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Abstract. The paper presents a novel Newton method for constructing canonical Wiener-Hopf

factorizations of complex matrix polynomials and spectral factorizations of positive definite matrix

polynomials. The factorizations are the ones needed for discrete-time linear systems and hence with

respect to the unit circle. The Jacobi matrix is analyzed, and the convergence of the method is

proved and tested numerically. A new class of highly ill-conditioned test polynomials is introduced,

and the method is shown to manifest its very good performance also in this critical setting.
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1. Introduction. Let b(z) = b0+b1z+· · ·+bNzN be a polynomial with complex

coefficients such that b0bN 6= 0. If b(z) 6= 0 for |z| = 1, we may factor b(z) as b(z) =

f(z)u(z) where f(z) and u(z) are polynomials having all their zeros inside (|z| < 1)

and outside (|z| > 1) the complex unit circle T, respectively. This factorization is

unique if the leading coefficient of f(z) is taken to be 1. Writing

f(z) = f0 + · · ·+ fnz
n, u(z) = u0 + · · ·+ umzm

and letting a(z) = z−nb(z), we get a(z) = a−(z)a+(z) with

a−(z) = z−nf(z) = fn + · · ·+ f0z
−n, a+(z) = u(z) = u0 + · · ·+ umzm.

The factorization a(z) = a−(z)a+(z) is a so-called canonical Wiener-Hopf factoriza-

tion of a(z). It represents a(z) as the product of two functions a−(z) and a+(z) such

that a−(z) is analytic and nonzero outside the unit circle, including the point at in-

finity, and a+(z) is analytic and nonzero inside the unit circle. Equivalently, z−nf(z)

is nonzero for 1 < |z| ≤ ∞ (where |z| = ∞ corresponds to the point at infinity) and

u(z) is nonzero for |z| < 1.

Now supposeB(z) = B0+B1z+· · ·+BNzN is a matrix polynomial with Bj ∈ Cℓ×ℓ

such that B0 6= 0 and BN 6= 0. Also assume that detB(z) 6= 0 for |z| = 1. We
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are looking for a factorization B(z) = F (z)U(z) where F (z) and U(z) are matrix

polynomials of the form F (z) = F0 + · · · + Fnz
n and U(z) = U0 + · · ·+ Umzm such

that det(z−nF (z)) and detU(z) are nonzero for 1 < |z| ≤ ∞ and |z| < 1, respectively.

The requirement on F (z) is equivalent to saying that detF (z) 6= 0 for 1 < |z| < ∞

and that detFn 6= 0. Since Fn is required to be invertible, we may take Fn = I. We

call a factorization B(z) = F (z)U(z) a canonical right factorization of B(z) if

F (z) = F0 + · · ·+ Fn−1z
n−1 + Izn, U(z) = U0 + · · ·+ Umzm,

and detF (z) and detU(z) have all their zeros inside and outside the unit circle,

respectively.

We remark at the very beginning that a canonical right factorization B(z) =

F (z)U(z) does not always exist. But if it exists, the matrix function

A(z) = z−nB(z) =

m∑

j=−n

Ajz
j, Aj = Bn+j , n+m = N, (1.1)

has the factorization A(z) = Q−(z)Q+(z) with

Q−(z) = z−nF (z) = I +Fn−1z
−1 + · · ·+F0z

−n, Q+(z) = U0 + · · ·+Umzm. (1.2)

The matricesQ−(z) andQ+(z) are invertible for 1 < |z| ≤ ∞ and |z| < 1, respectively.

Such a factorization is referred to as a right canonical Wiener-Hopf factorization of

A(z). Conversely, if A(z) = z−nB(z) admits a right canonical Wiener-Hopf factor-

ization A(z) = Q−(z)Q+(z) with (1.2), then B(z) = F (z)U(z) with F (z) = znQ−(z)

and U(z) = Q+(z) is the canonical right factorization we are looking for.

There exist methods for constructing canonical right Wiener-Hopf factorizations.

One such method is described in [11, Section I.2], and since [1], the so-called state

space method is the prevailing procedure. See, for example, the books [2], [3], [15,

Chapter XXIV], [16]. The state space method consists in constructing a realization

A(z) = I +X(zY − U)−1V and subsequently determining a canonical right Wiener-

Hopf factorization in terms of the matrices X,Y, U, V and certain spectral projections

associated with them. These methods require the determination of the roots of poly-

nomials and therefore cause numerical problems in the case of very large degrees.

In the scalar case, ℓ = 1, several numerical methods are available, and we refer to

the papers [5], [9], [19], [27] and the references cited therein. Things are more delicate

in the matrix case.

If A(z) is positive definite on the circle |z| = 1, then a canonical right Wiener-

Hopf factorization exists and one can even take Q+(z) = Q−(1/z)
∗. One then speaks

of (right) spectral factorization. A classical algorithm for spectral factorization is the
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so-called Bauer-type factorization [33], which has its roots in the algorithm for scalar-

valued functions developed in [4]. An approximation of the spectral factor is given

through the Cholesky decomposition of a certain Mℓ × Mℓ block Toeplitz matrix,

and the approximation is the better the larger M is. The convergence is linear.

The first to apply a Newton method to spectral factorization of real matrix poly-

nomials was Wilson in his pioneering paper [32]. Another Newton method was pro-

posed in [22]. The latter is based on extending the scalar case method of [30] to

the matrix case. The method starts with an approximation Q0(z). In each iteration

a system of the form Qi(1/z)
⊤Xi(z) + Xi(1/z)

⊤Qi(z) = 2A(z) is solved and then

the approximation is updated by 2Qi+1(z) = Qi(z) + Xi(z). The matrix polyno-

mials Qi(z) converge quadratically to the spectral factor Q+(z). This algorithm is

implemented in the polynomial toolbox for use with MATLAB [24], and it shows

reproachless performance for nℓ less than about 250.

Other algorithms for spectral and Wiener-Hopf factorization are based on diag-

onalization or cyclic reduction. We refer to [20] for the former and to [6] and [7] for

the latter. The recent paper [21] on spectral factorization also contains a new method

for the successive approximation of the spectral factor Q+(z). Part of these methods

work even without the assumption that detA(z) 6= 0 for |z| = 1.

Most of these methods become critical if ℓ and N are large and the zeros of

detB(z) are clustered densely near the unit circle. We here present a Newton method

which works reasonably well even under such circumstances and which, moreover, is

not restricted to spectral factorization but also gives canonical Wiener-Hopf factor-

izations. In the scalar case, this method was introduced and thoroughly explored

in [9].

2. Preliminaries on Wiener-Hopf factorization. Let A(z) =
∑m

j=−n Ajz
j

with Aj ∈ Cℓ×ℓ. Assume n ≥ 1, m ≥ 1, A−n 6= 0, Am 6= 0, and detA(z) 6= 0 for

|z| = 1. Then A(z) has a right Wiener-Hopf factorization

A(z) = Q−(z) diag(z
q1 , . . . , zqℓ)Q+(z), (2.1)

where q1, . . . , qℓ ∈ Z, Q−(z) is analytic and invertible for 1 < |z| ≤ ∞, and Q+(z) is

analytic and invertible for |z| < 1; see [17] or [14, Theorem VIII.2.2]. The integers

q1, . . . qℓ are unique up to their order and are called the right partial indices of A(z).

If all right partial indices are zero, then factorization (2.1) is said to be canonical.

(This terminology is now in general use and differs from the terminology of [14].)

One can show that the factors Q−(z) and Q+(z) in (2.1) are actually polynomials

in 1/z and z, respectively [13]. In case A(z) admits a canonical right Wiener-Hopf

factorization, the degrees of Q−(1/z) and Q+(z) are n and m, respectively, that is,
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we have

Q−(z) = Q−
0 + · · ·+Q−

n z
−n, Q+(z) = Q+

0 + · · ·+Q+
mzm. (2.2)

This can be seen as follows [29]. From (2.1) with the condition q1 = · · · = qℓ = 0 we get

Q−(z)
−1z−mA(z) = z−mQ+(z), and since the left-hand is analytic for 1 < |z| ≤ ∞,

so also is the right-hand side. But this implies that the degree of Q+(z) is at most

m. In the same vein, we have znQ−(z) = znA(z)Q+(z)
−1, and as the right-hand side

is analytic for |z| < 1, it follows that znQ−(z) must be analytic for |z| < 1, which is

only possible if the degree of Q−(1/z) does not exceed n. Because Q−
0 Q

+
m = Am 6= 0

and Q−
nQ

+
0 = A−n 6= 0, we finally obtain that the degrees of Q−(1/z) and Q+(z) are

exactly n and m.

Thus, if A(z) has a canonical rightWiener-Hopf factorizationA(z)=Q−(z)Q+(z),

then Q±(z) are as in (2.2). We obtain that

B(z) = znA(z) = (Q−
n + · · ·+Q−

1 z
n−1 +Q−

0 z
n)(Q+

0 + · · ·+Q+
mzm),

and since Q−
0 = Q−(∞) is invertible, we arrive at the factorization

B(z) = F (z)U(z) = (F0 + · · ·+ Fn−1z
n−1 + Izn)(U0 + · · ·+ Umzm) (2.3)

with Fj = Q−
j (Q

−
0 )

−1 and Uk = Q−
0 Q

+
k . The zeros of detF (z) and detU(z) are

all inside and outside the unit circle, respectively. Consequently, (2.3) is a canonical

right factorization of B(z). Conversely, if B(z) has a canonical right factorization as

in (2.3), then A(z) = Q−(z)Q+(z) with Q−(z) = z−nF (z) and Q+(z) = U(z) is a

canonical right Wiener-Hopf factorization.

If B(z) possesses a canonical right factorization B(z) = F (z)U(z), then

detB(z) = detF (z) detU(z).

Let β denote the number of zeros of detB(z) inside the unit circle, multiplicities taken

into account. Since detF (z) is a polynomial of exact degree nℓ with all zeros inside

the unit circle and detU(z) has no zeros inside the unit circle, we get β = nℓ. Thus,

for B(z) to have a canonical right factorization it is necessary (but not sufficient) that

β be divisible by ℓ, and in this case n = β/ℓ and m = N − n.

If A(z) is as at the beginning of this section, it also admits a left Wiener-Hopf

factorization

A(z) = S+(z) diag(z
s1 , . . . , zsℓ)S−(z),

where s1, . . . , sℓ ∈ Z, S−(z) = S−
0 + · · · + S−

n z−n, S+(z) = S+
0 + · · · + S+

mzm, S−(z)

is invertible for 1 < |z| ≤ ∞, and S+(z) is invertible for |z| < 1; see [13], [14,
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Theorem III.2.2], [17]. The integers s1, . . . , sℓ are called the left partial indices, and

they are uniquely determined up to their order. If s1 = · · · = sℓ = 0, the factorization

is said to be canonical. As above, it is easily seen that A(z) has a canonical left

Wiener-Hopf factorization A(z) = S+(z)S−(z) if and only if B(z) = znA(z) can be

factored in the form

B(z) = U(z)F (z) = (U0 + · · ·+ Umzm)(F0 + · · ·+ Fn−1z
n−1 + Izn) (2.4)

such that the zeros of detF (z) and detU(z) are all inside and outside the unit cir-

cle, respectively. Such a factorization will be called a canonical left factorization of

B(z). We have F (z) = znS−(∞)−1S−(z) and U(z) = S+(z)S−(∞). Note that the

polynomials F (z) and U(z) in (2.3) and (2.4) need not to be the same.

We will design an algorithm which yields the right canonical factorization (2.3)

provided this factorization exists. Our algorithm is based on the extra assumption

n ≤ m. This is no loss of generality. If n > m, we apply the algorithm to the matrix

polynomial (zNB(1/z))⊤, which puts us into the former case. Our algorithm also

delivers canonical left factorizations: to find a canonical left factorization B(z) =

U(z)F (z), we apply the algorithm to B(z)⊤ to obtain a canonical right factorization

B(z)⊤ = G(z)V (z) and then we put F (z) = G(z)⊤, U(z) = V (z)⊤.

An important special case of Wiener-Hopf and polynomial factorization is spectral

factorization. We are in this case if A(z) =
∑n

j=−n Ajz
j with Aj ∈ Cℓ×ℓ takes positive

definite values on the unit circle T. For this it is in particular necessary that A∗
j = A−j

for all j. Note also that then n = m.

If A(z) =
∑n

j=−n Ajz
j is positive definite for |z| = 1 and An 6= 0, then A(z)

has both a canonical right and a canonical left Wiener-Hopf factorization, A(z) =

Q−(z)Q+(z) = S+(z)S−(z). Moreover, one can guarantee that Q+(z) = Q−(1/z)
∗

and S+(z) = S−(1/z)
∗ and that Q+(z) and S+(z) are polynomials in z of the degree

n; see [12], [26], [31]. Note that if |z| = 1, then 1/z = z, and hence, Q+(z) =

Q−(z)
∗ and S+(z) = S−(z)

∗. The factorizations A(z) = Q−(z)Q−(1/z)
∗ and A(z) =

S+(z)S+(1/z)
∗ are referred to as right and left spectral factorizations of A(z).

Let us write Q−(z) = Q0 + · · · + Qnz
−n. Then the right spectral factorization

factorization A(z) = Q−(z)Q−(1/z)
∗ takes the form

A(z) = (Q0 +Q1z
−1 + · · ·+Qnz

−n)(Q∗
0 +Q∗

1z + · · ·+Q∗
nz

n). (2.5)

Note that Q0 = Q−(∞) is always invertible. This factorization is unique under several

normalizations. For example, it is unique if Q0 is required to be positive definite or

if one demands that Q0 is lower triangular with positive diagonal entries.

Given a right spectral factorization (2.5), we get a canonical right factorization

B(z) = znA(z) = (F0 + · · ·+ Fn−1z
n−1 + Izn)(U0 + · · ·+ Unz

n) (2.6)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 26, pp. 873-897, December 2013



ELA
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with Fj = Qn−jQ
−1
0 and Uj = Q0Q

∗
j . Conversely, suppose we have a canonical right

factorization (2.6) and A(z) is known to admit a spectral factorization (2.5). Then

U0 = Q0Q
∗
0 is automatically positive definite, and hence (2.5) results from (2.6) by

determining the positive definite matrix Q0 from the equation U0 = Q0Q
∗
0 and then

putting Qj = Fn−jQ0 for 1 ≤ j ≤ n. Things are analogous for left factorizations.

Positive definite matrix functions A(z) form one of the rare classes of matrix

functions for which the existence of canonical left and right Wiener-Hopf factorizations

is guaranteed. In general, the existence of such factorizations is a delicate problem. We

refer to Chapter 4 of [18] for more on this question. We here confine us to outlining the

connection between canonical Wiener-Hopf factorization and block Toeplitz operators.

Let again A(z) be as at the beginning of this section. We denote by T (A) the

infinite block Toeplitz matrix (Aj−k)
∞
j,k=1, where Aj−k := 0 for j − k < −n and

j− k > m. The matrix T (A) induces a bounded operator on ℓ2(N,Cℓ), the Cℓ-valued

ℓ2 space over the natural numbers N. A famous theorem by Gohberg and Krein says

that the operator induced by T (A) is invertible if and only if A(z) has a canonical

right Wiener-Hopf factorization; see [14, Theorem VIII.5.1] or [17].

The infinite block Toeplitz matrix corresponding to the matrix function A(1/z) is

the matrix (Ak−j)
∞
j,k=1. This matrix is traditionally denoted by T (Ã). In the scalar

case, that is, for ℓ = 1, T (Ã) is simply the transposed matrix of T (A). This is in

general no longer true for ℓ > 1. From what was said in the previous paragraph we

infer that T (Ã) induces an invertible operator on ℓ2(N,Cℓ) if and only if A(z) has a

canonical left Wiener-Hopf factorization.

Let TM (A) denote the principal truncation of T (A) formed by the M2 blocks

in the upper-left corner. In other words, TM (A) is the finite block Toeplitz matrix

(Aj−k)
M
j,k=1. Actually, this is an Mℓ×Mℓ matrix. We denote by PM the projection

on ℓ2(N,Cℓ) which sends a sequence {x1, x2, . . .} (xj ∈ Cℓ) to {x1, . . . , xM , 0, 0, . . .}.

One says that the finite section method is applicable to T (A) if T (A) is invertible, if

the matrices TM (A) are invertible for all sufficiently large M , and if TM (A)−1PMy

converges in ℓ2(N,Cℓ) to T (A)−1y for every y ∈ ℓ2(N,Cℓ). Gohberg and Feldman [14,

Theorem VIII.5.3] were the first to prove that the finite section method is applicable

to T (A) if and only if both T (A) and T (Ã) are invertible; see also [10, Theorem 6.9].

Equivalently, the finite section method is applicable to T (A) if and only if A(z) has

a canonical right and a canonical left Wiener-Hopf factorization.

Since small perturbations of invertible operators are also invertible, we see in

particular that the property of having a canonical left or right factorization is stable

under small perturbations. See also Chapter 5 of [18] for such issues.
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3. The nonlinear system. Let B(z) = B0+· · ·+BNzN be a matrix polynomial

with Bj ∈ Cℓ×ℓ and suppose B(z) has a right canonical factorization (2.3) with n ≤ m.

We formally proceed as in [9]. For lucidity, let n = 3 and m = 4. In terms of the

coefficient matrices, the equation B(z) = F (z)U(z) is the nonlinear system




B0

B1

B2

B3

B4

B5

B6

B7




=




F0

F1 F0

F2 F1 F0

I F2 F1 F0

I F2 F1 F0

I F2 F1

I F2

I







U0

U1

U2

U3

U4




. (3.1)

Of course, I is the ℓ× ℓ identity matrix. After letting

B0 :=




B0

B1

B2


 , B1 :=




B3

B4

B5

B6

B7




, F :=




F0

F1

F2


 , U :=




U0

U1

U2

U3

U4




and introducing the matrices

Φ0 :=




F0

F1 F0

F2 F1 F0 0 0


 , Φ1 :=




I F2 F1 F0

I F2 F1 F0

I F2 F1

I F2

I




,

system (3.1) is equivalent to the two equations B0 = Φ0U and B1 = Φ1U. Inserting

U from the second equation in the first equation, we see that (3.1) is equivalent to

the nonlinear equation E(F) := B0 − Φ0Φ
−1
1 B1 = 0, or written out in full,




B0

B1

B2



−




F0

F1 F0

F2 F1 F0 0 0








I F2 F1 F0

I F2 F1 F0

I F2 F1

I F2

I




−1


B3

B4

B5

B6

B7




=




0

0

0



 .

This is a nonlinear system for the three unknown matrices F0, F1, F2, and our intent

is to solve this system by Newton’s method.
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In the general case, we have N = n+m with n ≤ m. We put

B0 :=




B0

...

Bn−1


 , B1 :=




Bn

...

BN


 , F :=




F0

...

Fn−1


 , U :=




U0

...

Um


 , (3.2)

we let Φ0 be the nℓ× (m+ 1)ℓ block Toeplitz matrix

Φ0 :=




F0

F1 F0

...
. . .

. . .

Fn−1 · · · F1 F0 0 · · · 0


 , (3.3)

and we define the (m+ 1)ℓ× (m+ 1)ℓ block Toeplitz matrix Φ1 by

Φ1 :=




I Fn−1 · · · F0

. . .
. . .

. . .

I Fn−1 · · · F0

. . .
. . .

...

I Fn−1

I




. (3.4)

The equation B(z) = F (z)U(z) is now equivalent to the two equations B0 = Φ0U

and B1 = Φ1U and thus to the nonlinear system

E(F) := B0 − Φ0Φ
−1
1 B1 = 0 (3.5)

for the vector F which determines the matrices Φ0 and Φ1.

4. The Jacobi matrix. Given matrices A,B, . . . with equal numbers of rows,

we can form the matrix (A B · · · ). It will be convenient to denote this matrix by

(A|B| · · · ). The M × M identity matrix will be denoted by IM , and in case M is

obvious from the context, we simply write I. Formula (3.5) may thus be written as

E(F) := (Inℓ| − Φ0Φ
−1
1 )

(
B0

B1

)
= 0.

The following lemma reveals that the nℓ× (n+m+ 1)ℓ matrix (Inℓ| −Φ0Φ
−1
1 ) has a

very nice structure. We define the nℓ×nℓ block companion matrix CF and the nℓ× ℓ

block delta ∆1 by

CF :=




0 0 · · · 0 −F0

I 0 · · · 0 −F1

0 I · · · 0 −F2

...
...

. . .
...

...

0 0 · · · I −Fn−1




, ∆1 =




I

0

0
...

0




. (4.1)
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Lemma 4.1. We have

(Inℓ| − Φ0Φ
−1
1 ) = (∆1|CF∆1|C

2
F∆1| · · · |C

n+m
F ∆1),

and for 0 ≤ j ≤ m+1, the jth block window Wj of (Inℓ|−Φ0Φ
−1
1 ), that is, the nℓ×nℓ

submatrix which is formed by the columns jℓ+ 1, jℓ+ 2, . . . , jℓ+ nℓ equals

Wj = (Cj
F∆1| · · · |C

j+n−1
F ∆1) = Cj

F .

Proof. This can be proved in the same way as [9, Lemma 3.1], which is the scalar

version of the result.

The map E : F 7→ B0 − Φ0Φ
−1
1 B1 acts from Cnℓ×ℓ to Cnℓ×ℓ and hence has n

block components, which we denote by E0(F), . . . , En−1(F). We columnwise stack

the nℓ × ℓ matrices F and E(F) to vectors of length nℓ2. Thus, denoting by δj the

jth column of the ℓ× ℓ identity matrix Iℓ, we put

f =




F0δ1
...

Fn−1δ1
...

F0δℓ
...

Fn−1δℓ




∈ C
nℓ2 , e(f) =




E0(F)δ1
...

En−1(F)δ1
...

E0(F)δℓ
...

En−1(F)δℓ




∈ C
nℓ2 . (4.2)

Let ujk(z) denote the j, k entry of the matrix polynomial U(z),

U(z) = U0 + · · ·+ Umzm = (ujk(z))
ℓ
j,k=1.

Theorem 4.2. The Jacobi matrix of the map e : f 7→ B0 − Φ0Φ
−1
1 B1 is

e′(f) = −(ukj(CF ))
ℓ
j,k=1.

Proof. To avoid avalanches of dots and indices, we restrict ourselves to the case

n = m = ℓ = 2. The proof we will give in this case clearly indicates how to proceed

for general n,m, ℓ. Let

Fi = (f i
jk)

2
j,k=1, Ei(F) = (eijk)

2
j,k=1, Ui = (ui

jk)
2
j,k=1. (4.3)

The vectors e and f have length 8, and hence, e′(f) is an 8× 8 matrix. In fact, e′(f)

is of the form e′(f) = (e′(f)jk)
2
j,k=1 with 4 × 4 blocks e′(f)jk. Let us, for example,
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compute e′(f)12. This block is

e′(f)12 =

∂

(
E0(F)δ1
E1(F)δ1

)

∂

(
F0δ2
F1δ2

) =




∂e011
∂f0

12

∂e011
∂f0

22

∂e011
∂f1

12

∂e011
∂f1

22

∂e021
∂f0

12

∂e021
∂f0

22

∂e021
∂f1

12

∂e021
∂f1

22

∂e111
∂f0

12

∂e111
∂f0

22

∂e111
∂f1

12

∂e111
∂f1

22

∂e121
∂f0

12

∂e121
∂f0

22

∂e121
∂f1

12

∂e121
∂f1

22




. (4.4)

We have

(
E0(F)δ1
E1(F)δ1

)
=

(
B0δ1
B1δ1

)
− Φ0Φ

−1
1




B2δ1
B3δ1
B4δ1





with

Φ0 =

(
F0

F1 F0 0

)
, Φ1 =




I F1 F0

I F1

I


 . (4.5)

Consequently, the columns of e′(f)12 are

∂

(
E0(F)δ1
E1(F)δ1

)

∂f i
j2

= −
∂

∂f i
j2

Φ0Φ
−1
1




B2δ1
B3δ1
B4δ1




= −
∂Φ0

∂f i
j2

Φ−1
1




B2δ1
B3δ1
B4δ1


+Φ0Φ

−1
1

∂Φ1

∂f i
j2

Φ−1
1




B2δ1
B3δ1
B4δ1




=

(
−
∂Φ0

∂f i
j2

+Φ0Φ
−1
1

∂Φ1

∂f i
j2

)


U0δ1
U1δ1
U2δ1




=
(
− I4|Φ0Φ

−1
1

) ∂

∂f i
j2

(
Φ0

Φ1

)


U0δ1
U1δ1
U2δ1



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for ij = 01, 02, 11, 12. Inserting (4.3) and (4.5) in the last expression, we obtain

e′(f)12 =
(
− I4|Φ0Φ

−1
1

)




u0
21 0 0 0

0 u0
21 0 0

u1
21 0 u0

21 0

0 u1
21 0 u0

21

u2
21 0 u1

21 0

0 u2
21 0 u1

21

0 0 u2
21 0

0 0 0 u2
21

0 0 0 0

0 0 0 0




. (4.6)

It follows that e′(f)12 equals

(
− I4|Φ0Φ

−1
1

)



u0
21




I2 0

0 I2
0 0

0 0

0 0




+ u1
21




0 0

I2 0

0 I2
0 0

0 0




+ u2
21




0 0

0 0

I2 0

0 I2
0 0






. (4.7)

We have (−I4|Φ0Φ
−1
1 )uj

21 = −uj
21(I4| − Φ0Φ

−1
1 ), and multiplying (I4| − Φ0Φ

−1
1 )

from the right by the three 10 × 4 matrices in (4.7) amounts to taking the windows

W0,W1,W2 we encountered in Lemma 4.1. Thus, by this lemma,

e′(f)12 = −u0
21W0 − u1

21W1 − u2
21W2 = −u0

21I − u1
21CF − u2

21C
2
F = −u21(CF ).

The computations for the remaining entries e′(f)jk are analogous.

Thus, the Jacobi matrix e′(f) is a block matrix with ℓ2 blocks, and each block

is an nℓ × nℓ matrix and a polynomial of degree at most m of CF . The following

theorem will provide us with additional information about the structure of the blocks.

Let

Djk(z) = ujk(z)Iℓ = (ujk
0 + ujk

1 z + · · ·+ ujk
m zm)Iℓ,

let Rjk(z) = Rjk
0 +Rjk

1 z+ · · ·+Rjk
n−1z

n−1 be the remainder of left division of Djk(z)

by F (z) (see, e.g., [18, Section 3.2] for division of matrix polynomials), and let Rjk

be the nℓ× ℓ matrix obtained from writing the coefficients of Rjk(z) as a column,

Djk(z) = F (z)Xjk(z) +Rjk(z), Rjk =




Rjk
0
...

Rjk
n−1


 . (4.8)
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We may write Xjk(z) = Xjk
0 + Xjk

1 z + · · · + Xjk
m−nz

m−n. Let us furthermore put

Xjk
m−n+1 = · · · = Xjk

m = 0. Then the coefficients of Rjk(z) and Xjk(z) can be

obtained from the triangular system

(
Inℓ Φ0

0 Φ1

)




Rjk
0
...

Rjk
n−1

Xjk
0
...

Xjk
m−n

Xjk
m−n+1
...

Xjk
m




=




Djk
0
...

Djk
n−1

Djk
n

...

Djk
m

0
...

0




. (4.9)

Clearly, the last n equations of this system could be omitted. The following theorem

reveals that the Jacobi matrix has block Krylov structure with the data given by (4.1),

(4.8), and (4.9).

Theorem 4.3. We have ujk(CF ) = (Rjk|CFRjk| · · · |C
n−1
F Rjk).

Proof. Let ∆k ∈ Cnℓ×ℓ (1 ≤ k ≤ n) denote the kth block column of the nℓ ×

nℓ identity matrix. Thus, ∆1 is as in (4.1), and for 2 ≤ k ≤ n, ∆k is also the

k − 1st block column of CF . We denote by R the first block column of ujk(CF ),

that is, R = ujk(CF )∆1. It follows that CFR = CFujk(CF )∆1 = ujk(CF )CF∆1 =

ujk(CF )∆2, then that C2
FR = CFujk(CF )∆2 = ujk(CF )CF∆2 = ujk(CF )∆3, and so

on, until the equality Cn−1
F R = ujk(CF )∆n. This proves that ujk(CF ) is of the form

(R|CFR| · · · |Cn−1
F R), and we are left with showing that R = Rjk.

By Theorem 4.2, R is the first block column of −e′(f)kj , and taking the first

block column of both sides of (4.6) we obtain that

R = (Inℓ| − Φ0Φ
−1
1 )




Djk
0
...

Djk
m

0
...

0




. (4.10)

The last m+ 1 blocks in the column on the right of (4.10) are Djk
n , . . . , Djk

m , 0, . . . , 0.
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Let

Φ1




X0

...

Xm


 =




Djk
n

...

Djk
m

0
...

0




.

We may now write (4.10) as

R =




Djk
0
...

Djk
n−1


− Φ0




X0

...

Xm


 ,

or equivalently, as the system

(
Inℓ Φ0

0 Φ1

)




R0

...

Rn−1

X0

...

Xm−n

Xm−n+1

...

Xm




=




Djk
0
...

Djk
n−1

Djk
n

...

Djk
m

0
...

0




.

Comparing this with system (4.9) we see that R = Rjk and Xi = Xjk
i for all i.

Theorem 4.4. The matrix e′(f) is invertible if and only if detF (z) and detU(z)

do not have common zeros. In that case the inverse is e′(f)−1 = −(pkj(CF ))
ℓ
j,k=1 with

polynomials pjk(z), and denoting by Pjk ∈ Cnℓ×n the first block column of pjk(CF ),

we have pjk(CF ) = (Pjk|CFPjk| · · · |C
n−1
F Pjk).

Proof. Let H be an arbitrary M ×M matrix and denote by Pℓ×ℓ(H) the algebra

of ℓ× ℓ block matrices whose blocks are polynomials of H . Thus, Pℓ×ℓ(H) is exactly

the set of all matrices C = (qjk(H))ℓj,k=1 with polynomials qjk(z). Put Q(z) =

(qjk(z))
ℓ
j,k=1. It is well known that C = (qjk(H))ℓj,k=1 ∈ Pℓ×ℓ(H) is an invertible

matrix if and only if detQ(z) 6= 0 for all z ∈ σ(H), where σ(H) denotes the spectrum

(= set of eigenvalues) of H , and that in this case C−1 also belongs to Pℓ×ℓ(H); see,

e.g., [15, Proposition XI.7.2] or [23, Theorem 1.1] plus [25, Proposition 1.2.35].

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 26, pp. 873-897, December 2013



ELA
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Theorem 4.2 tells us that e′(f) = −(ukj(CF ))
ℓ
j,k=1 is in Pℓ×ℓ(CF ). Hence, for

e′(f) to be invertible it is necessary and sufficient that detU(z) 6= 0 for z ∈ σ(CF ).

But σ(CF ) is known to be the set of the zeros of detF (z) (see, e.g., [15, p. 37]

or [18, Theorem 1.1]). This proves the first part of the theorem. By what said in

the previous paragraph, it also follows that in the case of invertibility the inverse

is e′(f)−1 = −(pkj(CF ))
ℓ
j,k=1 with polynomials pjk(z). Finally, the argument em-

ployed in the first paragraph of the proof of Theorem 4.3 shows that pjk(CF ) =

(Pjk|CFPjk| · · · |C
n−1
F Pjk).

The nℓ2 × ℓ2 matrix (Pjk)
ℓ
j,k=1 results from e′(f)−1 by taking the block columns

with numbers 1, n+ 1, . . . , (ℓ − 1)n+ 1. Consequently, letting ∆1 be as in (4.1) and

denoting by 0 the nℓ× ℓ zero matrix, we can obtain (Pjk)
ℓ
j,k=1 from the system

e′(f)(Pjk)
ℓ
j,k=1 =




∆1 0 · · · 0

0 ∆1 · · · 0
...

...
. . .

...

0 0 · · · ∆1


 = Iℓ ⊗∆1.

5. Newton’s method. Suppose B(z) = F∗(z)U∗(z) is a canonical right factor-

ization. We want to determine F∗(z) and U∗(z). To do this, we solve the equation

e(f) = 0 by Newton’s method, which amounts to finding an initial vector f (0) and

determining the subsequent iterations by

f (i+1) = f (i) − e′(f (i))−1e(f (i)), i ≥ 0.

The vector f (i) gives us the coefficients of a matrix polynomial F (i)(z). We put

F (z) := F (i)(z) and solve the triangular system Φ1U
(i) = B1 with B1 and Φ1 given

by (3.2) and (3.4) to get the matrix polynomial U (i)(z) =: U(z). For moderately sized

m, the Jacobi matrix e′(f (i)) may be established directly as in Theorem 4.2. If m

is large, we may create the Jacobi matrix e′(f (i)) as follows: we solve the triangular

systems (4.9) to obtain Rjk, then construct ujk(CF ) as in Theorem 4.3, and finally

built e′(f (i)) according to Theorem 4.2. Once F∗(z) is known, we get U∗(z) from the

system Φ1,∗U∗ = B1, where Φ1,∗ result from (3.4) by replacing Fj with the coefficients

of F∗(z).

Theorem 5.1. Let f∗ be any solution of the equation e(f∗) = 0, and let F∗(z)

and U∗(z) be the corresponding polynomials such that B(z) = F∗(z)U∗(z). If the poly-

nomials F∗(z) and U∗(z) do not have common zeros, then Newton’s method converges

quadratically to f∗ whenever the initial vector f (0) is sufficiently close to f∗.

Proof. We abbreviate nℓ2 to ν. Let us first assume that the coefficient matrices

Bj are all in Rℓ×ℓ. Then all data in the algorithm are real as well, and e acts from

Rν to Rν . A vector f∗ satisfying e(f∗) = 0 is called a regular zero of the map e
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if e has continuous partial derivatives up to the order 2 in an open neighborhood

of f∗ and if the Jacobi matrix e′(f∗) is invertible. The well known theorem on the

local convergence of Newton’s method, for which see [28, p. 195], for example, says

that if f∗ is a regular zero of e, then Newton’s method converges quadratically to f∗

provided the initial vector f (0) is close enough to f∗. From (2.2), it is clear that e(f)

is a polynomial in the components of f , which implies the existence and continuity of

all partial derivatives of e(f). Finally, Theorem 4.4 shows that e′(f∗) is invertible if

detF∗(z) and detU∗(z) do not have common zeros.

Now allow the coefficients Bj to be in Cℓ×ℓ. Then e maps Cν to Cν . We stack

complex vectors (αk + iβk)
ν
k=1 to real vectors (α1, β1, α2, β2, . . .)

⊤ and may therefore

think of e as a map of R2ν to itself. We denote the latter map by ε. By what

was said in the previous paragraph, we are left with proving that the Jacobi matrix

ε
′(f∗) ∈ R

2ν×2ν is invertible. As in the proof of Theorem 4.2, we illustrate this for

n = ℓ = 2. In this case the block e′(f)12 is given by (4.4). We write e011 = u0
11 + iv011,

f0
12 = x0

12 + iy012, and so on. When interpreting Cν as R2ν , the Jacobi matrix e′(f)

turns into a real 2ν×2ν matrix M. Accordingly, the block e′(f)12 becomes a real 8×8

matrix M12. This matrix results from replacing ∂e011/∂f
0
12 = ∂u0

11/∂x
0
12+i∂v011/∂x

0
12

by
(

∂u0
11/∂x

0
12 −∂v011/∂x

0
12

∂v011/∂x
0
12 ∂u0

11/∂x
0
12

)
(5.1)

etc. In the Jacobi matrix ε
′(f), we have instead

(
∂u0

11/∂x
0
12 ∂u0

11/∂y
0
12

∂v011/∂x
0
12 ∂v011/∂y

0
12

)
(5.2)

etc. As the function e011 is a polynomial in f0
12, we infer from the Cauchy-Riemann

equations that (5.1) and (5.2) coincide. Consequently, the upper-left 8 × 8 block of

ε
′(f) equals M12. It follows that ε

′(f) = M. Since F∗(z) and U∗(z) do not have

common zeros, the matrix e′(f∗) is invertible due to Theorem 4.4. This shows that

the matrix M is also invertible for f = f∗, which implies the invertibility of ε′(f∗).

The preceding theorem says in particular that Newton’s method will deliver the

factors F∗(z) and U∗(z) of the canonical right factorization of B(z), in which case

the zeros of detF∗(z) and detU∗(z) are located inside and outside the unit circle,

respectively. All we have to ensure is that the initial vector f (0) is sufficiently close

to f∗. However, this is, as almost always with Newton’s method, not a trivial task.

Theorem 5.2 will produce initial vectors under the extra assumption that in addition

to a canonical right factorization also a canonical left factorization exists. Note that

this is the case for spectral factorization. In Theorem 5.3, we present a method for

constructing initial vectors under the sole assumption that a canonical right factor-

ization exists. Of course, in connection with Newton’s method, both theorems are
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heuristics, since they merely deliver a sequence of vectors converging to the exact so-

lution. However, in our concrete numerical tests, we observed that the choices M = n

and M = 2n worked in nearly all cases.

If B(z) admits a canonical right factorization B(z) = F∗(z)U∗(z) with F∗(z)

of degree n, then A(z) stands for the Laurent matrix polynomial (1.1). Recall the

definition of the infinite block Toeplitz matrix T (A) and the Mℓ×Mℓ block Toeplitz

matrix TM (A) given in Section 2. We there also defined the projections PM on

the C
ℓ-valued ℓ2(N,Cℓ). We may clearly consider T (A) and PM on the C

ℓ×ℓ-valued

ℓ2(N,Cℓ×ℓ) as well. Let Tn(B) be the block Toeplitz matrix

Tn(B) :=




B0

B1 B0

...
. . .

Bn−1 Bn−2 · · · B0




and denote by 1 ∈ ℓ2(N,Cℓ×ℓ) the sequence {Iℓ, 0, 0, . . .}. Finally, for obvious reasons,

we denote the principal Mℓ × Mℓ truncation of the infinite matrix T (A)⊤T (A) by

PMT (A)⊤T (A)PM .

Theorem 5.2. If the matrix polynomial B(z) has a canonical right factorization

B(z) = F∗(z)U∗(z), then F∗ = Tn(B)PnT (A)
−11. In case the matrix polynomial B(z)

has canonical right and left factorizations, the matrices TM (A) are invertible for all

sufficiently large M and F[M ] := Tn(B)PnTM (A)−1PM1 converges in ℓ2(N,Cℓ×ℓ) to

F∗ as M → ∞.

Proof. This can be proved in the same way as the scalar version, which is The-

orem 6.1 of [9]. The only difference is that in the matrix case both canonical right

and canonical left factorization are required to guarantee the convergence of the finite

section method; see Section 2.

Theorem 5.3. If the matrix polynomial B(z) has a canonical right factorization

B(z) = F∗(z)U∗(z), then F∗ = Tn(B)PnT (A)
−11, the matrices PMT (A)⊤T (A)PM

are invertible for all M ≥ 1, and

F{M} := Tn(B)Pn(PMT (A)⊤T (A)PM )−1PMT (A)⊤1

converges in ℓ2(N,Cℓ×ℓ) to F∗ as M → ∞.

Proof. Let x = T (A)−11. The previous theorem tells us that F∗ = Tn(B)Pnx. We

have T (A)x = 1, and hence, T (A)⊤T (A)x = T (A)⊤1. Since T (A)⊤T (A) is positive

definite, the systems PMT (A)⊤T (A)PMxM = PMT (A)⊤1 are uniquely solvable for

all M ≥ 1 and xM converges in ℓ2(N,Cℓ×ℓ) to x; see, for example, [8, Proposition

3.2] or [14, Chapter II, §2]. Consequently, Tn(B)PnxM converges to Tn(B)Pnx = F∗

as M → ∞.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 26, pp. 873-897, December 2013



ELA

Canonical Wiener-Hopf and Spectral Factorization 889

6. Test polynomials. We here describe the polynomials which will be used

in the tests in the following section. In particular, we introduce a class of matrix

polynomials such that, after appropriate choice of the parameters, the zeros of the

determinant are located very close to the unit circle.

6.1. Matrix polynomials with zeros outside the circle. Fix a real number

µ ≥ 2, let P (z) = 1 + z + · · ·+ zm−1, define

u0(z) = P (z)− 1 + µ, u1(z) = · · · = uℓ−1(z) = P (z),

and put

Q+(z) =




zm 0 0 · · · 0 u0(z)

−1 zm 0 · · · 0 u1(z)

0 −1 zm · · · 0 u2(z)
...

...
...

...
...

0 0 0 · · · zm uℓ−2(z)

0 0 0 · · · −1 zm + uℓ−1(z)




.

Using the well known identity

det




x 0 0 · · · 0 u0

−1 x 0 · · · 0 u1

0 −1 x · · · 0 u2

...
...

...
...

...

0 0 0 · · · −1 x+ uℓ−1




= xℓ + uℓ−1x
ℓ−1 + · · ·+ u0

with x = zm and uk = uk(z), we get after a direct computation that

detQ+(z) = zℓm + zℓm−1 + · · ·+ z2 + z + µ.

6.2. Matrix polynomials with zeros inside the circle. Take a real number

λ ≥ 2, put R(z) = z + z2 + · · ·+ zn, let

f0(z) = (−1)ℓ+1(R(z) + 1), fk(z) = (−1)ℓ−k+1R(z) (1 ≤ k ≤ ℓ− 2)

and fℓ−1(z) = R(z) + (λ− 1)zn,

and set

Q−(z) = z−n




zn 1 0 · · · 0 0

0 zn 1 · · · 0 0

0 0 zn · · · 0 0
...

...
...

...
...

0 0 0 · · · zn 1

f0(z) f1(z) f2(z) · · · fℓ−2(z) fℓ−1(z)




.
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It is readily verified that the determinant

det




x 1 0 · · · 0 0

0 x 1 · · · 0 0

0 0 x · · · 0 0
...

...
...

...
...

0 0 0 · · · x 1

f0 f1 f2 · · · fℓ−2 fℓ−1




equals fℓ−1x
ℓ−1 − fℓ−2x

ℓ−2 + · · ·+ (−1)ℓf1x+ (−1)ℓ+1f0. Letting x = zn and fk =

fk(z), we obtain after a straightforward computation that

det(znQ−(z)) = λzℓn + zℓn−1 + · · ·+ z2 + z + 1.

6.3. Combinations. Following [5], [9], we choose µ ∈ {2, ℓm} and λ ∈ {2, ℓn}.

Then the zeros of detQ+(z) and det(znQ−(z)) are all outside and inside the unit

circle, respectively. For µ = λ = 2, these zeros lie very close to the unit circle, and

therefore we refer to the cases µ = λ = 2 as the bad cases. We call µ = ℓn and λ = ℓn

the good cases.

The matrix polynomials B(z) = zmQ+(1/z)
⊤Q+(z) will serve us as test polyno-

mials for spectral factorization, while the matrix polynomials B(z) = znQ−(z)Q+(z)

will be employed as test polynomials for Wiener-Hopf factorization,

6.4. Matrix polynomials with random entries. We take matrix polynomials

R(z) = R0+R1z+ · · ·+Rmzm with matrices R0, R1, . . . , Rm whose entries are drawn

from the uniform distribution on [−1, 1], compute B(z) = zmR(1/z)⊤R(z), and then

look for the spectral factorization B(z) = zmQ+(1/z)
⊤Q+(z) = F (z)U(z). As the

exact solution Q+(z) is not known, we measure the Frobenius norm of the residual

error ‖e(f (i))‖2 = ‖E(F(i))‖2 = ‖B(z)− F (i)(z)U (i)(z)‖2 after the ith Newton step.

7. Numerical examples. The numerical results shown in this section were

obtained on a laptop using MATLAB with the machine precision 2−52 ≈ 2.2204−16.

The norm ‖ · ‖ is always the ℓ2 norm. The linear systems for the initial vector and

in the Newton iterations were solved by Gaussian elimination with column pivoting.

Thus, in contrast to [9], we did not take advantage of the structural properties of the

matrices involved, which would reduce the execution times drastically.

Example 7.1. Gohberg, Goldberg, and Kaashoek [15, pp. 612–616] considered

B(z) =

(
−1 1

2

0 0

)
+

(
1 0

0 1

)
z +

(
0 0

−3 1

)
z2.
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and showed that a canonical right factorization is B(z) = F∗(z)U∗(z) with

F∗(z) =

(
− 1

2
1
3

0 0

)
+

(
1 0

0 1

)
z, U∗(z) =

(
2 − 1

3

0 1

)
+

(
0 0

−3 1

)
z.

Theorem 5.2 with n = M = 1 yields the initial polynomial

F (0)(z) = F [1] + Iz =

(
−1 1

2

0 0

)
+

(
1 0

0 1

)
z.

Although the error ‖f (0) − f∗‖ = 0.5270 is quite large, we get after only 5 Newton

iterations the exact solution up to an error of ‖f (5)− f∗‖ = 1.2413 ·10−16. In the same

way, Newton delivers the canonical left factorization B(z) = U∗(z)F∗(z) with

U∗(z) =

(
1 0

−2 2

)
+

(
0 0

−3 1

)
z, F∗(z) =

(
−1 1

2

−1 1
2

)
+

(
1 0

0 1

)
z.

Example 7.2. The matrix polynomial

B(z) =

(
z2 z

0 1

)
=

(
0 0

0 1

)
+

(
0 1

0 0

)
z +

(
1 0

0 0

)
z2

has the canonical right factorization

B(z) = F (z)U(z) =

(
z 0

1 z

)(
z 1

−1 0

)

but does not possess a canonical left factorization; see, e.g., [11, pp. 8–9]. The

matrices TM (A) are indeed singular for all M ≥ 1, so that Theorem 5.2 cannot be

used to get an initial vector. However, Theorem 5.3 is applicable. We take M = 1

and obtain P1T (A)
⊤T (A)P1 = B⊤

1 B1 +B⊤
2 B2 = I2, whence

F{1} = T1(B)P1T (A)
⊤1 = B0B

⊤
1 =

(
0 0

1 0

)
.

Thus, the initial matrix polynomial F{1} + Iz is already the exact factor F (z).

Example 7.3. Let B(z) be the matrix polynomial

(
2 −8

0 −4

)
+

(
0 −5

−5 5

)
z +

(
3 −16

−4 −2

)
z2 +

(
7 −34

−6 −8

)
z3

+

(
−1 −6

−10 12

)
z4 +

(
−1 −5

−9 11

)
z5 +

(
0 −6

−6 6

)
z6 +

(
0 −4

−4 4

)
z7.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 26, pp. 873-897, December 2013



ELA
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The polynomial detB(z) has six zeros inside and eight zeros outside the unit circle.

Thus, n = 3 and m = 4. The factorization B(z) = F∗(z)U∗(z) with

F∗(z) =
1

4

(
1 0

0 1

)
+

1

4

(
0 1

−2 3

)
z +

1

2

(
1 0

0 1

)
z2 +

(
1 0

0 1

)
z3,

U∗(z) =

(
8 −32

0 −16

)
+

(
0 −4

−4 4

)
z +

(
0 −4

−4 4

)
z2 +

(
0 −4

−4 4

)
z3

+

(
0 −4

−4 4

)
z4

is a canonical right factorization. The results of our Newton method are as follows.

We compute the initial data F[3] using Theorem 5.2 with n = M = 3,

F[3] =




F
[3]
0

F
[3]
1

F
[3]
2


 =




B0

B1 B0

B2 B1 B0








B3 B2 B1

B4 B3 B2

B5 B4 B3




−1


I2
0

0



 .

The matrices F
[3]
0 , F

[3]
1 , F

[3]
2 obtained in this way are

1

4

(
0.9856 0.0144

−0.0287 1.0287

)
,

1

4

(
−0.0147 0.9834

−1.9668 2.9356

)
,

1

2

(
0.9755 −0.0201

0.0401 0.9153

)
.

Starting the Newton iteration with the vector f (0) resulting from stacking F(0) := F[3]

we observe the following errors.

i 0 1 2 3 4 5

‖f (i) − f∗‖ 0.0542 2.9 · 10−4 4.1 · 10−9 6.1 · 10−16 2.9 · 10−16 1.2 · 10−16

Example 7.4. We take B(z) = zmQ+(1/z)
⊤Q+(z) with Q+(z) as in Subsec-

tion 6.1. We so are in the case of spectral factorization with n = m. Our algorithm

delivers a factorization

B(z) = (F0 + · · ·+ Fm−1z
m−1 + Izm)(U0 + · · ·+ Um−1z

m−1 + Umzm),

and from what was said in Section 2, we know that the coefficients of the matrix

polynomial Q+(z) = Q∗
0 + · · · + Q∗

mzm are given by Q∗
j = Q∗

0F
∗
n−j (1 ≤ j ≤ n) or,

alternatively, by Q∗
k = Q−1

0 Uk (0 ≤ k ≤ n) where Q0 is the positive definite matrix

satisfying U0 = Q0Q
∗
0.

We tested our algorithm in the good and bad cases mentioned in Subsection 6.3.

The initial vector f (0) was determined with M = m according to Theorem 5.2 by

stacking F[m] as in (4.2). Tables 1 and 2 show the errors ‖f (i) − f∗‖, the spectral
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ℓ 4 4 8 8 16 16

m 100 600 25 150 5 40

mℓ2 1600 9600 1600 9600 1280 10240

i = 0 7.6 18.5 6.1 15.0 4.2 11.8

i = 1 2.3 5.6 2.4 5.9 1.9 5.2

i = 2 0.26 0.64 0.78 1.9 0.78 2.2

i = 3 8.7 · 10−4 0.0021 0.11 0.27 0.26 0.70

i = 4 9.0 · 10−8 2.1 · 10−7 0.0020 0.0047 0.039 0.11

i = 5 1.0 · 10−14 1.6 · 10−14 3.3 · 10−7 7.7 · 10−7 8.4 · 10−4 0.0023

i = 6 2.3 · 10−15 5.5 · 10−15 6.5 · 10−14 1.6 · 10−13 3.3 · 10−7 8.5 · 10−7

i = 7 5.0 · 10−18 3.7 · 10−16 3.0 · 10−15 3.1 · 10−14 1.2 · 10−13 2.9 · 10−13

i = 8 2.6 · 10−18 2.2 · 10−18 5.1 · 10−15 6.0 · 10−15 1.6 · 10−15 7.5 · 10−15

i = 9 1.9 · 10−18 2.3 · 10−18 9.4 · 10−16 2.1 · 10−15 4.2 · 10−16 1.3 · 10−15

i = 10 1.9 · 10−18 2.3 · 10−18 9.4 · 10−16 1.7 · 10−15 2.9 · 10−17 1.3 · 10−15

κ10 2.7 · 108 4.8 · 1011 1.6 · 107 1.9 · 1010 5.4 · 105 9.2 · 108

τ 0.879 s 36.3 s 0.333 s 16.6 s 0.123 s 13.2 s

Table 1: Spectral factorization in the good case.

ℓ 4 4 8 8 16 16

m 100 600 25 150 5 40

mℓ2 1600 9600 1600 9600 1280 10240

i = 0 4.1 9.7 3.3 7.4 2.8 5.8

i = 2 0.50 1.2 0.51 1.1 0.56 0.90

i = 4 0.10 0.27 0.06 1.2 0.07 0.16

i = 6 0.02 0.07 0.0076 0.04 0.0081 0.03

i = 8 0.0035 0.016 7.6 · 10−4 0.0094 0.0013 0.0036

i = 10 1.8 · 10−4 0.0035 1.7 · 10−4 0.0016 1.5 · 10−4 2.5 · 10−4

i = 12 9.1 · 10−6 7.1 · 10−4 1.1 · 10−5 1.0 · 10−4 1.4 · 10−6 4.2 · 10−5

i = 14 2.3 · 10−7 9.2 · 10−5 2.3 · 10−8 4.0 · 10−6 4.3 · 10−14 6.7 · 10−6

i = 16 1.3 · 10−12 1.0 · 10−6 2.4 · 10−13 5.6 · 10−7 6.0 · 10−14 7.5 · 10−7

i = 18 1.8 · 10−12 3.4 · 10−8 2.4 · 10−13 2.2 · 10−8 4.7 · 10−14 5.2 · 10−9

i = 20 1.2 · 10−12 1.7 · 10−10 2.9 · 10−13 9.7 · 10−12 4.9 · 10−14 1.6 · 10−12

κ20 1.6 · 107 3.5 · 109 5.4 · 106 1.2 · 109 7.7 · 105 4.7 · 108

τ 0.879 s 36.3 s 0.333 s 16.6 s 0.123 s 13.2 s

Table 2: Spectral factorization in the bad case.
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condition number κ10, κ20 of the Jacobi matrices e′(f (10)), e′(f (20)), and the average

execution time τ for one Newton step. The errors ‖f (i) − f∗‖ for i = 10 in Table 1

and i = 20 in Table 2 remain stationary when continuing the Newton iteration.

Example 7.5. We choose Q+(z) and Q−(z) as in Subsections 6.1 and 6.2 with

m ≥ n and consider B(z) = znQ−(z)Q+(z). Table 3 shows the results for m = n in

the good case. For ℓ = 4 and ℓ = 8, we determined the initial vector using Theorem 5.2

with M = n. For ℓ = 16, this choice of M produced an initial vector for which the

Newton iteration diverged. We enforced convergence by taking M = 2n in this case.

We also tried our hands for m = n in the bad case, but encountered problems with

getting an initial vector which makes the Newton iteration converge. For example,

in the case ℓ = 4, we reached convergence of the Newton iteration only after running

the computation of the initial vector with M ≈ n2/2, and despite this effort we still

had ‖f (0) − f∗‖ > 1 for each n. Having recourse to the method of Theorem 5.3 did

also not remedy the problem.

ℓ 4 4 8 8 16 16

n 100 600 25 150 5 40

nℓ2 1600 9600 1600 9600 1280 10240

i = 0 8.8 21.7 17.6 44.0 9.8 26.3

i = 1 0.39 0.94 5.1 12.9 8.5 13.8

i = 2 0.0035 0.0083 0.65 1.4 2.0 3.4

i = 3 5.1 · 10−7 1.2 · 10−6 0.059 0.15 0.32 0.93

i = 4 2.4 · 10−14 5.7 · 10−14 4.0 · 10−4 9.1 · 10−4 0.017 0.038

i = 5 4.5 · 10−15 1.4 · 10−14 3.6 · 10−9 7.5 · 10−9 5.7 · 10−5 7.2 · 10−5

i = 6 1.3 · 10−15 3.8 · 10−15 1.7 · 10−15 5.4 · 10−15 1.5 · 10−9 5.2 · 10−10

i = 7 6.7 · 10−16 1.4 · 10−15 7.6 · 10−16 1.7 · 10−15 1.3 · 10−15 4.8 · 10−15

i = 8 6.7 · 10−16 1.4 · 10−15 7.3 · 10−16 1.7 · 10−15 3.7 · 10−16 1.4 · 10−15

i = 9 6.7 · 10−16 1.4 · 10−15 7.3 · 10−16 1.7 · 10−15 1.1 · 10−16 1.4 · 10−15

i = 10 6.7 · 10−16 1.4 · 10−15 7.3 · 10−16 1.7 · 10−15 1.1 · 10−16 1.3 · 10−15

κ10 2.7 · 108 3.5 · 1011 1.3 · 107 1.8 · 1010 1.9 · 105 8.4 · 108

τ 0.862 s 36.2 s 0.326 s 16.6 s 0.117 s 13.5 s

Table 3: Wiener-Hopf factorization in the good case with m = n.

In Table 4, we see the results for m = 2n. Due to the similarity of the results

in the good and bad cases, we confined ourselves to the selection made in Table 4.

In both cases, the stationary phase is reached after 6 iterations. The initial vector

was computed using Theorem 5.2 with n = M . Conspicuously, for ℓ = 4 in the

bad case, the initial vector is extremely close to the exact solution, so that Newton

iteration does not yield any improvement. With the exception of ℓ = 16, n = 5, we
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experienced this astonishing accuracy of the initial vector also in other examples we

have examined.

good good bad bad good good

ℓ 4 4 4 16 16 16

n 100 600 600 5 5 40

nℓ2 1600 9600 9600 1280 1280 10240

i = 0 0.80 1.9 7.0 · 10−15 0.14 0.12 0.20

i = 1 0.079 0.19 3.3 · 10−12 0.028 0.013 0.011

i = 2 0.0021 0.0050 4.2 · 10−13 0.0028 7.5 · 10−4 0.0011

i = 3 1.5 · 10−8 3.7 · 10−8 6.6 · 10−14 1.5 · 10−4 1.3 · 10−6 2.8 · 10−6

i = 4 2.0 · 10−15 8.0 · 10−14 5.8 · 10−14 6.2 · 10−7 1.3 · 10−12 3.7 · 10−12

i = 5 1.9 · 10−15 1.7 · 10−14 1.3 · 10−13 1.0 · 10−11 1.7 · 10−15 5.8 · 10−15

i = 6 1.0 · 10−15 2.8 · 10−15 9.6 · 10−14 6.4 · 10−15 4.7 · 10−16 1.3 · 10−15

i = 7 1.0 · 10−15 1.5 · 10−15 1.5 · 10−13 4.7 · 10−15 1.1 · 10−16 1.3 · 10−15

i = 8 1.0 · 10−15 1.5 · 10−15 8.6 · 10−14 7.7 · 10−15 1.1 · 10−16 1.3 · 10−15

i = 9 1.0 · 10−15 1.5 · 10−15 7.8 · 10−14 7.7 · 10−15 1.1 · 10−16 1.3 · 10−15

i = 10 1.0 · 10−15 1.5 · 10−15 9.3 · 10−14 1.1 · 10−14 1.1 · 10−16 1.3 · 10−15

κ10 3.6 · 108 4.7 · 1011 2.6 · 106 2.4 · 104 2.2 · 105 1.0 · 109

τ 1.35 s 53.9 s 53.2 s 0.162 s 0.160 s 15.2 s

Table 4: Wiener-Hopf factorization with m = 2n.

Example 7.6. For each pair ℓ,m, we consider 100 samples constructed as de-

scribed in Subsection 6.4. The results are in Table 5. In each sample we performed

20 Newton steps and computed ε = ‖e(f (20))‖2. We let εmax denote by the maximum

of these 100 numbers, τ0 the average time for the determination of the initial vector,

and τ20 the average time for the entirety of all 20 Newton steps. We also divided the

100 numbers ε into classes: the kth class consists of the ε with 10−k < ε ≤ 10−(k−1),

and c(k) stands for the cardinality of the kth class. Finally, the initial vector was

determined using Theorem 5.2 with M = m.

In the examples withmℓ2 < 10000, we observed that typically in 80 of 100 samples

the residual error ‖e(f (i))‖2 remains nearly stationary after 10 to 13 iterations. There

was actually no sample where we needed more than 17 iterations. In the two examples

with mℓ2 = 10000, the number of iterations needed to enter a stationary state is only

slightly higher. For instance, in 85 of 100 samples we reached stationary behavior

after 13 to 16 iterations. In both cases, we didn’t need more than 19 iterations.
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ℓ 5 5 10 10 15 15

m 100 400 25 100 20 40

mℓ2 2500 10000 2500 10000 4500 9000

c(14) 0 0 10 0 0 0

c(13) 100 0 90 79 100 100

c(12) 0 100 0 21 0 0

εmax 4.9 · 10−13 3.9 · 10−12 1.6 · 10−13 1.4 · 10−12 2.2 · 10−13 5.5 · 10−13

τ0 0.0502 s 0.8196 s 0.0044 s 0.0803 s 0.0039 s 0.0189 s

τ20 30.0 s 590 s 13.8 s 330 s 36.5 s 202.5 s

Table 5: Spectral factorization of randomly chosen matrix polynomials.
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