-neutral subspace, so it must be equal to n/2.

10. Invariant Lagrangian subspaces. Using Corollaries 2.6 and 2.7, com-

bined with the results of Sections 5 through 9, we obtain information regarding in-

variant Lagrangian subspaces. For example:

Theorem 10.1. Let F = H and let φ be the quaternion conjugation. For invert-

ible H = −H∗ ∈ Hn×n and for an (H,∗ )-Hamiltonian matrix X, we have:

(a) There exists an X-invariant (H,∗ )-Lagrangian subspace if and only if, in the

notation of Theorem 8.4,

∑

j odd

p+k,j =
∑

j odd

p−k,j , k = 1, 2, . . . , a,

and the number of nilpotent Jordan blocks of odd sizes in the Jordan form of

X is even.
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(b) Let M+ be the sum of root subspaces of X corresponding to the eigenval-

ues with positive real parts. Then for every A-invariant subspace M ⊆ M+

there exists a unique A-invariant (H,∗ )-Lagrangian subspace M′ containing

M if and only if X has no Jordan blocks of odd size associated with eigenval-

ues having zero real part (including the zero eigenvalue), and for every such

eigenvalue λ0 the signs in the sign characteristic associated with λ0 are all

the same.

Note that the necessary and sufficient condition in part (b) does not exclude the

possibility that different complex eigenvalues λ with different nonnegative imaginary

parts will have different signs in their sign characteristics. Analogous result holds true

if “positive” is replaced by “negative” in Theorem 10.1(b).

The proof is immediate from Theorems 8.4 and 8.5.

In a similar fashion one obtains results concerning invariant Lagrangian subspaces

in settings (I), (II), (III), and (V). We omit the statements of such results.

11. Concluding remarks. The results of this paper can be easily extended to

the situations where the matrix H is singular. If H ∈ Fn×n such that Hφ = −H ,

where φ is a continuous involution of F ∈ {R,C,H}, then a matrix A ∈ Fn×n will be

called (H,φ)-Hamiltonian if the equality HA = −AφH holds. Using the well known

canonical forms of H under the transformation H 7→ SφHS, where S is invertible,

we may assume without loss of generality that H has the form

H =

[
H1 0

0 0

]
, H1 ∈ F

m×m invertible.(11.1)

Decomposing an (H,φ)-Hamiltonian matrix A =

[
A11 A12

A21 A22

]
conformably with

(11.1) we find that A21 = 0 and A22 is (H1, φ)-Hamiltonian. In particular, KerH

is A-invariant. Clearly, an A22-invariant subspace M ⊆ Fm×1 is (H1, φ)-neutral if

and only if the A-invariant subspace F(n−m)×1 ⊕M is (H,φ)-neutral. It follows that

the subspace M is MIN (A22, H1, φ) if and only if the subspace F(n−m)×1 ⊕ M is

MIN (A,H, φ). In particular, the order of neutrality of the pair (A,H) is equal to the

order of neutrality of (A22, H1) plus the dimension of the kernel of H .
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