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Abstract. A symplectic version of the classical Hurwitz-Radon theorem is presented in this

paper. This problem was first approached but without full success by L.K. Hua in a paper on

geometry of matrices, in 1947. The present paper solves Hua’s problem in a complete and elementary

way. As a consequence, a direct matrix proof of a related result of D.B. Shapiro, which is of

independent interest, is given. It turns out that the sympletic version is closely related to Hurwitz

and Radon’s original orthogonal version via a remarkable observation of Hua. Hua’s cyclic recurrence

relation and its unitary version are also presented.
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1. Introduction. Let G = GL(n, F ), O(n, F ) or Sp(n, F ). The following two

equations for elements A1, . . . , Ar (or B1, . . . , Br, respectively) of G have been studied

extensively:

AiAj +AjAi = −2δij ,(1.1)

and

BiBj +BjBi = 2δij ,(1.2)

where δij is the Kronecker symbol and stands for the corresponding scalar matrix.

(Here we always let F be a field of characteristic other than 2, and hence, the above

two equations are different.)

For the case of G = GL(n, F ) and G = O(n, F ), the following problem has been

studied by many authors since Hurwitz’s pioneering work in 1898: For any fixed field

F and positive integer n, determine the largest possible value of r for which there

exist r matrices satisfying (1.1) (or (1.2), respectively). Some related results including

the famous Hurwitz-Radon theorem (for the case of orthogonal group) are reviewed

in the following section, as they are needed in later sections.
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For the case of G = Sp(n, F ), the corresponding problem for equation (1.1) was

first studied by L.K. Hua [6] with background on geometry of matrices in 1947. By

his surpassing matrix skills, Hua successfully found a remarkable connection between

this problem for G = Sp(n,C) and the Hurwitz’s original problem for G = O(n,C),

which reduced the former problem to the latter one. However, it seems that Hua was

not aware of the classical Hurwitz-Radon theorem and tried to resolve this problem on

his own. Since this work was buried in a geometrical discussion, Hua’s contribution

on the Hurwitz-Radon theorem was rarely known. But in the long run, his idea and

approach turned out to be really useful and powerful.

This paper is to remedy Hua’s original incomplete treatment to obtain a symplec-

tic version of the Hurwitz-Radon theorem and the corresponding result for equation

(1.2). These results concerning symplectic groups are new. They can be used to prove

a related theorem of D.B. Shapiro, which was also viewed as a symplectic version of

the Hurwitz-Radon theorem. However, note that the present version is more precise

and powerful than the Shapiro’s. The key point in our proof of these new results is

an elementary observation of Hua, which is completed here as a theorem called Hua’s

cyclic recurrence relations. These remarkable relations and their unitary version also

lead to a simple proof of the classical Hurwitz-Radon theorem.

2. Review of some related work.

2.1. The case of the orthogonal group. For the case of G = O(n, F ), equa-

tions (1.1) are known as the Hurwitz-Radon equations, which are connected with the

problems on compositions of quadratic forms. The fundamental result can be stated

in the following compact form due to Radon [11].

Theorem 2.1 (Hurwitz-Radon theorem). Let F = C or R. There exist r

matrices A1, . . . , Ar ∈ O(n, F ) satisfying the Hurwitz-Radon equations (1.1) if and

only if r ≤ R(n), where R(n) = 8a+2b−1 for n = 24a+bc, b = 0, 1, 2, 3 and c is odd.

Radon [11] proved this theorem for F = R, while the corresponding result for F =

C was obtained by Hurwitz [7]. Since Hurwitz’s and Radon’s independent but closely

related pioneering works, these equations appeared naturally in various settings, such

as projective geometry, composition algebras, vector product in Euclidean spaces, etc.

In particular, Eckmann [3] found an interesting interpretation of the Hurwitz-Radon

number R(n) in terms of the largest number of orthogonal linear vector fields on the

sphere in Rn. Besides so many interesting proofs of Hurwitz-Radon’s theorem (cf.

Lam [8] and Lin [9]), Shapiro [12] also extended this result to an arbitrary field of

characteristic different from 2 in 1977. Moreover, since Shapiro considered (1.1) and

(1.2) simultaneously, a similar result for equation (1.2) had been also obtained. We

will see that Shapiro’s remarkable generalization can be viewed as a variation of an
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old result due to Newman and Williamson independently. From this point of view, the

present author refined and simplified Shapiro’s original abstract treat by supplying a

direct proof of the following concrete matrix result (which can be viewed as a “mixed

Hurwitz-Radon theorem”) in [9]:

Theorem 2.2 (Mixed Hurwitz-Radon theorem). Let F be a field of characteristic

different from 2. Suppose there are r + s matrices A1, . . . , Ar, B1, . . . , Bs ∈ O(n, F )

satisfying





AiAj +AjAi = −2δij (i, j = 1, . . . , r)

BkBl +BlBk = 2δkl (k, l = 1, . . . , s)

AiBk = −BkAi (i = 1, . . . , r, k = 1, . . . , s),

(2.1)

then r+s ≤ 2q+1, here q is defined by the condition n = 2qn0, where n0 is odd. More-

over, there exist r + s = 2q + 1 matrices A1, . . . , Ar, B1, . . . , Bs ∈ O(n, F ) satisfying

the above equations if and only if s ∈ [0, 2q + 1] satisfies s ≡ q + 1 (mod 4).

It is easy to deduce the general Hurwitz-Radon theorem from the above result.

The proof (cf. Lin [9]) suggests that Theorem 2.1 can be restated in the following

equivalent form:

Theorem 2.3. Suppose F is a field of characteristic different from 2. Then there

exist r matrices A1, . . . , Ar ∈ O(n, F ) satisfying the Hurwitz-Radon equations (1.1) if

and only if r ≤ R(n), where

R(n) =





2q if q ≡ 0 (mod 4)

2q − 1 if q ≡ 1 (mod 4)

2q − 1 if q ≡ 2 (mod 4)

2q + 1 if q ≡ 3 (mod 4)

for n = 2qn0, n0 is odd.

Similarly, one can deduce the following result form Theorem 2.2, which can be

viewed as a dual version of Theorem 2.3:

Theorem 2.4. Suppose F is a field of characteristic different from 2. Then there

exist s matrices B1, . . . , Bs ∈ O(n, F ) satisfying the dual Hurwitz-Radon equations

(1.2) if and only if s ≤ S(n), where

S(n) =





2q + 1 if q ≡ 0 (mod 4)

2q if q ≡ 1 (mod 4)

2q − 1 if q ≡ 2 (mod 4)

2q − 1 if q ≡ 3 (mod 4)

for n = 2qn0, n0 is odd.
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2.2. The case of general linear group. For the case of G = GL(n, F ), these

equations appeared first in the work of some famous physicists such as Dirac, Ed-

dington and Pauli. They studied the equations (together with the corresponding

differential versions) for GL(2,C) and GL(4,C) respectively. In particular, Edding-

ton studied a mixed equation combining (1.1) and (1.2) in GL(n,R) and obtained

an interesting result. Eddington’s result was generalized to GL(n,C) and GL(n,R)

by Newman [10] and Williamson [15] independently. In 1953, Dieudonné [2] obtained

a similar version of the above Hurwtiz-Radon theorem for GL(n,K), where K is a

general division ring. Dieudonné noted the similarity between Newman’s result and

Hurwitz’s classical result (it seems that he had overlooked Radon’s and Williamson’s

contributions). However, Dieudonné neither realized that the classical Hurwitz-Radon

theorem could be proved easily by transferring of Newman-Williamson theorem to

O(n, F ) as shown in Lin [9], nor noticed that original Newman-Williamson theorem

for GL(n,R) could be generalized faithfully to GL(n,K), where K is a division ring

such that −1 = x2 + y2, xy = yx is unsolvable in K. Here we only state the result for

the commutative case.

Theorem 2.5. Let F be a field of characteristic different from 2. Suppose

x2+y2 = −1 has no solution in F . If there are r+s matrices A1, . . . , Ar, B1, . . . , Bs ∈

GL(n, F ) satisfying (2.1) then r + s ≤ 2q + 1, here q is defined by the condition n =

2qn0, where n0 is odd. Moreover, there exist r+s = 2q+1 matrices A1, . . . , Ar, B1, . . . ,

Bs ∈ GL(n, F ) satisfying the above equations if and only if the integer s ∈ [0, 2q + 1]

satisfies s ≡ q + 1 (mod 4).

The proof is omitted, since it is similar to the proof of Theorem 2.2 given in

Lin [9]. One can derive the following two corollaries due to Dieudonné, which is also

presented in Lam’s famous book on quadratic forms cf. [8, pp. 126–127].

Theorem 2.6. Let F be a field of characteristic different from 2, suppose x2 +

y2 = −1 has no solution in F . Then there exist r matrices A1, . . . , Ar ∈ GL(n, F )

satisfying (1.1) if and only if r ≤ R(n), where R(n) is defined in Theorem 2.3.

Theorem 2.7. Let F be a field of characteristic different from 2, suppose x2 +

y2 = −1 has no solution in F . Then there exist s matrices B1, . . . , Bs ∈ GL(n, F )

satisfying (1.2) if and only if s ≤ S(n), where S(n) is defined in Theorem 2.4.

3. The case of the symplectic group.

3.1. Hua’s reduction lemma. Hua found a useful result which reduces the

problem for the symplectic group to the problem for orthogonal group (at least for an

algebraically closed field). To state this result, we introduce a terminology: A set of

r + s matrices A1, . . . , Ar, B1, . . . , Bs satisfying (2.1) is called an (r, s)-family. Then
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we have the following lemma which is essentially due to Hua [6].

Lemma 3.1. Suppose F is an algebraically closed field and r ≥ 2. Then there

exists an (r, s)-family in Sp(n, F ) if and only if there exists an (s, r − 2)-family in

O(n/2, F ).

The proof was based on Hua’s following observation on the canonic form of a

(2, 0)-family in Sp(n, F ) (cf. Hua [6, Theorem 35]):

Lemma 3.2. Let F be an algebraically closed field. Suppose that A1, A2 ∈

Sp(n, F ) satisfy

A2
1 = A2

2 = −I and A1A2 = −A2A1.

Then there exists P ∈ Sp(n, F ) such that

P−1A1P =

[
iI 0

0 −iI

]
and P−1A2P =

[
0 iI

iI 0

]
.

Now we can prove Lemma 3.1 as follows:

Proof. By Lemma 3.2, without loss of generality, we assume that

A1 =

[
iI 0

0 −iI

]
and A2 =

[
0 iI

iI 0

]
.

It is not hard to show that any matrix X anti-commuting with A1 and A2 simulta-

neously is of the form

X =

[
0 Y

−Y 0

]
, where Y ∈ M(n/2, F ).

Moreover, X ∈ Sp(n, F ) if and only if Y ∈ O(n/2, F ), X2 = ±I if and only if

the corresponding Y satisfies Y 2 = ∓I, and X1, X2 anti-commute if and only if the

corresponding Y1, Y2 anti-commute.

For later application we also need the following result on the canonic form of a

(0, 2)-family in Sp(n, F ), which was missed by Hua.

Lemma 3.3. Let F be an algebraically closed field. Suppose that B1, B2 ∈

Sp(n, F ) satisfy

B2
1 = B2

2 = I and B1B2 = −B2B1.

Then n = 4m and there exists P ∈ Sp(n, F ) such that

P−1B1P =

[
0 −J

J 0

]
and P−1B2P =

[
0 iJ

iJ 0

]
.
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Proof. Let A = B1B2 and B = B1, and V± = {ξ ∈ F 2n, Aξ = ±iξ}. For any pair

of ξ ∈ V+, η ∈ V− such that [ξ, η] = 1, the subspace W spanned by ξ, Bη, η,−Bξ is

invariant under A and B. In fact, we have

Aξ = iξ, A(Bη) = −B(Aη) = −B(−iη) = Bη, Aη = −iη, A(−Bξ) = BAξ = i(Bξ),

and

Bξ = −(−Bξ), B(Bη) = η, B(η) = Bη, B(−Bξ) = −ξ.

Moreover, from these relations it can be shown that ξ, Bη, η,−Bξ is a symplec-

tic basis for W . Hence, by induction, we obtain a symplectic basis of the form

ξ1, Bη1, . . . , ξm, Bηm, η1,−Bξ1, . . . , ηm,−Bξm. If we take

P = [ξ1, Bη1, . . . , ξm, Bηm, η1,−Bξ1, . . . , ηm,−Bξm],

then it is easy to verify that P ∈ Sp(n, F ) has the desired property.

This lemma has the following consequence.

Lemma 3.4. Suppose F is an algebraically closed field and s ≥ 2. Then there

exists an (r, s)-family in Sp(n, F ) if and only if there exists an (s − 2, r)-family in

Sp(n/2, F ).

Proof. Without loss of generality, by Lemma 3.4, we assume that

B1 =

[
0 −J

J 0

]
= B̃1 and B2 =

[
0 iJ

iJ 0

]
= B̃2.

Then any matrix X anti-commuting with B̃1 and B̃2 simultaneously is of the form

X =

[
iY 0

0 iJY J

]
,

where Y ∈ M(m,F ), (n = 2m = 4l). Moreover, X ∈ Sp(n, F ) ⇐⇒ Y ∈ Sp(m,F ).

X2 = ±I ⇐⇒ Y 2 = ∓I. X1, X2 ∈ Sp(n, F ) anti-commute if and only if the

corresponding Y1, Y2 ∈ Sp(m,F ) anti-commute.

3.2. The symplectic Hurwitz-Radon theorem and its duality: Part I. In

this subsection, we present a symplectic version of the mixed Hurwitz-Radon theorem

(Theorem 3.5), and use it to prove a symplectic analogy of the Hurwitz-Radon theorem

(Theorem 3.7).

Theorem 3.5. Let F be a field of characteristic different from 2. Suppose

x2+y2 = −1 has a solution in F . If there are r+s matrices A1, . . . , Ar, B1, . . . , Bs ∈
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Sp(n, F ) satisfying (2.1), then r + s ≤ 2q + 1, here q is defined by the condition n =

2qn0, where n0 is odd. Moreover, there exist r+s = 2q+1 matrices A1, . . . , Ar, B1, . . . ,

Bs ∈ Sp(n, F ) satisfying (2.1) if and only if the integer s ∈ [0, 2q+1] satisfies s ≡ q−1

(mod 4).

Note that there is a difference between Theorem 2.2 and Theorem 3.5: Theorem

2.2 is true for any field of characteristic different from 2, while Theorem 3.5 is true

only for those fields F such that x2 + y2 = −1 is solvable in F (for example, any

algebraic field or any Galois filed).

In the following, we reduce the proof of Theorem 3.5 to Theorem 2.2.

Proof. We divide the proof into two steps.

Step 1. We first prove the theorem under the assumption that F is algebraically

closed.

The case for n = 2n0. We have to show that if there exists an (r, s)-family in

Sp(2n0, F ), then r + s ≤ 3 and the equality holds if and only if (r, s) = (3, 0).

Suppose there is a given (r, s)-family in Sp(2n0, F ), then by Lemma 3.3, we must

have s ≤ 1.

If s = 1, then we must have r = 0, since a (1, 1)-family A,B can be converted to

a (0, 2) family by replacing A with AB. In this case r + s = 0 + 1 = 1 < 3.

If s = 0, then we will show that the maximum value of r is 3. Suppose r ≥ 2.

Then by Lemma 3.1, there exists a (0, r − 2) family in O(n0, F ). By Theorem 2.4

or a direct argument, r − 2 ≤ S(n0) = 1, i.e., r ≤ 3. Finally, we can construct a

(3, 0)-family in Sp(2n0, F ) via Lemma 3.1 (see the proof of Lemma 3.2) as follows:

A1 =

[
iI 0

0 −iI

]
, A2 =

[
0 iI

iI 0

]
, A3 =

[
0 I

−I 0

]
.

Now we consider the case of n = 2qn0 where q ≥ 2.

By Lemma 3.1, we can construct a (q+2, q−1)-family in Sp(n, F ) via a (q−1, q)-

family in O(n/2, F ) as follows:

A1 =

[
iI 0

0 −iI

]
, A2 =

[
0 iI

iI 0

]
,

A3 =

[
0 B1

−B1 0

]
, . . . , Aq+2 =

[
0 Bq

−Bq 0

]
,

B1 =

[
0 A1

−A1 0

]
, . . . , Bq−1 =

[
0 Aq−1

−Aq−1 0

]
,

where A1, . . . , Aq−1, B1, . . . , Bq is a (q− 1, q)-family in O(n/2, F ). To obtain another
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(2q + 1 − s, s)-family with s ≡ q − 1 (mod 4), we only need to use the following

Newman-Williamson trick described in Lemma 3.6 repeatedly.

Now we show that any (r, s)-family in Sp(n, F ) should satisfy r + s ≤ 2q + 1. If

r ≥ 2, then by Lemma 3.1, there exists an (s, r − 2)-family in O(n/2, F ), hence by

Theorem 2.2, we have s+(r− 2) ≤ 2(q− 1)+ 1, i.e., r+ s ≤ 2q+1. Now suppose for

the given maximal (r, s)-family in Sp(2qn0, F ) we have r ≤ 1, then s ≥ (2q+1)− r ≥

5 − 1 = 4, hence by Lemma 3.6, we can transform it to an (r + 4, s − 4)-family in

Sp(2qn0, F ). And from the previous discussion it follows that (r+4)+(s−4) ≤ 2q+1,

i.e., r + s ≤ 2q + 1.

Step 2. If x2 = −1 has a solution in F , then the above (q + 2, q − 1)-family

is already contained in Sp(n, F ). For the general case, suppose λ2 + µ2 = −1 for

λ, µ ∈ F . If we replace the two pure imaginary matrices

A1 =

[
iI 0

0 −iI

]
and A2 =

[
0 iI

iI 0

]

in the above construction by

Ã1 =
1

i
(λA1 + µA2) =

[
λI µI

µI −λI

]
and Ã2 =

1

i
(−µA1 + λA2) =

[
−µI λI

λI µI

]

and keep the other matrices unchanged, then we get a (q+2, q−1)-family in Sp(n, F ).

Lemma 3.6. Let G be a matrix group containing −I. Suppose there exists an

(r, s)-family in G. If r ≥ 4, then there exists an (r − 4, s+ 4)-family in G. If s ≥ 4,

then there exists an (r + 4, s− 4)-family in G.

The following proof is essentially due to M.H.A. Newman [10], who had acknowl-

edged John Williamson in the Correction part of [10].

Proof. Given any (4, 0)-family A1, A2, A3, A4, if we construct a new set of four

matrices B1, B2, B3, B4 as follows:

B1 = A2A3A4, B2 = A1A3A4, B3 = A1A2A4, B4 = A1A2A3,

then these four matrices B1, B2, B3, B4 will form a (0, 4)-family. Moreover, it is easy

to see that a matrix X anti-commutes with A1, A2, A3, A4 simultaneously if and only

if X anti-commutes with B1, B2, B3, B4 simultaneously. Thus, an (r + 4, s)-family

can be converted to an (r, s+4)-family by the above transformation. By symmetry, a

(r, s+4)-family can be converted to an (r+4, s)-family by a similar transformation.

As in the orthogonal case, Theorem 3.5 also has two important corollaries as

follows:

Theorem 3.7 (Symplectic Hurwitz-Radon theorem (I)). Let F be a field of char-

acteristic different from 2. Suppose x2 + y2 = −1 has a solution in F . Then there
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are r matrices A1, . . . , Ar ∈ Sp(n, F ) satisfying (1.1) if and only if r ≤ P (n), where

P (n) =





2q − 1 if q ≡ 0 (mod 4)

2q + 1 if q ≡ 1 (mod 4)

2q if q ≡ 2 (mod 4)

2q − 1 if q ≡ 3 (mod 4)

for n = 2qn0, n0 is odd.

Proof. Set n = 2qn0, where n0 is odd. There are four cases according to the

possible values of q module 4.

If q ≡ 0 (mod 4), then by Theorem 3.5, there exists a (2q − 2, 3)-family in

Sp(n, F ), as a corollary, P (n) ≥ 2q − 2. Note that if there are 2q − 2 matrices

A1, . . . , A2q−2 satisfying (1.1), then we can add one more matrixA2q−1 = A1 · · · A2q−2

to this set to obtain a set of 2q − 1 matrices satisfying (1.1). Hence, P (n) ≥ 2q − 1.

We claim that we have P (n) = 2q − 1 in this case. If it is not the case, then we have

P (n) ≥ 2q. Let A1, . . . , A2q be a (2q, 0)-family, set B1 = A1 · · · A2q, then it is easy to

show that A1, . . . , A2q, B1 is a (2q, 1)-family. Thus, by Theorem 3.5, q must satisfy

q ≡ 3 (mod 4), which is contradictory to the hypothesis q ≡ 0 (mod 4). Hence,

P (n) = 2q − 1.

If q ≡ 1 (mod 4), then by Theorem 3.5, there exists a (2q + 1, 0)-family in

Sp(n, F ), and r = 2q + 1 attains the maximum value of r, hence P (n) = 2q + 1 in

this case.

If q ≡ 2 (mod 4), then by Theorem 3.5, there exists a (2q, 1)-family in Sp(n, F ).

As a corollary, there exists a (2q, 0)-family in Sp(n, F ), and therefore, P (n) ≥ 2q.

We only need to show that P (n) ≤ 2q. If it is not the case, then P (n) = 2q + 1,

hence there would be a (2q+1, 0)-family in Sp(n, F ). Thus, by Theorem 3.5 we have

q ≡ 1 (mod 4), which is contradictory to the hypothesis q ≡ 2 (mod 4). Hence,

P (n) = 2q.

If q ≡ 3 (mod 4), then by Theorem 3.5, there exists a (2q − 1, 2)-family in

Sp(n, F ), as a corollary, P (n) ≥ 2q − 1. We claim that we have P (n) = 2q − 1

in this case. If it is not the case, then P (n) ≥ 2q. Let A1, . . . , A2q be a (2q, 0)-

family, set A2q+1 = A1 · · · A2q, then it is easy to see that A2q+1 ∈ Sp(n, F ) and

A2
2q+1 = −I, moreover, A2q+1 anti-commuts with each Ai(i = 1, . . . , 2q). In other

words, A1, . . . , A2q+1 form a (2q+1, 0)-family. Thus, by Theorem 3.5, q must satisfy

q ≡ 1 (mod 4), which is contradictory to the hypothesis q ≡ 3 (mod 4). Hence,

P (n) = 2q − 1.

Theorem 3.8. Let F be a field of characteristic different from 2. Suppose

x2 + y2 = −1 has a solution in F . Then there are s matrices B1, . . . , Bs ∈ Sp(n, F )
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satisfying (1.2) if and only if s ≤ Q(n), where

Q(n) =





2q − 1 if q ≡ 0 (mod 4)

2q − 1 if q ≡ 1 (mod 4)

2q + 1 if q ≡ 2 (mod 4)

2q if q ≡ 3 (mod 4)

for n = 2qn0, n0 is odd.

The proof is similar to the above proof, and hence, it is omitted.

3.3. The symplectic Hurwitz-Radon theorem and its duality (II). For

a field F such that x2 + y2 = −1 has no solution in F , the corresponding results for

Theorem 3.7 and Theorem 3.8 are as follows.

Theorem 3.9 (Symplectic Hurwitz-Radon theorem (II)). Let F be a field of

characteristic different from 2. Suppose x2 + y2 = −1 has no solution in F . Then

there are r matrices A1, . . . , Ar ∈ Sp(n, F ) satisfying (1.1) if and only if r ≤ 2q − 1,

where q is determined by n = 2qn0 (n0 is odd).

Proof. Denote P ′
F (n) for the largest integer r such that there exist r matrices

A1, . . . , Ar ∈ Sp(n, F ) satisfying (1.1). Note that Sp(n, F ) are contained in both

GL(n, F ) and Sp(n,E) where E = F (i). Hence, we have P ′
F (n) ≤ R(n) and P ′

F (n) ≤

P ′
E(n) = P (n) (by Theorem 3.7). Note that from the formula for R(n) and P (n) we

have

min{R(n), P (n)} =





min{2q, 2q − 1} if q ≡ 0 (mod 4)

min{2q − 1, 2q + 1} if q ≡ 1 (mod 4)

min{2q − 1, 2q} if q ≡ 2 (mod 4)

min{2q + 1, 2q − 1} if q ≡ 3 (mod 4)

= 2q − 1

for n = 2qn0, n0 is odd. Therefore, we have P ′
F (n) ≤ 2q − 1. In order to show that

the equality always holds, we only need to construct a (2q − 1, 0)-family in Sp(n, F ).

In fact, we can easily construct such a family via a maximal (r, s)-family in O(n/2, F )

as follows. Let A1, . . . , Ar, B1, . . . , Bs be a maximal (r, s)-family in O(n/2, F ). If we

set

Ai =

[
Ai 0

0 Ai

]
, (i = 1, . . . , r), Ar+j =

[
0 Bj

−Bj 0

]
(j = 1, . . . , s),

then these matrices A1, . . . ,A2q−1 form a (2q − 1, 0)-family in Sp(n, F ).

Theorem 3.10. Let F be a field of characteristic different from 2. Suppose

x2 + y2 = −1 has no solution in F . Then there are s matrices B1, . . . , Bs ∈ Sp(n, F )
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satisfying (1.2) if and only if s ≤ 2q − 1, where q is determined by n = 2qn0 (n0 is

odd).

Proof. Denote Q′
F (n) for the largest integer s such that there exist r matri-

ces B1, . . . , Bs ∈ Sp(n, F ) satisfying (1.2). Note that Sp(n, F ) are contained in

both GL(n, F ) and Sp(n,E) where E = F (i). Hence, we have Q′
F (n) ≤ S(n) and

Q′
F (n) ≤ Q′

E(n) = Q(n). Note that from the formula for S(n) and Q(n) we have

min{S(n), Q(n)} = 2q−1, for n = 2qn0, n0 is odd. Therefore, we haveQ
′
F (n) ≤ 2q−1.

In order to show that the equality always holds, we only need to construct a (0, 2q−1)-

family in Sp(n, F ). In fact, we can easily construct such a family via a maximal (r, s)-

family in O(n/2, F ) as follows. Let A1, . . . , Ar, B1, . . . , Bs be a maximal (r, s)-family

in O(n/2, F ), if we set

Bi =

[
0 Ai

−Ai 0

]
(i = 1, . . . , r), Br+j =

[
Bj 0

0 Bj

]
(j = 1, . . . , s)

then these matrices B1, . . . ,B2q−1 form a (0, 2q − 1)-family in Sp(n, F ).

4. Discussions on relations to the work of D.B. Shapiro. Shapiro [13,

p. 47] considered a similar problem which can be stated in in terms of matrices

in the following form: For any fixed field F and positive integer n, determine the

largest possible value of r for which there exist r matrices A1, . . . , Ar ∈ M(n, F ) and

r nonzero numbers a1, . . . , ar ∈ F such that




A′
iJAi = aiJ (i = 1, . . . , r)

A2
i = −ai (i = 1, . . . , r)

AiAj = −AjAi (i 6= j, i, j = 1, . . . , r).

(4.1)

He obtained the following result: If we denote by D(n, F ) the largest possible value

of r, then D(n, F ) = P (n).

One can deduce this result from Theorem 3.7 and Lemma 3.1 as follows. If F

is an algebraically closed field, then the problems of Hua and Shapiro are equivalent

(we can choose all ai to be 1), by Theorem 3.7, we get the desired result. Hence, for a

general field F , we must have D(n, F ) ≤ P (n) by considering the embodying into its

algebraical closure. To obtain the identity, according to Lemma 3.1, we note that a

(0, s)-family B1, . . . , Bs in O(n/2, F ) can be used to give an (s, 0)-family in Sp(n, F )

as follows:

Ai =

[
0 Bi

−Bi 0

]
(i = 1, . . . , s).

This (s, 0)-family in Sp(n, F ) together with the following two matrices

As+1 =

[
I 0

0 −I

]
and As+2 =

[
0 I

I 0

]
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will give a solution to Shapiro’s problem, with the corresponding a1 = · · · = as = 1

and as+1 = as+2 = −1. Thus, we can take r = S(n/2) + 2. However, it is easy to

check that S(n/2) + 2 = P (n).

5. Hua’s cyclic recurrence relations and its unitary version. As had been

observed by Hua, the Hurwitz-Radon theorem and its symplectic version (both for

the complex number field) are closely related. In fact, in the course of determining

P (n), Hua found the following remarkable relations among P (n), S(n) and R(n):

P (2n) = S(n) + 2,

S(2n) = R(n) + 2.

However, Hua missed the number Q(n) and hence missed the following

R(2n) = Q(n) + 2,

Q(2n) = P (n) + 2.

These four identities form a remarkable closed cyclic recurrence relation, which will

be called Hua’s cyclic recurrence relation.1

Theorem 5.1 (Hua’s cyclic recurrence relation). Suppose F is an algebraically

closed field. Let P (n) (for even n) and R(n) denote the largest integer r for which there

exist r matrices A1, . . . , Ar in Sp(n, F ) and O(n, F ) satisfying the Hurwitz-Radon

equations (1.1) respectively. Let Q(n) (for even n) and S(n) denote the largest integer

s for which there exist s matrices B1, . . . , Bs in Sp(n, F ) and O(n, F ) satisfying the

dual Hurwitz-Radon equations (1.2) respectively. Then we have

P (2n) = S(n) + 2,(5.1)

S(2n) = R(n) + 2,(5.2)

R(2n) = Q(n) + 2,(5.3)

Q(2n) = P (n) + 2.(5.4)

Moreover, we have the following initial values:

S(n0) = 1, R(n0) = 0, R(2n0) = 1, Q(2n0) = 1.(5.5)

Note that as a corollary, P (n), Q(n), R(n), S(n) enjoy together the following in-

trinsic periodicity 8 property:

λ(16n) = λ(n) + 8.(5.6)

1In fact, Hua made a mistake which led him to a wrong relation R(2n) = R(n) + 1, cf. Hua [6,

p. 221, equation (75)]. The mistake appeared on p. 223 of [6], the transformation given by (86) is

not an orthogonal similarity. Wong [16] had also noticed this mistake.
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Hence, Theorem 5.1 provides a simple method to determine P (n), Q(n), R(n), S(n)

for an algebraically closed field. This is exactly the approach of Hua.

Remark 5.2. This approach of Hurwitz-Radon theorem via Hua’s cyclic recur-

rence relation has two advantages. Firstly, it provides a much deeper interpretation

for the “periodicity 8” property (5.6) met by the Hurwitz-Radon number R(n) (at

least for an algebraically closed field). Secondly, this proof also provides an effective

way of constructing a set of Hurwitz-Radon matrices. We will leave the construction

to the interested readers.

By Theorems 2.3, 2.4, 3.7 and 3.8, it is easy to check that Hua’s cyclic recurrence

relation (Theorem 5.1) is precisely valid for those fields such that −1 = x2 + y2 can

be solved. Of course, this remarkable relation doesn’t hold for the real number field.

However, from a different point of view, another proper version of the cyclic recurrence

relation remains true.

The key observation is

O(n,R) = U(n) ∩ O(n,C)

rather than

O(n,R) = GL(n,R) ∩ O(n,C).

In other words, it means that the point is not realization (restricting to real ma-

trices) but unitarization (restricting to unitary matrices). As it will be shown, if

we replace the complex orthogonal group O(n,C) by the the unitary orthogonal

group U(n) ∩ O(n,C) = O(n) (which is the realization of O(n,C) by coincidence)

and replace the complex symplectic group Sp(n,C) by the unitary symplectic group

U(n) ∩ Sp(n,C) =: USp(n)2 simultaneously, then we obtain the following unitary

cyclic recurrence relation.

Theorem 5.3 (unitary cyclic recurrence relation). Let P̃ (n) (for even n) and

R̃(n) denote the largest integer r for which there exist r matrices A1, . . . , Ar in

USp(n) and O(n) satisfying the Hurwitz-Radon equations (1.1) respectively. Let Q̃(n)

(for even n) and S̃(n) denote the largest integer s for which there exist s matrices

B1, . . . , Bs in USp(n) and O(n) satisfying the dual Hurwitz-Radon equations (1.2)

respectively. Then we have

P̃ (2n) = S̃(n) + 2,(5.7)

S̃(2n) = R̃(n) + 2,(5.8)

2Here, we follow Hermann Weyl’s notations for the symplectic group and unitary symplectic

group, cf. Weyl [14]. However, the most adopted notation for unitary symplectic group is Sp(n), cf.

Adams [1].
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R̃(2n) = Q̃(n) + 2,(5.9)

Q̃(2n) = P̃ (n) + 2.(5.10)

Moreover, we have the following initial values:

S̃(n0) = 1, R̃(n0) = 0, R̃(2n0) = 1, Q̃(2n0) = 1.(5.11)

To prove Theorem 5.3, we need some unitary versions of Lemma 3.2 and Lemma

3.3. Here we only provide a rough interpretation that why Hua’s cyclic recurrence

relation still holds with respect to the restriction of the corresponding unitary sub-

group. In fact, it is a good illustration of the power of unitary trick introduced first

by Weyl. The unitary trick is just unitary restriction: Every matrix group is replaced

by the subgroup of those elements that are unitary transformations. As it had been

pointed out by Weyl [14, p. 177], its success is due to the fact that nothing of algebraic

import is lost by unitary restriction.

We point out that λ̃(n) = λ(n) since they satisfy the same recurrence relation and

have the same initial values. As a special case, we have obtained the real Hurwitz-

Radon theorem as a corollary. This approach is closely related with Radon’s original

proof but is much simpler than his argument (however Radon considered not four but

eight matrix equations, cf. Radon [11]).

Remark 5.4. As pointed by Eckmann, the unitary cyclic recurrence relation

were closely related to the famous Bott periodicity theorem in algebraic topology, cf.

Eckmann [4] and [5].

Acknowledgment. The author wish to thank Professor Fuzhen Zhang at Nova

Southeastern University, Professors Fuquan Fang, Shao-Ming Fei and Ke-Zheng Li

at Capital Normal University, Professor Dai-Jun Tian at Tianjin University, for their

helpful guidances and warm encouragements.

REFERENCES

[1] J.F. Adams. Lectures on Lie Groups. University of Chicago Press, 1969.
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