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SPECTRAL CHARACTERIZATIONS OF PROPELLER GRAPHS∗
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Abstract. A propeller graph is obtained from an ∞-graph by attaching a path to the vertex

of degree four, where an ∞-graph consists of two cycles with precisely one common vertex. In this

paper, it is proved that all propeller graphs are determined by their Laplacian spectra as well as

their signless Laplacian spectra.
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1. Introduction. All graphs considered in the paper are undirected and simple.

Let G = (V (G), E(G)) be a graph with vertex set V (G) = {v1, v2, . . . , vn} and edge

set E(G). The adjacency matrix of G, denoted by A(G), is the n × n matrix whose

(i, j)-entry is 1 if vi and vj are adjacent and 0 otherwise. Denote by di = dG(vi) the

degree of vi in G, and by

deg(G) = (d1, d2, . . . , dn)

the degree sequence of G. The Laplacian matrix of G is defined as L(G) = D(G) −
A(G), where D(G) is the diagonal matrix with diagonal entries d1, d2, . . . , dn. We call

Q(G) = D(G) + A(G) the signless Laplacian matrix of G. Denote the eigenvalues

of A(G), L(G) and Q(G) by λ1 ≥ λ2 ≥ · · · ≥ λn, µ1 ≥ µ2 ≥ · · · ≥ µn and ν1 ≥
ν2 ≥ · · · ≥ νn, respectively. The collection of eigenvalues of A(G) together with

multiplicities are called the A-spectrum of G. Two graphs are said to be A-cospectral

if they have the same A-spectrum. A graph is called an A-DS graph if it is determined

by its A-spectrum, meaning that there exists no other graph that is non-isomorphic

to it but A-cospectral with it. Similar terminology will be used for L(G) and Q(G).

So we can speak of L-spectrum, Q-spectrum, L-cospectral graphs, Q-cospectral graphs,

L-DS graphs and Q-DS graphs.

Which graphs are determined by their spectra? This is a classical question in

spectral graph theory which was raised by Günthard and Primas [12] in 1956 with
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Fig. 1.1. A propeller graph.

motivations from chemistry. This problem is also related to complexity theory. It

is well-known that the complexity of the problem of determining graph isomorphism

is unknown [13]. Since checking whether two graphs are cospectral can be done in

polynomial time, the isomorphism problem can be reduced to the one of checking

isomorphism between cospectral graphs. Up to now, many graphs have been proved

to be determined by their (A, L or/and Q) spectra [2, 3, 5, 8, 10, 11, 17, 19, 20,

21, 22, 24, 28, 29]. However, the problem of determining A-DS (respectively, L-

DS, Q-DS) graphs is still far from being completely solved. Therefore, finding new

families of DS graphs deserves further attention in order to enrich our database of DS

graphs. Unfortunately, even for some simple-looking graphs, it is often challenging to

determine whether they are A-DS, L-DS or Q-DS.

In this paper, we give a new family graphs that are both L-DS and Q-DS. We

define a propeller graph (see Fig. 1.1) as a graph obtained from an ∞-graph by

attaching a path to the vertex of degree 4, where an ∞-graph is a graph consisting

of two cycles with exactly one vertex in common [28]. The main results of this paper

are as follows.

Theorem 1.1. All propeller graphs are determined by their L-spectra.

Theorem 1.2. All propeller graphs are determined by their Q-spectra.

Since the L-spectrum of a graph determines that of its complement [18], Theorem

1.1 implies that the complement of any propeller graph is also determined by its L-

spectrum.

We will prove Theorems 1.1 and 1.2 in Sections 3 and 4, respectively.
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2. Preliminaries. In this section, we collect some known results that will be

used in the proof of Theorems 1.1 and 1.2. Denote by

φ(M) = φ(M ;x) = det(xI −M) = l0x
n + l1x

n−1 + · · ·+ ln

the characteristic polynomial of an n×n matrix M , where I is the identity matrix of

the same size. In particular, for a graph G, we call φ(A(G)) (respectively, φ(L(G)),

φ(Q(G))) the adjacency (respectively, Laplacian, signless Laplacian) characteristic

polynomial of G.

Denote by n3(G) the number of triangles in G.

Lemma 2.1. [23] Let G be a graph with n vertices and m edges, and let deg(G) =

(d1, d2, . . . , dn) be its degree sequence. Then the first four coefficients in φ(L(G)) are:

l0 = 1, l1 = −2m, l2 = 2m2 −m− 1

2

n
∑

i=1

d2i ,

l3 =
1

3

(

−4m3 + 6m2 + 3m

n
∑

i=1

d2i −
n
∑

i=1

d3i − 3

n
∑

i=1

d2i + 6n3(G)

)

.

The following result follows from [10] and Lemma 2.1.

Lemma 2.2. Let G be a graph. The following can be determined by its L-spectrum:

(a) the number of vertices of G;

(b) the number of edges of G;

(c) the number of components of G;

(d) the number of spanning trees of G.

Lemma 2.3. [5] Let u be a vertex of G, N(u) the set of vertices of G adjacent to

u, and C(u) the set of cycles of G containing u. Then,

φ(A(G);x) = xφ(A(G − u);x)−
∑

v∈N(u)

φ(A(G − u− v);x)

−2
∑

Z∈C(u)

φ(A(G − V (Z));x).

Lemma 2.4. [28] Let G be a graph with n vertices, m edges and degree sequence

deg(G) = (d1, d2, . . . , dn). If a graph H with degree sequence deg(H) = (d1 + t1, d2 +

t2, . . . , dn + tn) is L-cospectral (respectively, Q-cospectral) with G, then t1, t2, . . . , tn
are integers such that

n
∑

i=1

ti = 0 and

n
∑

i=1

(t2i + 2diti) = 0.
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Denote by Pn and Cn the path and cycle on n vertices, respectively. Let Bn

be the matrix of order n obtained from L(Pn+1) by deleting the row and column

corresponding to one end vertex of Pn+1, and Un be the matrix of order n obtained

from L(Pn+2) by deleting the rows and columns corresponding to the two end vertices

of Pn+2.

Lemma 2.5. [16] Set φ(L(P0)) = 0, φ(B0) = 1, φ(U0) = 1. Then

(a) φ(L(Pn+1)) = (x − 2)φ(L(Pn))− φ(L(Pn−1)), (n ≥ 1);

(b) xφ(Bn) = φ(L(Pn+1)) + φ(L(Pn));

(c) φ(L(Pn)) = xφ(Un−1), (n ≥ 1);

(d) φ(L(Cn)) =
1
x
φ(L(Pn+1))− 1

x
φ(L(Pn−1)) + 2(−1)n+1, (n ≥ 3).

Combining these and φ(L(P1); 4) = 4, we obtain the following formulas.

Proposition 2.6. (a) φ(L(Pn); 4) = 4n; (b) φ(Bn; 4) = 2n+1; (c) φ(Un; 4) =

n+ 1; (d) φ(L(Cn); 4) = 2 + 2(−1)n+1.

For a vertex v of G, let Lv(G) denote the principal sub-matrix of L(G) formed

by deleting the row and column corresponding to v.

Lemma 2.7. [15] Let G1 and G2 be vertex-disjoint graphs. Let G be the graph

obtained by taking the union of G1 and G2 and then adding an edge between a vertex

u of G1 and a vertex v of G2. Then

φ(L(G)) = φ(L(G1))φ(L(G2))− φ(L(G1))φ(Lv(G2))− φ(L(G2))φ(Lu(G1)).

Lemma 2.8. [7, 26] Let G be a graph with n vertices, m edges and n3(G) triangles.

Let Tk =
∑n

i=1 ν
k
i be the kth Q-spectral moment of G, k = 0, 1, 2, . . . Then

T0 = n, T1 =

n
∑

i=1

di = 2m, T2 = 2m+

n
∑

i=1

d2i , T3 = 6n3(G) + 3

n
∑

i=1

d2i +

n
∑

i=1

d3i .

From Lemma 2.8, we can easily get the following result.

Lemma 2.9. Let G and H be Q-cospectral graphs. Then

(a) G and H have the same number of vertices;

(b) G and H have the same number of edges;

(c)
∑

v∈V (G)

dG(v)
2 =

∑

v∈V (H)

dH(v)2;

(d) 6n3(G) +
∑

v∈V (G)

dG(v)
3 = 6n3(H) +

∑

v∈V (H)

dH(v)3.
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Let L(G) denote the line graph of a graph G. Let S(G) be the subdivision graph

of G obtained by replacing each edge of G by a path of length two. The Q-spectrum

of a graph can be exactly expressed by the A-spectrum of its line and subdivision

graphs [4, 7, 9], and the following results can be found in [4, 7, 28].

Lemma 2.10. If two graphs G and H are Q-cospectral, then L(G) and L(H) are

A-cospectral.

Lemma 2.11. Two graphs G and H are Q-cospectral if and only if S(G) and

S(H) are A-cospectral.

Lemma 2.12. [6] Let G be a graph with n vertices and m edges. Let n4(G) be the

number of subgraphs of G isomorphic to C4, and xk the number of vertices of degree

k in G. Then

∑

i

λ4
i = 8n4(G) +

∑

k

kxk + 4
∑

k≥2

k(k − 1)

2
xk.

A spanning subgraph of G whose components are trees or odd-unicyclic graphs

is called a TU -subgraph of G [7]. Suppose that a TU -subgraph GTU of G contain c

unicyclic graphs and trees T1, T2, . . . , Ts. The weight W (GTU ) of GTU is defined by

W (GTU ) = 4c
s
∏

i=1

(1 + |E(Ti)|).

Then the coefficients of φ(Q(G)) can be expressed in terms of the weights of TU -

subgraphs of G as follows.

Lemma 2.13. [7] Let φ(Q(G)) = q0x
n + q1x

n−1 + · · ·+ qn. Then q0 = 1 and

qj =
∑

GTU
j

(−1)jW (GTU
j ), j = 1, 2, . . . , n,

where the summation runs over all TU -subgraphs GTU
j of G with j edges.

3. Proof of Theorem 1.1. Throughout this section, we use G to denote a

propeller graph with n = p + q + k − 1 vertices as shown in Fig. 1.1. To prove

Theorem 1.1, we first compute the Laplacian characteristic polynomial of G. Before

proceeding, we need the following results.

Proposition 3.1. Let G1 and G2 be vertex-disjoint graphs. Let G1 · G2 be the

coalescence obtained from G1 and G2 by identifying a vertex u of G1 with a vertex v

of G2. Then

φ(L(G1 ·G2);x) = φ(L(G1))φ(Lv(G2)) + φ(Lu(G1))φ(G2)− xφ(Lu(G1))φ(Lv(G2)).
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Proof. The coalescence G1 ·G2 has Laplacian matrix





Lu(G1) u O

uT dG1
(u) + dG2

(v) v

OT vT Lv(G2)



 ,

where

(

Lu(G1) u

uT dG1
(u)

)

and

(

dG2
(v) v

vT Lv(G2)

)

are the Laplacian matrices of G1

and G2 respectively, and O is the zero matrix of appropriate size. Then

φ(L(G1 ·G2);x) =

∣

∣

∣

∣

∣

∣

xI − Lu(G1) −u O

−uT x− dG1
(u)− dG2

(v) −v

OT −vT xI − Lv(G2)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

xI − Lu(G1) −u O

−uT x− dG1
(u) −v

OT 0 xI − Lv(G2)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

xI − Lu(G1) 0 O

−uT x− dG2
(v) −v

OT −vT xI − Lv(G2)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

xI − Lu(G1) 0 O

−uT −x −v

OT 0 xI − Lv(G2)

∣

∣

∣

∣

∣

∣

,

and the result follows.

Proposition 3.2. Let Gp,q be an ∞-graph consisting of cycles Cp and Cq with

a common vertex u. Then

φ(L(Gp,q);x) = (x− 4)φ(Up−1)φ(Uq−1)− 2φ(Uq−1) (φ(Up−2) + (−1)p)

−2φ(Up−1) (φ(Uq−2) + (−1)q)) ,(3.1)

φ(L(Gp,q); 4) = 2(p+ q)− 4pq − 2 ((−1)qp+ (−1)pq) .(3.2)

Proof. Lemma 2.5 implies that

φ(L(Cn)) =
1

x
φ(L(Pn+1))−

1

x
φ(L(Pn−1)) + 2(−1)n+1

=
1

x

(

(x− 2)φ(L(Pn))− φ(L(Pn−1))
)

− 1

x
φ(L(Pn−1)) + 2(−1)n+1

=
x− 2

x
φ(L(Pn))−

2

x
φ(L(Pn−1)) + 2(−1)n+1

= (x − 2)φ(Un−1)− 2φ(Un−2) + 2(−1)n+1.(3.3)
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Note that Gp,q is a coalescence of Cp and Cq. Thus, we obtain (3.1) by using (3.3),

φ(Lu(Cq)) = φ(Uq−1), φ(Lu(Cp)) = φ(Up−1) and Proposition 3.1. (3.2) is an imme-

diate consequence of (3.1) and Proposition 2.6.

Proposition 3.3. Let G be a propeller graph with n = p+ q + k − 1 vertices as

shown in Fig. 1.1. Then

φ(L(G);x) = φ(L(Gp,q))φ(L(Pk))− φ(L(Gp,q))φ(Bk−1)− φ(L(Pk))φ(Up−1)φ(Uq−1),

(3.4)

φ((L(G); 4) = 2(2k + 1) (p+ q − (−1)qp− (−1)pq)− 4pq(3k + 1).

Proof. We obtain (3.4) by using Lemma 2.7 and φ(Lu(Gp,q)) = φ(Up−1)φ(Uq−1).

From (3.2) and (3.4) and Proposition 2.6, we have

φ(L(G); 4) = φ(L(Gp,q); 4)φ(L(Pk); 4)− φ(L(Gp,q); 4)φ(Bk−1; 4)

−φ(L(Pk); 4)φ(Up−1; 4)φ(Uq−1; 4)

= (2(p+ q)− 4pq − 2((−1)qp+ (−1)pq)) (4k − (2k − 1))− 4kpq

= 2(2k + 1) (p+ q − (−1)qp− (−1)pq)− 4pq(3k + 1)

as required.

Note that φ(L(Pn+1)) = (x − 2)φ(L(Pn)) − φ(L(Pn−1)) by Lemma 2.5. Solving

this recurrence equation, and noting φ(L(P0)) = 0 and φ(L(P1)) = x, we obtain that,

for n ≥ 1,

φ(L(Pn)) =
(y + 1)(y2n − 1)

yn+1 − yn
,(3.5)

where y satisfies the characteristic equation y2 − (x − 2)y + 1 = 0 with x 6= 4.

Substituting (3.5) into (b) and (c) of Lemma 2.5, we obtain

φ(Bn) =
y2n+1 − 1

yn+1 − yn
,(3.6)

φ(Un) =
y2n+2 − 1

yn+2 − yn
.(3.7)

Plugging (3.5), (3.6) and (3.7) into (3.1) and then (3.4), and with the help of Maple,
we obtain

(3.8) y
n(y − 1)3(y+ 1)2φ(L(G)) + 1− 3y − 4y2 + 4y2n+3 + 3y2n+4

− y
2n+5 = fL(p, q, k; y),
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where

fL(p, q, k; y) = 2(−1)1+qy2p+q+2k+3 +2(−1)1+py2q+p+2k+3 +2(−1)qy2p+q+2k+1

+2(−1)pyp+2q+2k+1 +3y2p+2q+1 + 3y2p+2q +y2p+3+2k

+y2q+3+2k +3y2p+2k+2 +3y2q+2k+2

+2y2p+1+2k +2y2q+1+2k +2(−1)qy2p+2+q

+2(−1)py2q+2+p +2(−1)1+qy2p+q +2(−1)1+py2q+p

+2(−1)py3+p+2k +2(−1)qy3+q+2k +2(−1)1+pyp+2k+1

+2(−1)1+qyq+2k+1 −2y2p+2 − 2y2q+2 −3y2p+1 − 3y2q+1

−y2p − y2q − 3y2k+3 +2(−1)1+py2+p +2(−1)1+qy2+q

+2(−1)pyp +2(−1)qyq −3y2k+2.

Lemma 3.4. No two non-isomorphic propeller graphs are L-cospectral.

Proof. Let G and G′ be L-cospectral propeller graphs with n = p+ q+ k− 1 and

n′ = p′ + q′ + k′ − 1 vertices, respectively. Without loss of generality, we let p ≥ q

and p′ ≥ q′. By (a) and (d) of Lemma 2.2, we have

p+ q + k = p′ + q′ + k′,(3.9)

pq = p′q′.(3.10)

By (3.8), we then get

fL(p, q, k; y) = fL(p
′, q′, k′; y).(3.11)

Clearly, the term in fL(p, q, k; y) with the smallest exponent is 2(−1)qyq or −3y2k+2,

and similarly for fL(p
′, q′, k′; y). From (3.11) we have either 2(−1)qyq = 2(−1)q

′

yq
′

or −3y2k+2 = −3y2k
′+2. In the former case, we have q = q′, and so p = p′ and k = k′

by (3.9) and (3.10). In the latter case, we have k = k′, and so (p, q) = (p′, q′) by (3.9)

and (3.10). Therefore, G and G′ are isomorphic in each case.

Lemma 3.5. Let H be a graph that is L-cospectral with the propeller graph G.

Then

deg(H) = (5, 2n−2, 1), (42, 2n−4, 12), (4, 33, 2n−7, 13), or (36, 2n−10, 14),

where the exponent denotes the number of vertices in H having the corresponding

degree.

Proof. Suppose deg(H) = (5 + t1, 2 + t2, 2 + t3, . . . , 2 + tn−1, 1 + tn). Since

deg(G) = (5, 2n−2, 1) and H is L-cospectral with G, by (c) of Lemma 2.2,

(3.12) t1 ≥ −4, t2 ≥ −1, . . . , tn−1 ≥ −1, tn ≥ 0.
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Moreover, by Lemma 2.4, t1, t2, . . . , tn are integers such that

n
∑

i=1

ti = 0,(3.13)

n
∑

i=1

t2i + 4

n−1
∑

i=2

ti + 10t1 + 2tn = 0.(3.14)

So t1 = −∑n−1
i=2 ti − tn. Plugging this into (3.14) yields

(3.15) t21 + 6t1 + a = 0,

where a is given by

(3.16)

n−1
∑

i=2

t2i = a− (t2n − 2tn).

Obviously, a ≥ t2n − 2tn ≥ −1. Solving (3.15) for t1, we get

t1 = −3±
√
9− a.

Since t1 is an integer and −1 ≤ a ≤ 9, we see that a = 0, 5, 8, 9. We discuss these

cases one by one.

Case 1. a = 0. Then t1 = 0 as t1 ≥ −4 by (3.12). Since a = 0, we have
∑n−1

i=2 t2i =

−(t2n−2tn) ≥ 0, which implies tn = 0, 1, 2 as tn ≥ 0 by (3.12). Solving the Diophantine

equations (3.13) and (3.16) for each tn, and using (3.12), we obtain all possibilities

for (t2, . . . , tn−1), and hence, deg(H) as in Table 3.1. (In Tables 3.1–3.4, an exponent

under the column (t2, . . . , tn−1) indicates the number of times the corresponding value

appears in this sequence. For example, −12 means that −1 appears twice.)

Case 2. a = 5. Then t1 = −1 as t1 ≥ −4 by (3.12). Since a = 5, we have
∑n−1

i=2 t2i = 5− (t2n − 2tn) ≥ 0, which implies tn = 0, 1, 2, 3 as tn ≥ 0 by (3.12). Again,

by using (3.12), (3.13) and (3.16), we obtain all possibilities for (t2, . . . , tn−1) and

deg(H) as shown in Table 3.2.

Case 3. a = 8. Then t1 = −2 or t1 = −4, and so (3.13) gives
∑n

i=2 ti = 2 or 4,

respectively. Since
∑n−1

i=2 t2i = 8 − (t2n − 2tn) ≥ 0 and tn ≥ 0, in each case we have

tn = 0, 1, 2, 3, 4. So we have ten combinations in total. Using (3.12), (3.13) and (3.16),

we obtain all possibilities for (t2, . . . , tn−1) and deg(H) as shown in Table 3.3.

Case 4. a = 9. Then t1 = −3 and so
∑n

i=2 ti = 3. Since
∑n−1

i=2 t2i = 9− (t2n− 2tn) ≥ 0

and tn ≥ 0, we have tn = 0, 1, 2, 3, 4. Again, by using (3.12), (3.13) and (3.16), we

obtain all possibilities for (t2, . . . , tn−1) and deg(H) as shown in Table 3.4.
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t1 tn (t2, . . . , tn−1) deg(H)

0 0 (0n−2) (5, 2n−2, 1)

0 1 (−11, 0n−3) (5, 2n−2, 1)

0 2 Infeasible
Table 3.1

a = 0

t1 tn (t2, . . . , tn−1) deg(H)

−1 0 (21,−11, 0n−4), (13,−12, 0n−7) (42, 2n−4, 12), (4, 33, 2n−7, 13)

−1 1 (13,−13, 0n−8), (21,−12, 0n−5) (4, 33, 2n−7, 13), (42, 2n−4, 12)

−1 2 (12,−13, 0n−7) (4, 33, 2n−7, 13)

−1 3 (−12, 0n−4) (42, 2n−4, 12)
Table 3.2

a = 5

t1 tn (t2, . . . , tn−1) deg(H)

−2 0 (21, 12,−12, 0n−7), (15,−13, 0n−10) (4, 33, 2n−7, 13), (36, 2n−10, 14)

−2 1 (21, 12,−13, 0n−8), (15,−14, 0n−11) (4, 33, 2n−7, 13), (36, 2n−10, 14)

−2 2 (21, 11,−13, 0n−7), (14,−14, 0n−10) (4, 33, 2n−7, 13), (36, 2n−10, 14)

−2 3 (12,−13, 0n−7) (4, 33, 2n−7, 13)

−2 4 Infeasible

−4 0 (22, 0n−4), (21, 13,−11, 0n−7) (42, 2n−4, 12), (4, 33, 2n−7, 13)

(16,−12, 0n−10) (36, 2n−10, 14)

−4 1 (31, 0n−4), (22,−11, 0n−5) (5, 2n−2, 1), (42, 2n−4, 12)

(21, 13,−12, 0n−8), (16,−13, 0n−11) (4, 33, 2n−7, 13), (36, 2n−10, 14)

−4 2 (21, 12,−12, 0n−7), (15,−13, 0n−10) (4, 33, 2n−7, 13), (36, 2n−10, 14)

−4 3 (21,−11, 0n−4), (13,−12, 0n−7) (42, 2n−4, 12), (4, 33, 2n−7, 13)

−4 4 (0n−2) (5, 2n−2, 1)
Table 3.3

a = 8

t1 tn (t2, . . . , tn−1) deg(H)

−3 0 (31, 0n−3), (22,−11, 0n−5) (5, 2n−2, 1), (42, 2n−4, 12)

(21, 13,−12, 0n−8), (16,−13, 0n−11) (4, 33, 2n−7, 13), (36, 2n−10, 14)

−3 1 (31,−11, 0n−4), (22,−12, 0n−6) (5, 2n−2, 1), (42, 2n−4, 12)

(21, 13,−13, 0n−9), (16,−14, 0n−12) (4, 33, 2n−7, 13), (36, 2n−10, 14)

−3 2 (21, 12,−13, 0n−8), (15,−14, 0n−11) (4, 33, 2n−7, 13), (36, 2n−10, 14)

−3 3 (21,−12, 0n−5), (13,−13, 0n−8) (42, 2n−4, 12), (4, 33, 2n−7, 13)

−3 4 (−11, 0n−3) (5, 2n−2, 1)
Table 3.4

a = 9
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Lemma 3.6. Suppose the propeller graph G has at most one triangle. If a graph

H is L-cospectral with G, then deg(H) = (5, 2n−2, 1).

Proof. Since H is L-cospectral with G, by Lemma 3.5,

deg(H) = (5, 2n−2, 1), (42, 2n−4, 12), (4, 33, 2n−7, 13), or (36, 2n−10, 14).

In view of the formula for l3 in Lemma 2.1, we obtain

6n3(G)−
∑

v∈V (G)

dG(v)
3 = 6n3(H)−

∑

v∈V (H)

dH(v)3.(3.17)

Note that n3(G) = 1 or 0 since G contains at most one triangle by our assumption.

Case 1. deg(H) = (42, 2n−4, 12). In this case, by (3.17), we have

6n3(G)− (8n+ 110) = 6n3(H)− (8n+ 98),(3.18)

and so n3(H) = −1 or −2, depending on whether n3(G) = 1 or 0. This is a contra-

diction because n3(H) ≥ 0 by its definition.

Case 2. deg(H) = (4, 33, 2n−7, 13). By (3.17), we have

6n3(G)− (8n+ 110) = 6n3(H)− (8n+ 92),(3.19)

which leads to n3(H) = −2 or −3, again a contradiction.

Case 3. deg(H) = (36, 2n−10, 14). Then (3.17) implies

6n3(G)− (8n+ 110) = 6n3(H)− (8n+ 86).(3.20)

This leads to n3(H) = −3 or −4, which is a contradiction.

Therefore, the only possibility is deg(H) = (5, 2n−2, 1).

Lemma 3.7. Suppose the propeller graph G has two triangles. If a graph H is

L-cospectral to G, then deg(H) = (5, 2n−2, 1) or (42, 2n−4, 12), and the latter occurs

only when H is triangle-free.

Proof. The proof is straightforward by using (3.18), (3.19) and (3.20).

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let G be a propeller graph with at most one triangle.

Suppose H is L-cospectral with G. By Lemma 3.6, deg(H) = (5, 2n−2, 1). Since H

is connected by (c) of Lemma 2.2, it follows that H must be a propeller graph. By

Lemma 3.4, we conclude that H and G are isomorphic.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 19-38, January 2014



ELA

30 X. Liu and S. Zhou

⋯

⋮ ⋮ ⋮ ⋮

⋮

⋮

⋮

r
C

s
C

r
C

s
C

r
C

s
C

Fig. 3.1. Proof of Theorem 1.1: Possible cases for H.

Let G be a propeller graph with two triangles; that is, p = q = 3. Suppose H is

L-cospectral with G. By Lemma 3.7, deg(H) = (5, 2n−2, 1) or (42, 2n−4, 12), and in

the latter case H is triangle-free. In the case when deg(H) = (5, 2n−2, 1), similar to

the argument in the first paragraph, it is straightforward to show that H and G are

isomorphic.

Consider the case deg(H) = (42, 2n−4, 12), where H is triangle-free. Since H is

connected by (c) of Lemma 2.2, there are three possibilities for H as shown in Fig.

3.1. However, since H is triangle-free (that is, r, s ≥ 4), in each case H has more than

9 spanning trees, whilst G has exactly pq = 9 spanning trees. This contradicts (d) of

Lemma 2.2.

Therefore, H is isomorphic to G and the proof is complete.

4. Proof of Theorem 1.2. Throughout this section, G is a propeller graph

with n = p+ q+ k− 1 vertices as shown in Fig. 1.1. Applying Lemma 2.3 to G, with

u the vertex of degree 5 in G, we obtain

φ(A(G);x) = xφ(A(Pp−1))φ(A(Pq−1))φ(A(Pk))− 2φ(A(Pp−2))φ(A(Pq−1))φ(A(Pk))

−2φ(A(Pp−1))φ(A(Pq−2))φ(A(Pk))− φ(A(Pp−1))φ(A(Pq−1))φ(A(Pk−1))

−2φ(A(Pp−1))φ(A(Pk))− 2φ(A(Pq−1))φ(A(Pk)).(4.1)

The next lemma follows from (4.1) and φ(A(Pn), 2) = n+ 1 [25].

Lemma 4.1. φ(A(G); 2) = −(3k + 2)pq.

In [25], the adjacency characteristic polynomial of Pn with n ≥ 1 is given as

follows:

φ(A(Pn);x) =
y2n+2 − 1

yn+2 − yn
,(4.2)
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where y satisfies y2 − xy + 1 = 0 with x 6= 2. Substituting (4.2) into (4.1), by using

Maple, we obtain

yn(y2 − 1)3φ(A(G)) + 1− 4y2 − y2n+6 + 4y2n+4 = fA(p, q, k; y),(4.3)

where n = p+ q + k − 1 and

fA(p, q, k; y) = −2y4+2k+p+2q −2y4+2k+q+2p +2y2k+2+p+2q +2y2k+2+q+2p

+3y2p+2q +2y2+p+2q +2y2+q+2p −2yp+2q

−2yq+2p −2y2+2p −2y2+2q −y2p − y2q

+y2k+4+2p +y2k+4+2q +2y2k+2+2p +2y2k+2+2q

+2y2k+4+p +2y2k+4+q −2y2k+2+p −2y2k+2+q

−2y2+p −2y2+q +2yp + 2yq −3y2k+4.

Lemma 4.2. No two non-isomorphic propeller graphs are A-cospectral.

Proof. Let G′ be a propeller graph with order n′ = p′ + q′ + k′ − 1. Suppose that

G′ and G are A-cospectral. Without loss of generality, we may assume p ≥ q and

p′ ≥ q′. Since cospectral graphs have the same order, we have

p+ q + k = p′ + q′ + k′.(4.4)

Lemma 4.1 implies

(3k + 2)pq = (3k′ + 2)p′q′.(4.5)

By (4.3), we have

fA(p, q, k; y) = fA(p
′, q′, k′; y).(4.6)

The term in fA(p, q, k; y) with the smallest exponent is −3y2k+4 or 2yq, and similarly

for fA(p
′, q′, k′; y). From (4.6) we have either −3y2k+4 = −3y2k

′+4 or 2yq = 2yq
′

. In

the former case, we have k = k′, and so (p, q) = (p′, q′) by (4.4) and (4.5). In the latter

case, we have q = q′. Suppose k 6= k′. Without loss of generality, let k′ = k+ i where

i ≥ 1. Substituting back into (4.4), we get p′ = p− i, and then (3i+3k+2−3p)i = 0,

via expressing p′, q′, k′ by p, q, k and i in (4.5). Clearly, 3i + 3k + 2 − 3p 6= 0, a

contradiction. So, k = k′, and then p = p′. Therefore, G and G′ are isomorphic in

each case.

Since the subdivision graph of a propeller graph G is also a propeller graph,

Lemmas 4.2 and 2.11 immediately imply the following result.

Lemma 4.3. No two non-isomorphic propeller graphs are Q-cospectral.

Lemma 4.4. Let G be a propeller graph. Then λ2(G) < 2.
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Proof. Let u be the vertex of degree 4 in G. By the Interlacing Theorem [14] for

the A-spectrum, we obtain

λ2(G) ≤ λ1(G− u) = λ1 (Pq−1 ∪ Pp−1 ∪ Pk) < 2,

where the last inequality holds because the largest eigenvalue for the A-spectrum of

a path is less than 2.

Corollary 4.5. Let G be a propeller graph. Then λ2 (S(G)) < 2.

1
S

……k

W
k
, k = 0, 1, 2,…

2
S

3
S

Fig. 4.1. Smith graphs Wk, S1, S2 and S3.

A connected graph which satisfies λ1 = 2 is called a Smith graph [27]. All Smith

graphs are known in [27]. They are cycles Cn (n ≥ 3) and the graphs depicted in Fig.

4.1, where in Wk, k is the length of the path joining the middle vertices of the two

copies of P3. (Note that W0 = K1,4.)

Lemma 4.6. Let H be a graph that is Q-cospectral with the propeller graph G.

Then H does not contain two vertex-disjoint cycles as its subgraph.

Proof. Since H is Q-cospectral with G, by Lemma 2.11, S(H) is A-cospectral

to S(G). This together with Corollary 4.5 implies λ2(S(H)) = λ2(S(G)) < 2. Since

the largest eigenvalue for the A-spectrum of a cycle is 2, it follows that S(H) does

not contain two vertex-disjoint cycles. Since S(H) is the subdivision graph of H , the

same result holds for H .

Lemma 4.7. Let H be a graph that is Q-cospectral with the propeller graph G.

Then

deg(H) = (5, 2n−2, 1), (42, 2n−4, 12), (4, 33, 2n−7, 13), (36, 2n−10, 14),

(4, 32, 2n−4, 0), or (35, 2n−7, 1, 0).(4.7)
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Proof. Suppose deg(H) = (5 + t1, 2 + t2, 2 + t3, . . . , 2 + tn−1, 1 + tn). Since

the connectivity of H cannot be determined by its Q-spectrum, H may contain just

isolated vertices as its components. Thus,

t1 ≥ −5, t2 ≥ −2, . . . , tn−1 ≥ −2, tn ≥ −1.

The rest of the proof is similar to that of Lemma 3.5, and hence, we omit details.

Lemma 4.8. Let H be a graph that is Q-cospectral with the propeller graph G.

Then H is a propeller graph.

Proof. Since H is Q-cospectral with G, by Lemma 2.9,

6n3(G) +
∑

v∈V (G)

dG(v)
3 = 6n3(H) +

∑

v∈V (G)

dH(v)3.(4.8)

Since G is a propeller graph, by Lemma 4.7, the degree sequence of H is given in

(4.7). We consider the cases for deg(H) one by one. Note that n3(G) = 0, 1 or 2.

Case 1. deg(H) = (5, 2n−2, 1). It is straightforward to show that H is a propeller

graph.

Case 2. deg(H) = (42, 2n−4, 12). In this case, by (4.8) we have 6n3(G)+(8n+110) =

6n3(H) + (8n + 98). Hence, n3(H) = 2, 3, 4 depending on whether n3(G) = 0, 1, 2

respectively.

By Lemma 4.6 and deg(H) = (42, 2n−4, 12), there are three possibilities for H

as shown in Fig. 4.2. Note that for the Q-spectrum the multiplicity of 0 gives the

number of bipartite components [7]. Clearly, for H1, there is an eigenvalue 0 in its Q-

spectrum, but there is no eigenvalue 0 in the Q-spectrum of G, since n3(G) = 1, that

is, G is not bipartite. This is a contradiction, because G and H are not Q-cospectral.

If H is isomorphic to H2, then Lemma 2.10 implies that the line graphs L(G) and

L(H2) are A-cospectral, that is
∑

i

λi(L(G))4 =
∑

i

λi(L(H2))
4. However, by Lemma

2.12, this cannot happen by the following computation:

∑

i

λi(L(H2))
4 =















310, if l = 1 and t = 1;

6n+ 276, if l ≥ 2 and t = 1;

6n+ 276, if l = 1 and t ≥ 2;

6n+ 284, if l ≥ 2 and t ≥ 2;
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∑

i

λi(L(G))4 =



































368, if p = q = 4 and k = 1;

6n+ 332, if p = q = 4 and k ≥ 2;

6n+ 312, if p > q = 4 and k = 1;

6n+ 324, if p > q = 4 and k ≥ 2;

6n+ 304, if p ≥ q > 4 and k = 1;

6n+ 316, if p ≥ q > 4 and k ≥ 2.

(4.9)

If H is isomorphic to H3, similarly to the above case,
∑

i

λi(L(H3))
4 is computed

as follows:

∑

i

λi(L(H3))
4 =















328, if l = 1 and t = 1;

6n+ 300, if l ≥ 2 and t = 1;

6n+ 300, if l = 1 and t ≥ 2;

6n+ 308, if l ≥ 2 and t ≥ 2.

Again,
∑

i

λi(L(G))4 6=∑
i

λi(L(H3))
4, a contradiction.

⋮ ⋮

⋮

⋮

2
H

3
H

1
H

…

1 1

1l − 1t −

l t

1

1t −

t

1

1l −

l

Fig. 4.2. Proof of Lemma 4.8: Case 2.

Case 3. deg(H) = (4, 33, 2n−7, 13). In this case, by (4.8), we have 6n3(G) + (8n +

110) = 6n3(H) + (8n + 92). Hence, n3(H) = 3, 4, 5 depending on whether n3(G) =

0, 1, 2 respectively. Again, by Lemma 4.6 and deg(H) = (4, 33, 2n−7, 13), there are

two possibilities for H as shown in Fig. 4.3. If H is isomorphic to H4, then S(H)

contains a subgraph isomorphic to a disjoint union of a cycle and the Smith graph

S1. This contradicts the fact λ2(S(H)) = λ2(S(G)) < 2.

If H is isomorphic to H5, then Lemma 2.10 implies that the line graphs L(G)

and L(H5) are A-cospectral, that is
∑

i

λi(L(G))4 =
∑

i

λi(L(H5))
4. By Lemma 2.12,
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⋮

…

⋮

… …

H
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5

l
∪P

t4
H

1

1l −

l

t1t −21

Fig. 4.3. Proof of Lemma 4.8: Case 3.

we have

∑

i

λi(L(H5))
4 =















368, if l = 1 and t = 2;

6n+ 316, if l = 1 and t ≥ 3;

6n+ 324, if l ≥ 2 and t = 2;

6n+ 320, if l ≥ 2 and t ≥ 3.

By the above computation and (4.9), there exist three equal cases:

Case 3.1. 368: H5 with l = 1, t = 2 and G with p = q = 4, k = 1. With the help of

Maple, we have

φ(Q(H5);x) = x8 − 18x7 + 128x6 − 468x5 + 948x4 − 1054x3 + 584x2 − 120x;

φ(Q(G);x) = x8 − 18x7 + 128x6 − 468x5 + 948x4 − 1056x3 + 592x2 − 128x.

Clearly, φ(Q(H5)) 6= φ(Q(G)), a contradiction.

Case 3.2. 6n + 316: H5 with l = 1, t ≥ 3 and G with p ≥ q > 4, k ≥ 2. Note

that H5 contains an eigenvalue 0 in its Q-spectrum. Then p and q must be even

numbers no less than 6. By Lemma 2.13, we have qn−1(G) = (−1)n−1pqn, and

qn−1(H5) = (−1)n−1(60n− 360). Then qn−1(G) = qn−1(H5) implies 36n = 60n− 360

or 48n = 60n− 360, since qn−1(G) > qn−1(H5) with p ≥ q ≥ 8. In the former case,

we have n = 15. That is, H5 has 15 vertices with l = 1, t = 9, and G has 15 vertices

with p = q = 6, k = 4. Note that for a bipartite graph G′, φ(Q(G′)) = φ(L(G′))

[7]. Thus, φ(Q(H5)) = φ(Q(H1
5 ))φ(L(P9)), and φ(Q(G)) = φ(L(G)). By Maple, we

obtain

φ(Q(H1
5 );x) = x6 − 16x5 + 96x4 − 276x3 + 396x2 − 262x+ 60.(4.10)
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Substituting x = (y + 1)2/y into (4.10), then plugging (3.5) and (4.10) into the

expression of φ(Q(H5)), and with the help of Maple, we obtain

y15(y − 1)3(y + 1)2φ(Q(H5)) + 1− 3y − 4y2 + 4y33 + 3y34 − y35 = fQ(H5; y),

where

fQ(H5; y) = 2y30 + 2y29 + 2y28 + 2y25 + 2y24 + 2y23 − 4y20 − 3y19 + y18

−y17 + 3y16 + 4y15 − 2y12 − 2y11 − 2y10 − 2y7 − 2y6 − 2y5.

Substituting p = q = 6 and k = 4 back into (3.8), we have

fL(6, 6, 4; y) = −4y29 + 4y27 + 3y25 + 3y24 + 2y23 + 6y22 + 4y21 + 4y20 − 4y18

+4y17 − 4y15 − 4y14 − 6y13 − 2y12 − 3y11 − 3y10 − 4y8 + 4y6.

Thus, fQ(H5; y) 6= fL(6, 6, 4; y). This contradicts φ(Q(H5)) = φ(Q(G)).

In the latter case, we have n = 30. That is, H5 has 30 vertices with l = 1,

t = 24, and G has 30 vertices with p = 8, q = 6, k = 17. Using the similar

method to the former case, we have fQ(H5; y) 6= fL(8, 6, 17; y), which also contradicts

φ(Q(H5)) = φ(Q(G)).

Case 3.3. 6n+324: H5 with l ≥ 2 and t = 2 andG with p > q = 4 and k ≥ 2. Similarly

to Case 3.2, p must be even numbers no less than 6, and Lemma 2.13 implies that

qn−1(G) = (−1)n−14pn, and qn−1(H5) = (−1)n−1120. Clearly, qn−1(G) 6= qn−1(H5),

a contradiction.

Case 4. deg(H) = (36, 2n−10, 14). In this case, (4.8) yields 6n3(G) + (8n + 110) =

6n3(H) + (8n + 86). Hence, n3(H) = 4, 5, 6 depending on whether n3(G) = 0, 1, 2

respectively. By Lemma 4.6, there is no feasibleH satisfying deg(H) = (36, 2n−10, 14).

Case 5. deg(H) = (4, 32, 2n−4, 0). In this case, there is an eigenvalue 0 in the Q-

spectrum of H . This implies that G must be bipartite and so n3(G) = 0. By (4.8),

we have 6n3(G) + (8n+ 110) = 6n3(H) + (8n+ 86), which gives n3(H) = 4. Clearly,

by Lemma 4.6, there are no feasible H satisfying deg(H) = (4, 32, 2n−4, 0).

Case 6. deg(H) = (35, 2n−7, 1, 0). Similar to Case 5, we have n3(G) = 0. Again, by

(4.8), we have n3(H) = 4. Lemma 4.6 implies that there is no feasible H satisfying

deg(H) = (35, 2n−7, 1, 0).

Proof of Theorem 1.2. The result follows from Lemmas 4.3 and 4.8 immediately.
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5. Conclusion. In this paper, we proved that any propeller graph is determined

by its L-spectrum as well as its Q-spectrum. Along the way we showed that no two

non-isomorphic propeller graphs are A-cospectral (Lemma 4.2). We expect that this

result could be used to prove some propeller graphs are A-DS. On the other hand,

not every propeller graph is determined by its A-spectrum. For example, in [1, p. 12]

and [21, p. 1226], two A-cospectral mates are given. And we expect that there are

more graphs that are A-cospectral with propeller graphs. It would be an interesting

question to characterize which graphs are A-cospectral with propeller graphs.
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