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COMMUTATORS FROM A HYPERPLANE OF MATRICES∗

CLÉMENT DE SEGUINS PAZZIS†

Abstract. Denote by Mn(K) the algebra of n by n matrices with entries in the field K. A

theorem of Albert and Muckenhoupt states that every trace zero matrix of Mn(K) can be expressed

as AB − BA for some pair (A,B) ∈ Mn(K)2. Assuming that n > 2 and that K has more than 3

elements, it is proved that the matrices A and B can be required to belong to an arbitrary given

hyperplane of Mn(K).
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1. Introduction.

1.1. The problem. In this article, we let K be an arbitrary field. We denote

by Mn(K) the algebra of square matrices with n rows and entries in K, and by sln(K)

its hyperplane of trace zero matrices. The trace of a matrix M ∈ Mn(K) is denoted

by trM . Given two matrices A and B of Mn(K), one sets

[A,B] := AB −BA,

known as the commutator, or Lie bracket, of A and B. Obviously, [A,B] belongs to

sln(K). Although it is easy to see that the linear subspace spanned by the commuta-

tors is sln(K), it is more difficult to prove that every trace zero matrix is actually a

commutator, a theorem which was first proved by Shoda [9] for fields of characteristic

0, and later generalized to all fields by Albert and Muckenhoupt [1]. Recently, excit-

ing new developments on this topic have appeared; most notably, the long-standing

conjecture that the result holds for all principal ideal domains has just been solved by

Stasinski [10] (the case of integers had been worked out earlier by Laffey and Reams

[5]).

Here, we shall consider the following variation of the above problem:

Given a (linear) hyperplane H of Mn(K), is it true that every

trace zero matrix is the commutator of two matrices of H?

∗Received by the editors on July 7, 2013. Accepted for publication on February 2, 2014. Handling

Editor: Raphael Loewy.
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Our first motivation is that this constitutes a natural generalization of the following

result of Thompson:

Theorem 1.1 (Thompson, Theorem 5 of [11]). Assume that n ≥ 3. Then,

[sln(K), sln(K)] = sln(K).

Another motivation stems from the following known theorem:

Theorem 1.2 (Proposition 4 of [8]). Let V be a linear subspace of Mn(K) with

codimV < n− 1. Then, sln(K) = span
{

[A,B] | (A,B) ∈ V2
}

.

Thus, a natural question to ask is whether, in the above situation, every trace

zero matrix is a commutator of two matrices of V . Studying the case of hyperplanes

is an obvious first step in that direction (and a rather non-trivial one, as we shall see).

An additional motivation is the corresponding result for products (instead of

commutators) that we have obtained in [8]:

Theorem 1.3 (Theorem 3 of [8]). Let H be a (linear) hyperplane of Mn(K), with

n > 2. Then, every matrix of Mn(K) splits up as AB for some (A,B) ∈ H2.

1.2. Main result. In the present paper, we shall prove the following theorem:

Theorem 1.4. Assume that #K > 3 and n > 2. Let H be an arbitrary hyperplane

of Mn(K). Then, every trace zero matrix of Mn(K) splits up as AB − BA for some

(A,B) ∈ H2.

Let us immediately discard an easy case. Assume that H does not contain the

identity matrix In. Then, given (A,B) ∈ Mn(K)2, we have

[λIn +A, µIn +B] = [A,B]

for all (λ, µ) ∈ K
2, and obviously there is a unique pair (λ, µ) ∈ K

2 such that λIn +A

and µIn + B belong to H. In that case, it follows from the Albert-Muckenhoupt

theorem that every matrix of sln(K) is a commutator of matrices of H. Thus, the

only case left to consider is the one when In ∈ H. As we shall see, this is a highly non-

trivial problem. Our proof will broadly consist in refining Albert and Muckenhoupt’s

method.

The case n = 2 can be easily described over any field:

Proposition 1.5. Let H be a hyperplane of M2(K).

(a) If H contains I2, then [H,H] is a 1-dimensional linear subspace of M2(K).

(b) If H does not contain I2, then [H,H] = sl2(K).

Proof. Point (b) has just been explained. Assume now that I2 ∈ H. Then, there
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are matrices A and B such that (I2, A,B) is a basis ofH. For all (a, b, c, a′, b′, c′) ∈ K
6,

one finds

[aI2 + bA+ cB , a′I2 + b′A+ c′B] = (bc′ − b′c)[A,B].

Moreover, as A is a 2× 2 matrix and not a scalar multiple of the identity, it is similar

to a companion matrix, whence the space of all matrices which commute with A is

span(I2, A). This yields [A,B] 6= 0. As obviously K =
{

bc′ − b′c | (b, c, b′, c′) ∈ K
4
}

,

we deduce that [H,H] = K [A,B] with [A,B] 6= 0.

1.3. Additional definitions and notation.

• Given a subset X of Mn(K), we set

[X ,X ] :=
{

[A,B] | (A,B) ∈ X 2
}

.

• The canonical basis of Kn is denoted by (e1, . . . , en).

• Given a basis B of Kn, the matrix of coordinates of B in the canonical basis

of Kn is denoted by PB.

• Given i and j in [[1, n]], one denotes by Ei,j the matrix of Mn(K) with all

entries zero except the one at the (i, j)-spot, which equals 1.

• A matrix of Mn(K) is cyclic when its minimal polynomial has degree n or,

equivalently, when it is similar to a companion matrix.

• The n by n nilpotent Jordan matrix is denoted by

Jn =













0 1 (0)
. . .

. . .

. . . 1

(0) 0













.

• A Hessenberg matrix is a square matrix A = (ai,j) ∈ Mn(K) in which ai,j = 0

whenever i > j + 1. In that case, we set

ℓ(A) :=
{

j ∈ [[1, n− 1]] : aj+1,j 6= 0
}

.

• One equips Mn(K) with the non-degenerate symmetric bilinear form

b : (M,N) 7→ tr(MN),

to which orthogonality refers in the rest of the article.

Given A ∈ Mn(K), one sets

adA : M ∈ Mn(K) 7→ [A,M ] ∈ Mn(K),
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which is an endomorphism of the vector space Mn(K); its kernel is the centralizer

C(A) :=
{

M ∈ Mn(K) : AM = MA
}

of the matrix A. Recall the following nice description of the range of adA, which

follows from the rank theorem and the basic observation that adA is skew-symmetric

for the bilinear form (M,N) 7→ tr(MN):

Lemma 1.6. Let A ∈ Mn(K). The range of adA is the orthogonal of C(A), that

is the set of all N ∈ Mn(K) for which

∀B ∈ C(A), tr(BN) = 0.

In particular, if A is cyclic then its centralizer is K[A] = span(In, A, . . . , A
n−1),

whence im(adA) is defined by a set of n linear equations:

Lemma 1.7. Let A ∈ Mn(K) be a cyclic matrix. The range of adA is the set of

all N ∈ Mn(K) for which

∀k ∈ [[0, n− 1]], tr(Ak N) = 0.

Remark 1. Interestingly, the two special cases below yield the strategy for

Shoda’s approach and Albert and Muckenhoupt’s, respectively:

(i) Let D be a diagonal matrix of Mn(K) with distinct diagonal entries. Then, the

centralizer of D is the space Dn(K) of all diagonal matrices, and hence, imadD
is the space of all matrices with diagonal zero. As every trace zero matrix that

is not a scalar multiple of the identity is similar to a matrix with diagonal zero

[4], Shoda’s theorem of [9] follows easily.

(ii) Consider the case of the Jordanmatrix Jn. As Jn is cyclic, Lemma 1.7 yields that

im(adJn
) is the set of all matrices A = (ai,j) ∈ Mn(K) for which

∑n−ℓ

k=1 ak+ℓ,k = 0

for all ℓ ∈ [[0, n − 1]]. In particular, if A = (ai,j) ∈ Mn(K) is Hessenberg, then

this condition is satisfied whenever ℓ > 1, and hence, A ∈ im(adJn
) if and

only if trA = 0 and
∑n−1

k=1 ak+1,k = 0. Albert and Muckenhoupt’s proof is

based upon the fact that, except for a few special cases, the similarity class of

a matrix must contain a Hessenberg matrix A that satisfies the extra equation
∑n−1

k=1 ak+1,k = 0.

2. Proof of the main theorem.

2.1. Proof strategy. Let H be a hyperplane of Mn(K). We already know that

[H,H] = sln(K) if In 6∈ H. Thus, in the rest of the article, we will only consider the

case when In ∈ H.
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Our proof will use three basic but potent principles:

(1) Given A ∈ sln(K), if some A1 ∈ H satisfies A ∈ im(adA1
) and C(A1) 6⊂ H, then

A ∈ [H,H]. Indeed, in that situation, we find A2 ∈ Mn(K) such that A = [A1, A2],

together with some A3 ∈ C(A1) for which A3 6∈ H. Then, the affine line A2+KA3

is included in the inverse image of {A} by adA1
and it has exactly one common

point with H.

(2) Let (A,B) ∈ sln(K)2 and λ ∈ K. If there are matrices A1 and A2 such that

A = [A1, A2] and tr(BA1) = tr(BA2) = 0, then we also have tr((B − λA)A1) =

tr((B − λA)A2) = 0. Indeed, equality A = [A1, A2] ensures that tr(AA1) =

tr(AA2) = 0 (see Lemma 1.6).

(3) Let (A,B) ∈ Mn(K)2 and P ∈ GLn(K). Setting G := {B}⊥, we see that the

assumption A ∈ [G,G] implies PAP−1 ∈ [PGP−1, PGP−1], while PGP−1 =

{PBP−1}⊥.

Now, let us give a rough idea of the proof strategy. One fixes A ∈ sln(K) and

aims at proving that A ∈ [H,H]. We fix a non-zero matrix B such that H = {B}⊥.

Our basic strategy is the Albert-Muckenhoupt method: We try to find a cyclic

matrixM in H such that A ∈ im(adM ); if A 6∈ adM (H), then we learn that C(M) ⊂ H

(see principle (1) above), which yields additional information on B. Most of the time,

we will search for such a cyclic matrix M among the nilpotent matrices with rank

n− 1. The most favorable situation is the one where A is either upper-triangular or

Hessenberg with enough non-zero sub-diagonal entries: In these cases, we search for

a good matrix M among the strictly upper-triangular matrices with rank n − 1 (see

Lemma 2.2). If this method yields no solution, then we learn precious information on

the simultaneous reduction of the endomorphisms X 7→ AX and X 7→ BX . Using

changes of bases, we shall see that either the above method delivers a solution for

a pair (A′, B′) that is simultaneously similar to (A,B), in which case Principle (3)

shows that we have a solution for (A,B), or (In, A,B) is locally linearly dependent

(see the definition below), or else n = 3 and A is similar to λI3+E2,3 for some λ ∈ K.

When (In, A,B) is locally linearly dependent and A is not of that special type, one

uses the classification of locally linearly dependent triples to reduce the situation to

the one where B = In, that is H = sln(K), and in that case the proof is completed by

invoking Theorem 1.1. Finally, the case when A is similar to λI3+E2,3 for some λ ∈ K

will be dealt with independently (Section 2.5) by applying Albert and Muckenhoupt’s

method for well-chosen companion matrices instead of a Jordan nilpotent matrix.

Let us finish these strategic considerations by recalling the notion of local linear

dependence:

Definition 2.1. Given vector spaces U and V , linear maps f1, . . . , fn from U to

V are called locally linearly dependent (in abbreviated form: LLD) when the vectors
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f1(x), . . . , fn(x) are linearly dependent for all x ∈ U .

We adopt a similar definition for matrices by referring to the linear maps that

are canonically associated with these matrices.

2.2. The basic lemma.

Lemma 2.2. Let (A,B) ∈ sln(K)2 be with B = (bi,j) 6= 0, and set H := {B}⊥.

In each one of the following cases, A belongs to [H,H]:

(a) #K > 2, A is upper-triangular and B is not Hessenberg.

(b) #K > 3, A is Hessenberg and there exist i ∈ [[2, n− 1]] and j ∈ [[3, n]] \ {i} such

that {1, i} ⊂ ℓ(A) and bj,1 6= 0.

Proof. We use a reductio ad absurdum, assuming that A 6∈ [H,H]. We write

A = (ai,j).

(a) Assume that #K > 2, that A is upper-triangular and that B is not Hessenberg.

We choose a pair (l, l′) ∈ [[1, n]]
2
such that bl,l′ 6= 0, with l − l′ maximal for such

pairs. Thus, l − l′ > 1. Let (x1, . . . , xn−1) ∈ (K∗)n−1, and set

β :=

∑n−1
k=1 bk+1,k xk

bl,l′
and M :=

n−1
∑

k=1

xk Ek,k+1 − β El′,l.

We see that M is nilpotent of rank n− 1, and hence, it is cyclic. One notes that
M ∈ H. Moreover, tr(AMk) = 0 for all k ≥ 1, because A is upper-triangular
and M is strictly upper-triangular, whereas tr(A) = 0 by assumption. Thus,
A ∈ im(adM ). As it is assumed that A 6∈ adM (H), one deduces from principle (1)
in Section 2.1 that C(M) ⊂ H; in particular tr(M l−l′B) = 0, which, as bi,j = 0
whenever i− j > l − l′, reads

bl−l′+1,1 x1x2 · · ·xl−l′ + bl−l′+2,2 x2x3 · · ·xl−l′+1 + · · ·+ bn,n−l+l′ xn−l+l′ · · · xn−1 = 0.

Here, we have a polynomial with degree at most 1 in each variable xi, and this

polynomial vanishes at every (x1, . . . , xn−1) ∈ (K∗)n−1, with #K
∗ ≥ 2. It follows

that bi,j = 0 for all (i, j) ∈ [[1, n]]
2
with i − j = l − l′, and the special case

(i, j) = (l, l′) yields a contradiction.

(b) Now, we assume that #K > 3, that A is Hessenberg and that there exist i ∈ [[2, n]]

and j ∈ [[3, n]] \ {i} such that {1, i} ⊂ ℓ(A) and bj,1 6= 0. The proof strategy is

similar to the one of case (a), with additional technicalities. One chooses a pair

(l, l′) ∈ [[1, n]]2 such that bl,l′ 6= 0, with l − l′ maximal for such pairs (again, the

assumptions yield l− l′ ≥ j−1 > 1). As a2,1 6= 0, no generality is lost in assuming

that a2,1 = 1. We introduce the formal polynomial

p :=

n−2
∑

k=1

ak+2,k+1 xk ∈ K[x1,x2, . . . ,xn−2].
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Let (x1, . . . , xn−2) ∈ (K∗)n−2, and set

α := p(x1, . . . , xn−2) and β :=
α b2,1 −

∑n−2
k=1 xk bk+2,k+1

bl,l′
·

Finally, set

M := −αE1,2 +
n−2
∑

k=1

xk Ek+1,k+2 + β El′,l.

The definition of M shows that tr(MA) = tr(MB) = 0, and in particular M ∈ H.
Assume now that p(x1, . . . , xn−2) 6= 0. Then, M is cyclic as it is nilpotent with
rank n − 1. As A is Hessenberg, we also see that tr(Mk A) = 0 for all k ≥ 2.
Thus, tr(MkA) = 0 for every non-negative integer k, and hence, Lemma 1.7 yields
A ∈ im(adM ). It ensues that C(M) ⊂ H, and in particular tr(M j−1B) = 0. As
l − l′ > 1, we see that, for all (a, b) ∈ [[1, n]]

2
with b − a ≤ l − l′, and every

integer c > 1, the matrices M c and
(

−αE1,2 +
∑n−2

k=1 xk Ek+1,k+2

)c

have the

same entry at the (a, b)-spot; in particular, for all k ∈ [[2, n− j + 1]], the entry of
M j−1 at the (k, j+k−1)-spot is xk−1xk · · ·xk−3+j , and the entry of M j−1 at the

(1, j)-spot is −αx1 · · ·xj−2; moreover, for all (a, b) ∈ [[1, n]]2 with b − a ≤ ℓ − ℓ′

and b − a 6= j − 1, the entry of M j−1 at the (a, b)-spot is 0. Therefore, equality
tr(M j−1B) = 0 yields

−bj,1 αx1 · · ·xj−2+bj+1,2 x1 · · ·xj−1+bj+2,3 x2 · · ·xj+ · · ·+bn,n−j+1 xn−j · · ·xn−2 = 0.

We conclude that we have established the following identity: For the polynomial

q := p×

(

−bj,1 px1 · · ·xj−2 + bj+1,2 x1 · · ·xj−1 + · · ·+ bn,n−j+1 xn−j · · ·xn−2

)

,

we have

∀(x1, . . . , xn−2) ∈ (K∗)n−2, q(x1, . . . , xn−2) = 0.

Noting that q has degree at most 3 in each variable, we split the discussion into

two main cases.

Case 1. #K > 4.
Then, #K

∗ > 3 and hence q = 0. As p 6= 0 (remember that ai+1,i 6= 0), it follows
that

−bj,1 px1 · · ·xj−2+bj+1,2 x1 · · ·xj−1+bj+2,3 x2 · · ·xj+· · ·+bn,n−j+1 xn−j · · ·xn−2 = 0.

As bj,1 6= 0, identifying the coefficients of the monomials of type x1 · · ·xj−2xk

with k ∈ [[1, n− 2]] \ {j− 1} leads to ak+2,k+1 = 0 for all such k. This contradicts

the assumption that ai+1,i 6= 0.
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Case 2. #K = 4.

A polynomial of K[t] which vanishes at every non-zero element of K must be a

multiple of t3 − 1. In particular, if such a polynomial has degree at most 3, we

may write it as α3 t
3 + α2 t

2 + α1 t + α0, and we obtain α3 = −α0. From there,

we split the discussion into two subcases.

Subcase 2.1. i > j.
Then, q has degree at most 2 in xi−1. Thus, if we see q as a polynomial in
the sole variable xi−1, the coefficients of this polynomial must vanish for every
specialization of x1, . . . ,xi−2,xi, . . . ,xn−2 in K

∗; extracting the coefficients of
(xi−1)

2 leads to the identity

∀(x1, . . . , xi−2, xi, . . . , xn−2) ∈ (K∗)n−3
, −bj,1(ai+1,i)

2
x1 · · ·xj−2+r(x1, . . . , xn−2) = 0,

where r =
∑n−j

k=i−j+1 ai+1,i bj+k,k+1 xk · · ·xi−2xi · · ·xj−2+k. Noting that the de-

gree of −bj,1(ai+1,i)
2 x1 · · ·xj−2 + r is at most 1 in each variable, we deduce that

this polynomial is zero. This contradicts the fact that the coefficient of x1 · · ·xj−2

is −bj,1(ai+1,i)
2, which is non-zero according to our assumptions.

Subcase 2.2. i < j.

Let us fix x1, . . . , xi−2, xi, . . . , xn−2 in K
∗. The coefficient of q(x1, . . . , xi−2,xi−1,

xi, . . . , xn−2) with respect to (xi−1)
3 is

−bj,1(ai+1,i)
2 x1 · · ·xi−2xi · · ·xj−2.

One the other hand, with

s :=
∑

i≤k≤n−j

bj+k,k+1

j−2+k
∏

ℓ=k

xℓ,

the coefficient of q(x1, . . . , xi−2,xi−1, xi, . . . , xn−2) with respect to (xi−1)
0 is

s(x1, . . . , xi−2, xi, . . . , xn−2)
∑

k∈[[1,n−2]]\{i−1}

ak+2,k+1 xk.

Therefore, for all (x1, . . . , xn−2) ∈ (K∗)n−2,

bj,1(ai+1,i)
2 x1 · · ·xi−2xi · · ·xj−2 = s(x1, . . . , xi−2, xi, . . . , xn−2)

×
∑

k∈[[1,n−2]]\{i−1}

ak+2,k+1 xk.

On both sides of this equality, we have polynomials of degree at most 2 in each

variable. As #(K∗) > 2, we deduce the identity

bj,1(ai+1,i)
2 x1 . . .xi−2xi · · ·xj−2 = s×

∑

k∈[[1,n−2]]\{i−1}

ak+2,k+1 xk.

However, on the left-hand side of this identity is a non-zero homogeneous poly-

nomial of degree j − 3, whereas its right-hand side is a homogeneous polynomial

of degree j. There lies a final contradiction.
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2.3. Reduction to the case when In, A,B are locally linearly dependent.

In this section, we use Lemma 2.2 to prove the following result:

Lemma 2.3. Assume that #K > 3, let (A,B) ∈ sln(K)2 be such that B 6= 0, and

set H := {B}⊥. Then, either A ∈ [H,H], or (In, A,B) is LLD, or A is similar to

λI3 + E2,3 for some λ ∈ K.

In order to prove Lemma 2.3, one needs two preliminary results. The first one is

a basic result in the theory of matrix spaces with rank bounded above.

Lemma 2.4 (Lemma 2.4 of [6]). Let m,n, p, q be positive integers, and V be a

linear subspace of Mm+p,n+q(K) in which every matrix splits up as

M =

[

A(M) ?

0 B(M)

]

,

where A(M) ∈ Mm,n(K) and B(M) ∈ Mp,q(K). Assume that there is an integer r

such that ∀M ∈ V , rk(M) ≤ r < #K, and set s := max{rk(A(M)) | M ∈ V} and

t := max{rk(B(M)) | M ∈ V}. Then, s+ t ≤ r.

Lemma 2.5. Assume that #K ≥ 3. Let V be a vector space over K and u be an

endomorphism of V that is not a scalar multiple of the identity. Then, there are two

linearly independent non-eigenvectors of u.

Proof. As u is not a scalar multiple of the identity, some vector x ∈ V \ {0} is not

an eigenvector of u. Then, the 2-dimensional subspace P := span(x, u(x)) contains x.

As u|P is not a scalar multiple of the identity, u stabilizes at most two 1-dimensional

subspaces of P . As #K > 2, there are at least four 1-dimensional subspaces of P ,

whence at least two of them are not stable under u. This proves our claim.

Now, we are ready to prove Lemma 2.3.

Proof of Lemma 2.3. Throughout the proof, we assume that A 6∈ [H,H] and that

there is no scalar λ such that A is similar to λI3 + E2,3. Our aim is to show that

(In, A,B) is LLD.

Note that, for all P ∈ GLn(K), no pair (M,N) ∈ Mn(K)2 satisfies both [M,N ] =

P−1AP and tr((P−1BP )M) = tr((P−1BP )N) = 0.

Let us say that a vector x ∈ K
n has order 3 when rk(x,Ax,A2x) = 3. Let

x ∈ K
n be of order 3. Then, (x,Ax,A2x) may be extended into a basis B =

(x1, x2, x3, x4, . . . , xn) of Kn such that A′ := P−1
B

APB is Hessenberg1. Moreover,

one sees that {1, 2} ⊂ ℓ(A′). Applying point (a) of Lemma 2.2, one obtains that the

1One finds such a basis by induction as follows: One sets (x1, x2, x3) := (x, Ax,A2x) and, given

k ∈ [[4, n]] such that x1, . . . , xk−1 are defined, one sets xk := Axk−1 if Axk−1 6∈ span(x1, . . . , xk−1),

otherwise one chooses an arbitrary vector xk ∈ K
n \ span(x1, . . . , xk−1).
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entries in the first column of P−1
B

B PB are all zero starting from the third one, which

means that Bx ∈ span(x,Ax).

Let now x ∈ K
n be a vector that is not of order 3. If x and Ax are linearly

dependent, then x, Ax, Bx are linearly dependent. Thus, we may assume that

rk(x,Ax) = 2 and A2x ∈ span(x,Ax). We split K
n = span(x,Ax) ⊕ F and we

choose a basis (f3, . . . , fn) of F . For B := (x,Ax, f3, . . . , fn), we now have, for some

(α, β) ∈ K
2 and some N ∈ Mn−2(K),

P−1
B

APB =

[

K ?

0 N

]

, where K =

[

0 α

1 β

]

.

From there, we split the discussion into several cases, depending on the form of N

and its relationship with K.

Case 1. N 6∈ KIn−2.

Then, there is a vector y ∈ K
n−2 for which y and Ny are linearly independent.

Denoting by z the vector of F with coordinate list y in (f3, . . . , fn), one obtains

rk(x,Ax, z, Az) = 4, and hence, one may extend (x,Ax, z, Az) into a basis B′ of Kn

such that A′ := P−1
B′ APB′ is Hessenberg with {1, 3} ⊂ ℓ(A′). Point (b) of Lemma 2.2

shows that, in the first column of P−1
B′ BPB′ , all the entries must be zero starting from

the fourth one, yielding Bx ∈ span(x,Ax, z). As N 6∈ KIn−2, we know from Lemma

2.5 that we may find another vector z′ ∈ F \ Kz such that rk(x,Ax, z′, Az′) = 4,

which yields Bx ∈ span(x,Ax, z′). Thus, Bx ∈ span(x,Ax, z) ∩ span(x,Ax, z′) =

span(x,Ax).

Case 2. N = λ In−2 for some λ ∈ K.

Subcase 2.1. λ is not an eigenvalue of K.

Then, G := Ker(A− λIn) has dimension n− 2. For z ∈ K
n, denote by pz the monic

generator of the ideal {q ∈ K[t] : q(A)z = 0}. Recall that, given y and z in K
n

for which py and pz are mutually prime, one has py+z = pypz. In particular, as px

has degree 2, pz has degree 3 for every z ∈ (Kx ⊕ G) \ (Kx ∪ G), that is every z in

(Kx⊕G) \ (Kx ∪G) has order 3; thus, rk(z, Az,Bz) ≤ 2 for all such z. Moreover, it

is obvious that rk(z, Az,Bz) ≤ 2 for all z ∈ G.

Let us choose a non-zero linear form ϕ on Kx⊕G such that ϕ(x) = 0. For every

z ∈ Kx⊕G, set

M(z) =

[

ϕ(z) 0 0 0

0 z Az Bz

]

∈ Mn+1,4(K).

Then, with the above results, we know that rk(M(z)) ≤ 3 for all z ∈ Kx⊕G. On the

other hand, max{rk(ϕ(z)) | z ∈ (Kx ⊕ G)} = 1. Using Lemma 2.4, we deduce that

rk(z, Az,Bz) ≤ 2 for all z ∈ Kx⊕G. In particular, rk(x,Ax,Bx) ≤ 2.
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Subcase 2.2. λ is an eigenvalue of K with multiplicity 1.

Then, there are eigenvectors y and z of A, with distinct corresponding eigenvalues,

such that x = y + z. Thus, (y, z) may be extended into a basis B′ of Kn such that

P−1
B′ APB′ is upper-triangular. It follows from point (a) of Lemma 2.2 that P−1

B′ BPB′

is Hessenberg, and in particular By ∈ span(y, z). Starting from (z, y) instead of (y, z),

one finds Bz ∈ span(y, z). Therefore, all the vectors y + z, A(y + z) and B(y + z)

belong to the 2-dimensional space span(y, z), which yields rk(x,Ax,Bx) ≤ 2.

Subcase 2.3. λ is an eigenvalue of K with multiplicity 2.

Then, the characteristic polynomial of A is (t− λ)n.

• Assume that n ≥ 4. One chooses an eigenvector y of A in span(x,Ax), so

that (y, x) is a basis of span(x,Ax). Then, one chooses an arbitrary non-

zero vector u ∈ F , and one extends (y, x, u) into a basis B′ of K
n such

that P−1
B′ APB′ is upper-triangular. Applying point (a) of Lemma 2.2 once

more yields Bx ∈ span(y, x, u) = span(x,Ax, u). As n ≥ 4, we can choose

another vector v ∈ F \Ku, and the above method yields Bx ∈ span(x,Ax, v),

while x,Ax, u, v are linearly independent. Therefore, Bx ∈ span(x,Ax, u) ∩

span(x,Ax, v) = span(x,Ax).

• Finally, assume that n = 3. As A is not similar to λI3 + E2,3, the only

remaining option is that rk(A−λI3) = 2. Then, we can find a linear form ϕ on

K
3 with kernel Ker(A−λI3)

2. Every vector z ∈ K
3 \Ker(A−λI3)

2 has order

3. Therefore, for every z ∈ K
3, either ϕ(z) = 0 or rk(z, Az,Bz) ≤ 2. With

the same line of reasoning as in Subcase 2.1, we obtain rk(x,Ax,Bx) ≤ 2.

This completes the proof.

Thus, only two situations are left to consider: The one where (In, A,B) is LLD,

and the one where A is similar to λI3 + E2,3 for some λ ∈ K. They are dealt with

separately in the next two sections.

2.4. The case when (In, A,B) is locally linearly dependent. In order to

analyze the situation where (In, A,B) is LLD, we use the classification of LLD triples

over fields with more than 2 elements (this result is found in [7]; prior to that, the

result was known for infinite fields [2] and for fields with more than 4 elements [3]).

Theorem 2.6 (Classification theorem for LLD triples). Let (f, g, h) be an LLD

triple of linear operators from a vector space U to a vector space V , where the un-

derlying field has more than 2 elements. Assume that f, g, h are linearly independent

and that Ker(f) ∩Ker(g) ∩Ker(h) = {0} and im(f) + im(g) + im(h) = V . Then:

(a) Either there is a 2-dimensional subspace P of span(f, g, h) and a 1-dimensional

subspace D of V such that im(u) ⊂ D for all u ∈ P;

(b) Or dimV ≤ 2;
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(c) Or dimU = dimV = 3 and there are bases of U and V in which the operator space

span(f, g, h) is represented by the space A3(K) of all 3× 3 alternating matrices.

Corollary 2.7. Assume that #K > 2, and let A and B be matrices of Mn(K),

with n ≥ 3, such that (In, A,B) is LLD. Then, either In, A,B are linearly dependent,

or there is a 1-dimensional subspace D of Kn and scalars λ and µ such that im(A−

λIn) = D = im(B − µIn).

Proof. Assume that In, A,B are linearly independent. As KerIn = {0} and

imIn = K
n, we are in the position to use Theorem 2.6. Moreover, rkIn > 2 discards

Cases (b) and (c) altogether (as no 3×3 alternating matrix is invertible). Therefore, we

have a 2-dimensional subspace P of span(In, A,B) and a 1-dimensional subspace D of

K
n such that imM ⊂ D for all M ∈ P . In particular In 6∈ P , whence span(In, A,B) =

KIn ⊕ P . This yields a pair (λ,M1) ∈ K × P such that A = λIn +M1, and hence,

im(A − λIn) ⊂ D. As A − λIn 6= 0 (we have assumed that In, A,B are linearly

independent), we deduce that im(A− λIn) = D. Similarly, one finds a scalar µ such

that im(B − µIn) = D.

From there, we can prove the following result as a consequence of Theorem 1.1:

Lemma 2.8. Assume that #K > 3 and n ≥ 3. Let (A,B) ∈ sln(K)2 be with

B 6= 0, and set H := {B}⊥. Assume that (In, A,B) is LLD and that A is not similar

to λI3 + E2,3 for some λ ∈ K. Then, A ∈ [H,H].

Proof. We use a reductio ad absurdum by assuming that A 6∈ [H,H]. By Corollary

2.7, we can split the discussion into two main cases.

Case 1. In, A,B are linearly dependent.

Assume first that A ∈ KIn. Then, P
−1AP is upper-triangular for every P ∈ GLn(K),

and hence, Lemma 2.2 yields that P−1BP is Hessenberg for every such P . In par-

ticular, let x ∈ K
n \ {0}. For every y ∈ K

n \ Kx, we can extend (x, y) into a basis

(x, y, y3, . . . , yn) of Kn, and hence, we learn that Bx ∈ span(x, y). Using the basis

(x, y3, y, y4, . . . , yn), we also find Bx ∈ span(x, y3), whence Bx ∈ Kx. Varying x, we

deduce that B ∈ KIn, whence H = sln(K). Theorem 1.1 then yields A ∈ [H,H],

contradicting our assumptions.

Assume now that A 6∈ KIn. Then, there are scalars λ and µ such that B = λA+

µIn. By Theorem 1.1, there are trace zero matrices M and N such that A = [M,N ].

Thus, tr((B − λA)M) = tr((B − λA)N) = 0. Using principle (2) of Section 2.1, we

deduce that (M,N) ∈ H2, whence A ∈ [H,H].

Case 2. In, A,B are linearly independent.

By Corollary 2.7, there are scalars λ and µ together with a 1-dimensional subspace

D of Kn such that im(A− λIn) = im(B − µIn) = D. In particular, A− λIn has rank
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1, and hence, it is diagonalisable or nilpotent. In any case, A is triangularizable; in

the second case, the assumption that A is not similar to λI3 + E2,3 leads to n ≥ 4.

Let x be an eigenvector of A. Then, we can extend x into a triple (x, y, z) of

linearly independent eigenvectors of A (this uses n ≥ 4 in the case when A − λIn is

nilpotent). Then, we further extend this triple into a basis (x, y, z, y4, . . . , yn) in which

v 7→ Av is upper-triangular. Point (a) in Lemma 2.2 yields Bx ∈ span(x, y). With the

same line of reasoning, Bx ∈ span(x, z), and hence, Bx ∈ span(x, y)∩span(x, z) = Kx.

Thus, we have proved that every eigenvector of A is an eigenvector of B. In particular,

Ker(A − λIn) is stable under v 7→ Bv, and the resulting endomorphism is a scalar

multiple of the identity. This provides us with some α ∈ K such that (B −αIn)z = 0

for all z ∈ Ker(A − λIn). In particular, α is an eigenvalue of B with multiplicity at

least n− 1, and since µ shares this property and n < 2(n− 1), we deduce that α = µ.

As rk(A − λIn) = rk(B − µIn) = 1, we deduce that Ker(A − λIn) = Ker(B − µIn).

Thus, A − λIn and B − µIn are two rank 1 matrices with the same kernel and the

same range, and hence, they are linearly dependent. This contradicts the assumption

that In, A,B be linearly independent, thereby completing the proof.

2.5. The case when A = λI3 + E2,3.

Lemma 2.9. Assume that #K > 2. Let λ ∈ K. Assume that A := λI3 +E2,3 has

trace zero. Let B ∈ sl3(K) \ {0}, and set H := {B}⊥. Then, A ∈ [H,H].

Proof. We assume that A 6∈ [H,H] and search for a contradiction. By point (a) in

Lemma 2.2, for every basisB = (x, y, z) of K3 for which P−1
B

APB is upper-triangular,

we find Bx ∈ span(x, y). In particular, for every basis (x, y) of span(e1, e2), the triple

(x, y, e3) qualifies, whence Bx ∈ span(x, y) = span(e1, e2). It follows that span(e1, e2)

is stable under B. As z 7→ Az is also represented by an upper-triangular matrix in

the basis (e2, e3, e1), one finds Be2 ∈ span(e2, e3), whence Be2 ∈ Ke2. Thus, B has

the following shape:

B =





a 0 d

b c e

0 0 f



 .

From there, we split the discussion into two main cases.

Case 1. λ = 0.

Using (e2, e1, e3) as our new basis, we are reduced to the case when

A =





0 0 1

0 0 0

0 0 0



 and B =





? ? ?

0 ? ?

0 0 ?



 .

Then, one checks that [J2, E2,3] = A, and tr(J2B) = 0 = tr(E2,3B). This yields
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A ∈ [H,H], contradicting our assumptions.

Case 2. λ 6= 0.

As we can replace A with λ−1A, which is similar to I3 +E2,3, no generality is lost in

assuming that λ = 1. According to principle (2) of Section 2.1, no further generality

is lost in subtracting a scalar multiple of A from B, to the effect that we may assume

that f = 0 and B 6= 0 (if B is a scalar multiple of A, then the same principle combined

with the Albert-Muckenhoupt theorem shows that A ∈ [H,H]). As trB = 0, we find

that

B =





a 0 d

b −a e

0 0 0



 .

Note finally that K must have characteristic 3 since trA = 0.

Subcase 2.1. b 6= 0.

As the problem is unchanged in multiplying B with a non-zero scalar, we can assume

that b = 1. Assume furthermore that d 6= 0. Let (α, β) ∈ K
2, and set

C :=





0 1 0

α 0 1

β 0 0



 .

Note that C is a cyclic matrix and

C2 =





α 0 1

β α 0

0 β 0



 .

Thus, tr(AC) = 0, tr(BC) = βd + 1, tr(AC2) = 2α+ β = β − α and tr(BC2) = eβ.

As d 6= 0, we can set β := −d−1 and α := β, so that β 6= 0 and tr(A) = tr(AC) =

tr(AC2) = 0. Thus, A ∈ im(adC) by Lemma 1.7, and on the other hand C ∈ H. As

A 6∈ [H,H], it follows that C(C) ⊂ H, and hence, tr(BC2) = 0. As β 6= 0, this yields

e = 0.

From there, we can find a non-zero scalar t such that d+t a 6= 0 (because #K > 2).

In the basis (e1, e2, e3 + t e1), the respective matrices of z 7→ Az and z 7→ Bz are

I3 + E2,3 and





a 0 d+ t a

1 −a t

0 0 0



 .

As d+ t a 6= 0 and t 6= 0, we find a contradiction with the above line of reasoning.
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Therefore, d = 0. Then, the matrices of z 7→ Az and z 7→ Bz in the basis

(e1, e2, e3 + e1) are, respectively, I3 + E2,3 and





a 0 a

1 −a e+ 1

0 0 0



. Applying the

above proof in that new situation yields a = 0. Therefore,

B =





0 0 0

1 0 e

0 0 0



 .

With (e3 − e e1, e1, e2) as our new basis, we are finally left with the case when

A =





1 0 0

0 1 0

1 0 1



 and B =





0 0 0

0 0 0

0 1 0



 .

Set

C :=





1 0 1

1 1 0

0 1 0



 ,

and note that C is cyclic and

C2 =





1 1 1

−1 1 1

1 1 0



 .

One sees that tr(A) = tr(AC) = tr(AC2) = 0, and hence, A ∈ im(adC) by Lemma

1.7. On the other hand, tr(BC) = 0. As A 6∈ [H,H], one should find tr(BC2) = 0,

which is obviously false. Thus, we have a final contradiction in that case.

Subcase 2.2. b = 0.

Assume furthermore that a 6= 0. Then, in the basis (e1 + e2, e2, e3), the respective

matrices of z 7→ Az and z 7→ Bz are I3 +E2,3 and





a 0 d

−2a −a e − d

0 0 0



. This sends

us back to Subcase 2.1, which leads to another contradiction. Therefore, a = 0.

If d = 0, then we see that B ∈ span(In, A), and hence, principle (2) from Section

2.1 combined with Theorem 1.1 shows that A ∈ [H,H], contradicting our assumptions.

Thus, d 6= 0. Replacing the basis (e1, e2, e3) with (d e1 + e e2, e2, e3), we are reduced

to the case when

A =





1 0 0

0 1 1

0 0 1



 and B =





0 0 1

0 0 0

0 0 0



 .
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In that case, we set

C :=





0 0 0

1 0 0

0 1 −1





which is a cyclic matrix with

C2 =





0 0 0

0 0 0

1 −1 1



 ,

so that tr(A) = tr(AC) = tr(AC2) = 0 and tr(BC) = 0. As tr(BC2) 6= 0, this

contradicts again the assumption that A 6∈ [H,H]. This final contradiction shows

that the initial assumption A 6∈ [H,H] was wrong.

2.6. Conclusion. Let A ∈ Mn(K) and B ∈ Mn(K) \ {0}, where n ≥ 3 and

#K ≥ 4. Set H := {B}⊥ and assume that tr(A) = 0 and tr(B) = 0. If A is

similar to λI3 + E2,3, then we know from Lemma 2.9 and principle (3) of Section

2.1 that A ∈ [H,H]. Otherwise, if (In, A,B) is LLD then we know from Lemma 2.8

that A ∈ [H,H]. Using Lemma 2.3, we conclude that A ∈ [H,H] in every possible

situation. This completes the proof of Theorem 1.4.
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