
ELA

CHARACTERIZING LIE (ξ-LIE) DERIVATIONS ON

TRIANGULAR ALGEBRAS BY LOCAL ACTIONS∗

XIAOFEI QI†

Abstract. Let U = Tri(A,M,B) be a triangular algebra, where A, B are unital algebras over

a field F and M is a faithful (A,B)-bimodule. Assume that ξ ∈ F and L : U → U is a map. It is

shown that, under some mild conditions, L is linear and satisfies L([X, Y ]) = [L(X), Y ] + [X,L(Y )]

for any X,Y ∈ U with [X, Y ] = XY − Y X = 0 if and only if L(X) = ϕ(X) + ZX + f(X) for all A,

where ϕ is a linear derivation, Z is a central element and f is a central valued linear map. For the

case 1 6= ξ ∈ F , L is additive and satisfies L([X,Y ]ξ) = [L(X), Y ]ξ + [X,L(Y )]ξ for any X, Y ∈ U

with [X, Y ]ξ = XY − ξY X = 0 if and only if L(I) is in the center of U and L(A) = ϕ(A) + L(I)A

for all A, where ϕ is an additive derivation satisfying ϕ(ξA) = ξϕ(A) for each A. In addition, all

additive maps L satisfying L([X, Y ]ξ) = [L(X), Y ]ξ + [X,L(Y )]ξ for any X,Y ∈ U with XY = 0 are

also characterized.
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1. Introduction. Let A be an algebra over a field F . Recall that an additive

(a linear) map δ : A → A is called an additive (a linear) derivation if δ(AB) =

δ(A)B+Aδ(B) for all A, B ∈ A. Regarding A as a Lie algebra under the Lie product

[A,B] = AB − BA, an additive (a linear) map L : A → A is called an additive

(a linear) Lie derivation if L([A,B]) = [L(A), B] + [A,L(B)] for all A,B ∈ A. The

problem of whether a Lie derivation is a derivation has been studied (for example, see

[2, 13] and the references therein).

For ξ ∈ F and for A,B ∈ A, A commutes with B up to a factor ξ if AB = ξBA.

The notion of commutativity up to a factor for pairs of operators is important and

has been studied in the context of operator algebras and quantum groups [4, 11].

Motivated by this, a binary operation [A,B]ξ = AB − ξBA, called the ξ-Lie product

of A and B, was introduced in [15]. An additive (a linear) map L : A → A is called

an additive (a linear) ξ-Lie derivation if L([A,B]ξ) = [L(A), B]ξ + [A,L(B)]ξ for all

A,B ∈ A. This concept unifies several well known notions. It is clear that a ξ-Lie

derivation is a derivation if ξ = 0; is a Lie derivation if ξ = 1; is a Jordan derivation
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if ξ = −1. The structure of ξ-Lie derivations was characterized in triangular algebras

and prime algebras in [15, 18] respectively.

Recently, there have been a number of papers studying conditions under which

derivations of rings or operator algebras can be completely determined by the action

on some elements concerning products (see [3, 14] and the references therein). For

Lie derivations, some works have also been done. Let X be a Banach space with

dimX ≥ 3 and B(X) the algebra of all bounded linear operators acting on X . Lu

and Jing in [12] proved that, if L : B(X) → B(X) is a linear map satisfying L([A,B]) =

[L(A), B]+ [A,L(B)] for any A,B ∈ B(X) with AB = 0 (resp. AB = P , where P is a

fixed nontrivial idempotent), then L = d+τ , where d is a derivation of B(X) and τ is a

central valued linear map vanishing at commutators [A,B] with AB = 0 (resp. AB =

P ). Later, this result was generalized to the maps on triangular algebras and prime

rings in [10] and [17] respectively. Then, a natural problem is how to characterize all

additive (linear) maps L satisfying L([A,B]ξ) = [L(A), B]ξ + [A,L(B)]ξ for any A,B

with AB = 0 and for all ξ 6= 1.

Qi and Hou [16] gave another characterization of Lie derivations. A linear (an

additive) map L : A → A is said to be Lie derivable at a point Z if L([A,B]) =

[L(A), B] + [A,L(B)] for any A,B ∈ A with [A,B] = Z. Clearly, this definition is

not valid for some Z, for instance, for Z = I, as the unit I may not be a commutator

[A,B] in general. Qi and Hou [16] discussed such linear maps on J -subspace lattice

algebras. Thus, more generally, what is the structure of the additive (linear) maps

L that are ξ-Lie derivable at zero for all possible ξ, that is, satisfy L([A,B]ξ) =

[L(A), B]ξ + [A,L(B)]ξ for any A,B with [A,B]ξ = 0?

The purpose of the present paper is to study these questions on triangular algebras

and characterize all such maps on triangular algebras.

Let A and B be unital algebras over a commutative ring R, and M be an (A,B)-

bimodule, which is faithful as a left A-module and also as a right B-module, that is,

for any A ∈ A and B ∈ B, AM = MB = {0} imply A = 0 and B = 0, respectively.

The R-algebra

U = Tri(A,M,B) =

{[

A M

0 B

]

: A ∈ A,M ∈ M, B ∈ B

}

under the usual matrix operations will be called a triangular algebra (see [5]). Denote

by Z(U) the center of U . By [5, Proposition 3],

Z(U) =

{[

A 0

0 B

]

∈ U : A ∈ Z(A), B ∈ Z(B), and AM = MB for all M ∈ M

}

.
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Define two projections πA : U → A and πB : U → B respectively by

πA :

[

A M

0 B

]

7→ A and πB :

[

A M

0 B

]

7→ B.

Then πA(Z(U)) ⊆ Z(A) and πB(Z(U)) ⊆ Z(B). M is called loyal if, for any A ∈ A

and B ∈ B, AMB = {0} implies that A = 0 or B = 0. It is obvious that, if M is

loyal, then M is a faithful (A,B)-bimodule.

This paper is organized as follows. Let U = Tri(A,M,B) be a triangular algebra,

where A and B are unital algebras over a 2-torsion free commutative ring R with
1

2
∈ R, and M is a faithful (A,B)-bimodule. Assume that L : U → U is a map.

In Section 2, we show that, if each commuting linear map on A or B is proper,

πA(Z(U)) = Z(A) 6= A, πB(Z(U)) = Z(B) 6= B and M is loyal, then every linear

map L satisfies [X,Y ] = 0 ⇒ [L(X), Y ] + [X,L(Y )] = 0 if and only if there exist

an element Z ∈ Z(U), a linear derivation τ on U , and a linear map ν : U → Z(U)

such that L(X) = ZX + τ(X) + ν(X) for all X ∈ U (Theorem 2.1). Assume that

A and B are unital algebras over a field F and ξ ∈ F . Sections 3 and 4 are devoted

to discuss the case ξ 6= 1. We prove that, an additive map L satisfies [X,Y ]ξ =

0 ⇒ [L(X), Y ]ξ + [X,L(Y )]ξ = 0 if and only if L(I) ∈ Z(U) and, (1) ξ = 0, there

exists an additive derivation d such that L(X) = d(X) + L(I)X for all X ∈ U ,

(2) ξ 6= 0, there exists an additive derivation d satisfying d(ξX) = ξd(X) for all

X ∈ U such that L(X) = d(X) + L(I)X for all X ∈ U (Theorem 3.1); L satisfies

XY = 0 ⇒ [L(X), Y ]ξ + [X,L(Y )]ξ = L([X,Y ]ξ) for ξ 6= 0 if and only if there exists

an additive derivation d satisfying d(ξI) = ξL(I) such that L(X) = d(X) + L(I)X

for all X ∈ U (Theorem 4.1). As an application of above results, we also obtain a

characterization of linear (or additive) maps ξ-Lie derivable at zero for all possible ξ

on Banach space nest algebras (Theorems 2.2, 2.3, 3.2 and 4.2).

2. Linear maps Lie derivable at zero. In this section, we consider linear

maps Lie derivable at zero on triangular algebra. As an application to operator

algebras, we get a complete characterization of linear maps Lie derivable at zero on

Banach space nest algebras.

Recall that a linear map Φ : A → A is commuting if [Φ(A), A] = 0 for all A ∈ A

and it is proper if Φ(A) = λA + ϕ(A) for some element λ ∈ Z(A) (the center of A)

and some linear map ϕ : A → Z(A). A trace of a bilinear map is a map of the form

A 7→ g(A,A), where g : A×A → A is some bilinear map.

The following is our main result in this section.

Theorem 2.1. Let A and B be unital algebras over a 2-torsion free commutative

ring R with 1

2
∈ R, and M be an (A,B)-bimodule. Let U = Tri(A,M,B) be the

triangular algebra satisfying the following three conditions:
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(i) πA(Z(U)) = Z(A) 6= A and πB(Z(U)) = Z(B) 6= B,

(ii) each commuting linear map on A or B is proper,

(iii) M is loyal.

Assume that L : U → U is a linear map. Then L is Lie derivable at zero, that is, L

satisfies [L(X), Y ] + [X,L(Y )] = 0 whenever X,Y ∈ U with [X,Y ] = 0, if and only

if L(X) = ZX + τ(X) + ν(X) for all X ∈ U , where Z ∈ Z(U), τ : U → U is a linear

derivation and ν : U → Z(U) is a linear map.

Recall that a nest N on a Banach space X is a chain of closed (under norm

topology) subspaces of X which is closed under the formation of arbitrary closed

linear span (denote by
∨

) and intersection (denote by
∧

), and which includes {0}

and X . The nest algebra associated to the nest N , denoted by AlgN , is the weak

closed operator algebra consisting of all operators that leave N invariant. When

N 6= {{0}, X}, we say that N is non-trivial. If N is trivial, then AlgN = B(X). We

refer the reader to [6] for the theory of nest algebras.

As an application of Theorem 2.1 to the nest algebra case, we have

Theorem 2.2. Let X be an infinite dimensional Banach space over the real or

complex field F and let N be a nest on X which contains a nontrivial complemented

element. Then a linear map L : AlgN → AlgN is Lie derivable at zero if and

only if there exist a scalar λ ∈ F , an operator T ∈ AlgN and a linear functional

h : AlgN → F such that L(A) = AT − TA+ λA+ h(A)I for all A ∈ AlgN .

Proof. By the assumption on the nest, there exists a non-trivial element E ∈ N

which is complemented in X . So AlgN can be viewed as a triangular algebra

AlgN =

[

Alg(ENE) EAlgNE⊥

0 Alg(E⊥NE⊥)

]

,

where E⊥ = I − E. Note that Z(AlgN ) = FI. It is obvious that πA(Z(AlgN )) =

Z(Alg(ENE)) = FIranE 6= Alg(ENE) and πB(Z(AlgN )) = Z(Alg(E⊥NE⊥)) =

FIkerE 6= Alg(E⊥NE⊥). Moreover, every linear commuting map on Alg(ENE)

and Alg(E⊥NE⊥) is proper (see [5]). We claim that EAlgNE⊥ is also loyal. In-

deed, for nonzero operators A ∈ Alg(ENE) = EAlgNE and B ∈ Alg(E⊥NE⊥) =

E⊥AlgNE⊥, there exist x ∈ E and f ∈ E⊥ such that Ax 6= 0 and Bf 6= 0. Let

M = x ⊗ Bf . It is clear that M ∈ EAlgNE⊥. However, AMBf = ‖Bf‖2Ax 6= 0,

which implies that EAlgNE⊥ is loyal. Thus, this nest algebra meets all hypotheses

of Theorem 2.1. Therefore, L is Lie derivable at zero if and only if there exist a scalar

λ, a linear derivation τ : AlgN → AlgN and a linear functional h : AlgN → F such

that L(A) = τ(A) + λA+ h(A)I for all A ∈ AlgN .

Furthermore, note that every linear derivation of a nest algebra on a Banach

space is continuous (see [9, Theorem 2.2]) and every continuous linear derivation of
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a nest algebra on a Banach space is inner (see [20]). Hence, there exists an operator

T ∈ AlgN such that τ(A) = AT − TA for all A ∈ AlgN .

For the finite dimensional case, it is clear that every nest algebra on a finite

dimensional space is isomorphic to an upper triangular block matrix algebra. Let

Mn(F ) denote the algebra of all n×nmatrices over F . Recall that an upper triangular

block matrix algebra T = T (n1, n2, . . . , nk) is a subalgebra of Mn(F ) consisting of

all n× n matrices of the form

A =











A11 A12 · · · A1k

0 A22 · · · A2k

...
...

. . .
...

0 0 · · · Akk











,

where {n1, n2, · · ·, nk} is a finite sequence of positive integers satisfying n1+n2+ · · ·+

nk = n and Aij ∈ Mni×nj
(F ), the space of all ni × nj matrices over F .

By Theorem 2.1, the following result is immediate.

Theorem 2.3. Let F be the real or complex field and n > 2 be a positive integer.

Let T = T (n1, n2, . . . , nk) ⊆ Mn(F ) be an upper triangular block matrix algebra.

Then a linear map L : T → T is Lie derivable at zero if and only if there exist a

scalar λ, a matrix T ∈ T and a linear functional h : T → F such that L(A) =

AT − TA+ λA+ h(A)I for all A ∈ T .

We remark that, the condition n > 2 in Theorem 2.3 can not be deleted. In fact,

we have the following result for 2× 2 upper triangular matrix algebras.

Proposition 2.4. Let T2(F ) be the algebra of all 2×2 upper triangular matrices

over a field F and let L : T2(F ) → T2(F ) be a linear map. Then L is Lie derivable at

zero if and only if L(I) = λI for some λ ∈ F .

Proof. We need only check the “if” part. For any A ∈ T2(F ), if A = αI ∈ FI,

then [A,B] = 0 for all B ∈ T2(F ). Since L is linear, we have

[L(A), B] + [A,L(B)] = [αL(I), B] + [αI, L(B)] = [αλI,B] + [αI, L(B)] = 0.

Now assume that A 6∈ FI. Note that, if [A,B] = AB − BA = 0, then B =

µ(B)A+ ν(B)I for some µ(B), ν(B) ∈ F . In fact, one can easily check that, for A =

(aij) /∈ FI and B = (bij), AB = BA implies that B = b12a
−1

12
A+ (b22 − b12a

−1

12
a22)I

if a12 6= 0; B = b11−b22
a11−a22

A+ (b11 −
b11−b22
a11−a22

a11)I if a12 = 0. It follows that

[L(A), B] + [A,L(B)] = [L(A), µ(B)A + ν(B)I] + [A, µ(B)L(A) + ν(B)λI]

= µ(B)[L(A), A] + µ(B)[A,L(A)] = 0.
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Thus, L is Lie derivable at zero.

Therefore, unlike the linear Lie derivations (every linear Lie derivation on T2(F )

has a standard form), the linear maps on T2(F ) Lie derivable at zero behave wildly

and are not always of the form stated in Theorem 2.3. To illustrate this, we give a

simple example here.

Let T2(F ) be the algebra of all 2 × 2 upper triangular matrices over the real or

complex field F . We define a map L : T2(F ) → T2(F ) by L(A) =

(

0 a12
0 a12

)

for

each A =

(

a11 a12
0 a22

)

∈ T2(F ). We will check that L is a linear map Lie derivable

at zero, but there do not exist λ ∈ F , T ∈ T2(F ) and linear functional f on T2(F )

such that L(A) = TA−AT + λA+ f(A)I holds for all A ∈ T2(F ).

It is clear that L is linear and L(I) = 0. By Proposition 2.4, L is Lie derivable

at zero. Suppose, on the contrary, that there exist λ ∈ F , an operator T ∈ T2(F )

and a linear functional f on T2(F ) such that L(A) = TA − AT + λA + f(A)I for

all A ∈ T2(F ). Take A =

(

2 0

0 1

)

. By the definition of L, we have 0 = L(A) =

TA − AT + λA + f(A)I. Through a simple calculation, one can get λ = 0 and

T =

(

t11 0

0 t22

)

for some t11, t22 ∈ F .

Now for any A =

(

a11 a12
0 a22

)

, we have

(

0 a12
0 a12

)

=

(

t11 0

0 t22

)(

a11 a12
a21 a22

)

−

(

a11 a12
a21 a22

)(

t11 0

0 t22

)

+

(

f(A) 0

0 f(A)

)

=

(

f(A) (t11 − t22)a12
0 f(A)

)

.

This leads to f(A) = 0 and f(A) = a12, a contradiction.

Now we are at a position to give the proof of Theorem 2.1. The following two

lemmas are needed.

Lemma 2.5. ([1, Theorem 3.1]) Let A and B be unital algebras over a 2-torsion

free commutative ring R, and let M be a loyal (A,B)-bimodule. Let U = Tri(A,M,B)

be the triangular algebra. If πA(Z(U)) = Z(A) 6= A, πB(Z(U)) = Z(B) 6= B and each

commuting linear map on A or B is proper, then each commuting trace q : U → U of a

bilinear map has the form q(A) = λA2 +µ(A) + ν(A) for all A ∈ U , where λ ∈ Z(U),

µ : U → Z(U) is a linear map and ν : U → Z(U) is a trace of some bilinear map.

Lemma 2.6. ([1, Lemma 2.7]) Let A and B be unital algebras over a 2-torsion
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free commutative ring R, and M be a faithful (A,B)-bimodule. Let U = Tri(A,M,B)

be the triangular algebra. Then U satisfies the polynomial identity [[X2, Y ], [X,Y ]] if

and only if both A and B are commutative.

Proof of Theorem 2.1. The “if” part is obvious and we only need to show the

“only if” part. We remark that our proof approach is similar to that of [19, Theorem

2.1(2)]. For completeness, we give an outline of its proof here.

By the assumption on L, we have

[L(X), Y ] + [X,L(Y )] = 0 for all X,Y ∈ U with [X,Y ] = 0.(2.1)

Let Y = X2 in Eq.(2.1), one gets [L(X), X2] + [X,L(X2)] = 0, that is, L(X)X2 −

X2L(X) +XL(X2)− L(X2)X = 0. This yields

[L(X2)− L(X)X −XL(X), X ] = 0 for all X ∈ U .(2.2)

For any X,Y ∈ U , let δ(X,Y ) = L(XY ) − L(X)Y − XL(Y ). It is obvious that

δ : U × U → U is a bilinear map, and by Eq.(2.2), δ(X,X) is a trace of the bilinear

map δ. Thus, by Lemma 2.5, there exist an element X0 ∈ Z(U), a R-linear map

µ : U → Z(U) and a trace of some bilinear map ν : U → Z(U) such that δ(X,X) =

X0X
2 + µ(X)X + ν(X), that is,

L(X2)− L(X)X −XL(X) = X0X
2 + µ(X)X + ν(X) for all X ∈ U .(2.3)

Define a map τ : U → U by

τ(X) = L(X) +
1

2
µ(X) +X0X for all X ∈ U .(2.4)

Combining Eq.(2.3) with Eq.(2.4), on the one hand, we have

τ(X2) = L(X2) + 1

2
µ(X2) +X0X

2

= L(X)X +XL(X) + µ(X)X + ν(X) + 1

2
µ(X2) + 2X0X

2.

On the other hand,

τ(X)X +Xτ(X) = L(X)X +XL(X) + µ(X)X + 2X0X
2.

Comparing the above two equations obtains

τ(X2)− τ(X)X −Xτ(X) = ν(X) +
1

2
µ(X2) ∈ Z(U).(2.5)

Now let us define a map ǫ : U × U → U by

ǫ(X,Y ) = τ(XY + Y X)− τ(X)Y −Xτ(Y )− τ(Y )X − Y τ(X) for all X,Y ∈ U .
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Obviously, ǫ is bilinear and satisfies ǫ(X,Y ) = ǫ(Y,X) for all X,Y ∈ U . Replacing X

by X + Y in Eq.(2.5), we have τ(XY + Y X)− τ(X)Y −Xτ(Y )− τ(Y )X − Y τ(X) ∈

Z(U). Hence, ǫ in fact maps from U×U into Z(U). In order to show that τ is a Jordan

derivation, one must prove that ǫ(X,Y ) = 0 for all X,Y ∈ U . In fact, by calculating

τ(X2(XY + Y X) + (XY + Y X)X2) and τ((X2Y + Y X2)X +X(X2Y + Y X2)), and

noting that X2(XY + Y X) + (XY + Y X)X2 = (X2Y + Y X2)X +X(X2Y + Y X2),

one can obtain

ǫ(X,Y )X2 − ǫ(X2, Y )X ∈ Z(U) for all X,Y ∈ U ,(2.6)

which implies that

ǫ(X,Y )[[X2,W ], [X,W ]] = 0 for all X,Y,W ∈ U .(2.7)

By Lemma 2.5, there exist two elements X1,W1 ∈ U such that

[[X2

1 ,W1], [X1,W1]] 6= 0.

Hence, we may takeX1 =

(

A1 0

0 0

)

andW1 =

(

A2 M

0 0

)

with A1[A1, A2]A1 6= 0

in Eq.(2.7). Let ǫ(X1, Y ) =

(

A′ 0

0 B′

)

∈ Z(U). Then A′ ∈ Z(A), B′ ∈ Z(B) and

A′M = MB′ for all M ∈ M. It follows from Eq.(2.7) that A′A1[A1, A2]A1M = 0

holds for all M ∈ M. Since M is a faithful left A-module, we get A′A1[A1, A2]A1 = 0,

and so

0 = A′A1[A1, A2]A1M = A1[A1, A2]A1A
′M = A1[A1, A2]A1MB′.

This implies that B′ = 0 as M is loyal and A1[A1, A2]A1 6= 0. Furthermore, A′ = 0

and ǫ(X1, Y ) = 0.

Replacing X by Y +X1 and Y −X1 in Eq.(2.6), respectively, one gets

ǫ(Y, Y )X2
1
+ ǫ(Y, Y )(X1Y + Y X1)− ǫ(X1Y + Y X1, Y )X1

−ǫ(X1Y + Y X1, Y )Y − ǫ(Y 2, Y )X1 − ǫ(X2
1 , Y )Y ∈ Z(U)

and

ǫ(Y, Y )X2
1
− ǫ(Y, Y )(X1Y + Y X1)− ǫ(X1Y + Y X1, Y )X1

+ǫ(X1Y + Y X1, Y )Y + ǫ(Y 2, Y )X1 − ǫ(X2
1 , Y )Y ∈ Z(U).

Comparing the above two equations achieves

ǫ(Y, Y )X2

1 − ǫ(X1Y + Y X1, Y )X1 − ǫ(X2

1 , Y )Y ∈ Z(U) for all Y ∈ U .(2.8)
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We claim that ǫ(X2
1
, Y ) = 0. Indeed, since ǫ(X1, Y ) = 0, we have ǫ(X2

1
, Y )X1 ∈ Z(U).

It follows that ǫ(X2
1
, Y ) = 0 since X1 6∈ Z(U). Thus, Eq.(2.8) yields ǫ(Y, Y )X2

1
−

ǫ(X1Y + Y X1, Y )X1 ∈ Z(U) for all Y ∈ U . It follows that

ǫ(Y, Y )[[X2

1 ,W1], [X1,W1]] = 0,

which implies ǫ(Y, Y ) = 0 for all Y ∈ U . Since ǫ is symmetric, it is easy to prove that

ǫ(X,Y ) = 0 for all X,Y ∈ U , that is, τ is a Jordan derivation. Now, by [21], τ is a

derivation. Using the definition of τ , we get that L(A) = τ(A) + ZA+ ν(A), where

ν = − 1

2
µ(A) and Z = −X0.

In fact, by observing the proof of Theorem 2.1, one can easily obtain character-

izations of the linear maps Lie triple derivable at zero and Lie triple derivations on

Banach space nest algebras.

Recall that a linear map L on an algebra A is called a Lie triple derivation

if [[L(A), B], C] + [[A,L(B)], C] + [[A,B], L(C)] = L([[A,B], C]) for all A,B,C ∈

A; is called Lie triple derivable at some Z ∈ A if [[L(A), B], C] + [[A,L(B)], C] +

[[A,B], L(C)] = 0 for any A,B,C ∈ A with [[A,B], C] = 0.

Theorem 2.7. Let X be a Banach space with dimX ≥ 3 and let N be a nest on

X containing a nontrivial complemented element. Assume that L : AlgN → AlgN is

a linear map. Then L is Lie triple derivable at zero point if and only if there exist

a scalar λ, an operator T ∈ AlgN and a linear functional h : AlgN → F such that

L(A) = AT − TA+ λA+ h(A)I for all A ∈ AlgN .

Proof. Obviously, we only need to check the “only if” part. Since L is Lie triple

derivable at zero point, for any A,B,C ∈ AlgN with [[A,B], C] = 0, we have

[[L(A), B], C] + [[A,L(B)], C] + [[A,B], L(C)] = 0.(2.9)

Let B = A2 in Eq.(2.9), one gets [[L(A), A2], C] + [[A,L(A2)], C] = 0, that is,

[L(A)A2 −A2L(A) +AL(A2)− L(A2)A,C] = 0 for all C ∈ AlgN .

This yields (L(A2) − L(A)A − AL(A))A − A(L(A2) − L(A)A − AL(A)) ∈ FI, that

is, [L(A2) − L(A)A − AL(A), A] = λI for some scalar λ. Note that I can not be a

commutator. It follows that

[L(A2)− L(A)A−AL(A), A] = 0 holds for all A ∈ AlgN .

Now by a similar argument to that of Theorem 2.1, one can obtain the desired

result.

Theorem 2.8. Let X be a Banach space over the real or complex field F with

dimX ≥ 3 and let N be a nest on X containing a nontrivial complemented element.
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Assume that L : AlgN → AlgN is a linear map. Then L is a Lie triple derivation

if and only if there exist an operator T ∈ AlgN and a linear functional h of AlgN

satisfying h([[A,B], C]) = 0 for any A,B,C ∈ AlgN such that L(A) = AT − TA +

h(A)I for all A ∈ AlgN .

Proof. Still, we only need to check the “only if” part. If L is a Lie triple derivation,

then L is Lie triple derivable at zero. By Theorem 2.7, there exists a scalar λ, an

operator T ∈ AlgN and a linear functional h of AlgN such that L(A) = AT −

TA + λA + h(A)I for all A ∈ AlgN . For completing the proof, we have to check

that λ = 0 and h([[A,B], C]) = 0 for all A,B,C ∈ AlgN . Note that derivations

are Lie triple derivations. By the definition of Lie triple derivation, it follows from

the above relation that 2λ[[A,B], C] = h([[A,B], C]) ∈ FI. If λ 6= 0, then we have

[[A,B], C] ∈ FI for all A,B,C ∈ AlgN . Again, using the fact that I can not be

a commutator, we get [A,B] = 0 for all A,B ∈ AlgN , which is impossible. Thus,

λ = 0, and so h([[A,B], C]) = 0 for all A,B,C ∈ AlgN .

3. Additive maps ξ-Lie derivable at zero. In this section, we consider ad-

ditive maps ξ-Lie derivable at zero on triangular algebras for the case ξ 6= 1. The

following is our main result in this section.

Theorem 3.1. Let A and B be unital algebras over a field F , and M be an

(A,B)-bimodule, which is faithful as a left A-module and also as a right B-module. Let

U = Tri(A,M,B) be the triangular algebra and 1 6= ξ ∈ F . Assume that L : U → U

is an additive map. If U satisfies PZ(U)P = Z(PUP ) and QZ(U)Q = Z(QUQ),

then L is ξ-Lie derivable at zero, that is, L satisfies [L(X), Y ]ξ + [X,L(Y )]ξ = 0 for

any X,Y ∈ U with [X,Y ]ξ = 0 if and only if L(I) ∈ Z(U) and one of the following

statements holds:

(1) if ξ = 0, then there exists an additive derivation d : U → U such that L(X) =

d(X) +L(I)X for all X ∈ U , that is, L is an additive generalized derivation;

(2) if ξ 6= 0, then there exists an additive derivation d : U → U satisfying d(ξX) =

ξd(X) for each X ∈ U such that L(X) = d(X) + L(I)X for all X ∈ U .

For additive maps ξ-Lie derivable at zero point on infinite dimensional Banach

space nest algebras, we have the following finer characterization.

Theorem 3.2. Let N be a nest on an infinite dimensional Banach space X over

the real or complex field F , and let AlgN be the associated nest algebra. Assume

that ξ ∈ F with ξ 6= 1 and L : AlgN → AlgN is an additive map. If there exists a

non-trivial element in N which is complemented in X, then L is ξ-Lie derivable at

zero if and only if there exist a scalar λ ∈ F and an operator T ∈ AlgN such that

L(A) = AT − TA+ λA for all A ∈ AlgN .

Proof. Obviously, we need to check the “only if” part. Assume that L : AlgN →
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AlgN is an additive map ξ-Lie derivable at zero point. By Theorem 3.1, L(I) = λI ∈

Z(AlgN ) = FI and there exists an additive derivation d such that L(A) = d(A)+λA

for all A ∈ AlgN , where d satisfies d(ξX) = ξd(X) whenever ξ 6= 0. Note that, by

[7, 8], all additive derivations on infinite dimensional Banach space nest algebras are

linear. Hence, by [9, 20], there exists T ∈ AlgN such that d(A) = AT − TA for all

A ∈ AlgN .

To prove Theorem 3.1, the following lemma is needed, which was proved in [15].

Lemma 3.3. Let A and B be two algebras over any commutative ring R, and

M be an (A,B)-bimodule, which is faithful as a left A-module and also as a right

B-module. Let U = Tri(A,M,B) be the triangular algebra. Assume that A0 ∈ A

and B0 ∈ B. If A0M = MB0 for all M ∈ M, then A0 ∈ Z(A) and B0 ∈ Z(B).

Furthermore,

[

A0 0

0 B0

]

∈ Z(U).

Proof of Theorem 3.1. Denote by I, IA and IB the units of U , A and B, re-

spectively. Write P =

[

IA 0

0 0

]

and Q = I − P =

[

0 0

0 IB

]

. Then U =

PUP + PUQ+QUQ.

The “if” part is obvious. We will prove the “only if” part by checking several

claims.

Claim 1. For any X ∈ U , we have QL(PXP )Q = 0, PL(QXQ)P = 0,

PL(PXP )Q = −PXPL(Q)Q and PL(QXQ)Q = −PL(P )QXQ.

Take any X,Y ∈ U . Since [PXP,QY Q]ξ = 0, we have

[L(PXP ), QY Q]ξ + [PXP,L(QYQ)]ξ = 0,

that is,

PL(PXP )QYQ+QL(PXP )QYQ− ξQY QL(PXP )Q

+PXPL(QYQ)P + PXPL(QYQ)Q− ξPL(QYQ)PXP = 0.

It follows that

PXPL(QYQ)P − ξPL(QYQ)PXP = 0,(3.1)

PL(PXP )QYQ+ PXPL(QYQ)Q = 0(3.2)

and

QL(PXP )QYQ− ξQY QL(PXP )Q = 0.(3.3)
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Let X = P and Y = Q in Eqs.(3.1) and (3.3), respectively, and noting that ξ 6=

1, one gets PL(QYQ)P = 0 and QL(PXP )Q = 0; let X = P and Y = Q in

Eq.(3.2), respectively, one gets PL(QYQ)Q = −PL(P )QYQ and PL(PXP )Q =

−PXPL(Q)Q. The claim holds.

By Claim 1, for P and Q, we have

QL(P )Q = 0, PL(Q)P = 0 and PL(Q)Q = −PL(P )Q.(3.4)

Claim 2. For any X ∈ U , L(PXQ) ∈ PUQ. Moreover, if ξ 6= 0, we have

ξPL(P )PXQ = PXQL(ξQ)Q and PL(ξP )PXQ = ξPXQL(Q)Q.

For any X ∈ U , since [PXQ,P + ξQ]ξ = 0, by the definition of L and Claim 1,

we have

0 = [L(PXQ), P + ξQ]ξ + [PXQ,L(P + ξQ)]ξ
= PL(PXQ)P + ξQL(PXQ)Q− ξPL(PXQ)P

−ξ2QL(PXQ)Q+ PXQL(ξQ)Q− ξPL(P )PXQ,

which implies

PXQL(ξQ)Q = ξPL(P )PXQ

and

PL(PXQ)P = ξPL(PXQ)P.(3.5)

Note that ξ 6= 1 and F is a field. Eq.(3.5) yields

PL(PXQ)P = 0 for all X ∈ U .(3.6)

Similarly, by using of the equation [ξP + Q,PXQ]ξ = 0, one can get [L(ξP +

Q), PXQ]ξ + [ξP +Q,L(PXQ)]ξ = 0. It follows from Claim 1 and Eq.(3.6) that

PL(ξP )PXQ = ξPXQL(Q)Q

and

QL(PXQ)Q = 0.(3.7)

Combining Eqs.(3.6) and (3.7) obtains L(PXQ) ∈ PUQ.

Claim 3. Assume that ξ 6= 0. Then PL(ξP )P = ξPL(P )P ; and for any X,Y ∈

U , we have PL(PXPY P )P = PL(PXP )PY P+PXPL(PY P )P−PL(P )PXPY P.

For any X,Z ∈ U , since [PXP + PXPZQ,PZQ−Q]ξ = 0, we have

[L(PXP + PXPZQ), PZQ−Q]ξ + [PXP + PXPZQ,L(PZQ−Q)]ξ = 0.
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By Claims 1-2, the above equation can be reduced to

PL(PXPZQ)Q = PL(PXP )PZQ+ PXPL(PZQ)Q− PXPZQL(Q)Q,(3.8)

that is,

PL(PXP )PZQ

= PL(PXPZQ)Q− PXPL(PZQ)Q+ PXPZQL(Q)Q

= PL(PXPZQ)Q− PXPL(PZQ)Q+ ξ−1PL(ξP )PXPZQ

(3.9)

for all X,Z ∈ U . Here ξ−1 exists as ξ 6= 0 and F is a field. Now, taking any Y ∈ U ,

by Eqs.(3.8)-(3.9) and Claim 2, we get

PL(PXPY P )PZQ

= PL(PXPY PZQ)Q− PXPY PL(PZQ)Q+ ξ−1PL(ξP )PXPY PZQ

= PL(PXP )PY PZQ+ PXPL(PY PZQ)Q− ξ−1PL(ξP )PXPY PZQ

−PXPY PL(PZQ)Q+ ξ−1PL(ξP )PXPY PZQ

= PL(PXP )PY PZQ+ PXPL(PY PZQ)Q− PXPY PL(PZQ)Q

= PL(PXP )PY PZQ+ PXP (PL(PY PZQ)Q− PY PL(PZQ)Q)

= PL(PXP )PY PZQ+ PXP (PL(PY P )PZQ− PY PZQL(Q)Q)

= PL(PXP )PY PZQ+ PXPL(PY P )PZQ− PXPY PZQL(Q)Q

= PL(PXP )PY PZQ+ PXPL(PY P )PZQ− ξ−1PL(ξP )PXPY PZQ.

That is,

PL(PXPY P )PZQ

= {PL(PXP )PY P + PXPL(PY P )P − ξ−1PL(ξP )PXPY P}PZQ

holds for all X,Y, Z ∈ U . Note that M is a faithful left A-module. It follows that

PL(PXPY P )P

= PL(PXP )PY P + PXPL(PY P )P − ξ−1PL(ξP )PXPY P
(3.10)

holds for all X,Y ∈ U . Taking X = ξP and Y = P in Eq.(3.10), one obtains

PL(ξP )P = PL(ξP )P + ξPL(P )P − PL(ξP )P , which implies

ξPL(P )P = PL(ξP )P.

This and Eq.(3.10) imply

PL(PXPY P )P = PL(PXP )PY P + PXPL(PY P )P − PL(P )PXPY P

for all X,Y ∈ U . The claim is true.

Claim 4. Assume that ξ 6= 0. Then QL(ξQ)Q = ξQL(Q)Q; and for any X,Y ∈

U , we have QL(QXQYQ)Q = QL(QXQ)QYQ+QXQL(QYQ)Q−QXQYQL(Q)Q.
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Take any X,Y, Z ∈ U and let ξ 6= 0. Note that [P+PZQ,PZQXQ−QXQ]ξ = 0.

By a similar argument to that of Claim 3, one can check that

PL(PZQXQ)Q

= PL(PZQ)QXQ+ PZQL(QXQ)Q− PL(P )PZQXQ,
(3.11)

QL(ξQ)Q = ξQL(Q)Q and

QL(QXQYQ)Q = QL(QXQ)QYQ+QXQL(QYQ)Q−QXQYQL(Q)Q

hold for all X,Y, Z ∈ U . The claim is true.

Now combining Claims 2-3 (or Claims 2 and 4), we have proved that, if ξ 6= 0,

then

PL(P )PXQ = PXQL(Q)Q for all X ∈ U .(3.12)

Claim 5. If ξ = 0, then PL(P )PXQ = PXQL(Q)Q for all X ∈ U .

For any X ∈ U , since (P+PXQ)(Q−PXQ) = 0, we have (L(P )+L(PXQ))(Q−

PXQ)+(P +PXQ)(L(Q)−L(PXQ)) = 0. By Claims 1-2, one can easily check that

PL(P )PXQ = PXQL(Q)Q for each X ∈ U .

By Claim 5 and Eq.(3.12), one has proved that, for any ξ 6= 1, we have

PL(P )PXQ = PXQL(Q)Q for all X ∈ U .

It follows from Lemma 3.3 that PL(P )P ∈ Z(PUP ) = PZ(U)P, QL(Q)Q ∈

Z(QUQ) = QZ(U)Q and PL(P )P + QL(Q)Q ∈ Z(U). Note that QL(P )Q =

PL(Q)P = 0 (Eq.(3.4)). We get

L(I) = PL(P )P +QL(Q)Q ∈ Z(U).(3.13)

Claim 6. If ξ = 0, then for any X,Y ∈ U , the following equations hold:

(i) PL(PXPZQ)Q = PL(PXP )PZQ+ PXPL(PZQ)Q− PXPZQL(Q)Q.

(ii) PL(PXPY P )P = PL(PXP )PY P + PXPL(PY P )P − PL(P )PXPY P.

(iii) PL(PZQXQ)Q = PL(PZQ)QXQ+ PZQL(QXQ)Q− PL(P )PZQXQ.

(iv) QL(QXQYQ)Q = QL(QXQ)QYQ +QXQL(QYQ)Q−QXQYQL(Q)Q.

In fact, noting that (PXP+PXPZQ)(PZQ−Q) = 0 and (P+PZQ)(PZQXQ−

QXQ) = 0 for all X,Z ∈ U , the proof is similar to that of Claims 3-4. So we omit it

here.

Claim 7. There exists an additive derivation d : U → U such that L(X) =

d(X) + L(I)X for all X ∈ U .
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We first show that, for any X,Y ∈ U , L(XY ) = L(X)Y +XL(Y )−L(I)XY , that

is, L is a generalized derivation. In fact, take any X = PXP + PXQ+QXQ, Y =

PY P + PY Q + QYQ ∈ U . Then by the additivity of L, Claims 1-6 and Eqs.(3.8),

(3.11), (3.13), one obtains

L(XY )

= L(PXPY P ) + L(PXPYQ) + L(PXQYQ) + L(QXQYQ)

= PL(PXPY P )P + PL(PXPY P )Q+ PL(PXPYQ)Q

+PL(PXQYQ)Q+ PL(QXQYQ)Q+QL(QXQYQ)Q

= PL(PXP )PY P + PXPL(PY P )P − PL(P )PXPY P − PXPY PL(Q)Q

+PL(PXP )PYQ+ PXPL(PYQ)Q− PXPY QL(Q)Q

+PL(PXQ)QYQ+ PXQL(QYQ)Q− PL(P )PXQYQ − PL(P )QXQYQ

+QL(QXQ)QYQ+QXQL(QYQ)Q−QXQYQL(Q)Q

= {PL(PXP )PY P + PL(PXP )PYQ+ PL(PXP )QYQ

+PL(PXQ)QYQ+ PL(QXQ)QYQ+QL(QXQ)QYQ}

+{PXPL(PY P )P + PXPL(PY P )Q+ PXPL(PYQ)Q

+PXPL(QYQ)Q+ PXQL(QYQ)Q+QXQL(QYQ)Q}

−{PL(P )PXPYP + PXPY PL(Q)Q+ PXPYQL(Q)Q

+PL(P )PXQYQ+ PL(P )QXQYQ+QXQYQL(Q)Q}

−{PL(PXP )QYQ+ PL(QXQ)QYQ+ PXPL(PY P )Q+ PXPL(QYQ)Q}

= L(X)Y +XL(Y )− {PL(P )PXPY P + PXPY PL(Q)Q

+PL(P )PXPYQ+ PL(P )PXQYQ+ PL(P )QXQYQ+QL(Q)QXQYQ}

+{PXPL(Q)QYQ+ PL(P )QXQYQ+ PXPY PL(Q)Q+ PXPL(P )QYQ}

= L(X)Y +XL(Y )− PL(P )P (PXPY P + PXPYQ+ PXQYQ)

−QL(Q)QXQYQ+ PXP (PL(Q)Q+ PL(P )Q)QYQ

= L(X)Y +XL(Y )

−(PL(P )P +QL(Q)Q)(PXPY P + PXPY Q+ PXQYQ+QXQYQ)

= L(X)Y +XL(Y )− L(I)XY.

Now define a map d : U → U by d(X) = L(X)−L(I)X for all X ∈ U . Obviously,

d is additive. Moreover, since L(I) ∈ Z(U) (Eq.(3.13)), it is easy to check that d is

a derivation, that is, d satisfies d(XY ) = d(X)Y +Xd(Y ) for all X,Y ∈ U . Hence,

there exists an additive derivation d : U → U such that L(X) = d(X) +L(I)X for all

X ∈ U .

Claim 8. If ξ 6= 0, then d(ξX) = ξd(X) for all X ∈ U . Therefore, the theorem

is true.

We first show d(ξI) = 0. In fact, by Claim 1, we have

QL(ξP )Q = PL(ξQ)P = 0 and PL(ξP )Q+ PL(ξQ)Q = 0.(3.14)

By Claims 3-4, one gets PL(ξP )P = ξPL(P )P and QL(ξQ)Q = ξQL(Q)Q. Com-
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bining these two equations with Eqs.(3.13)-(3.14), one obtains

ξL(I) = ξQL(Q)Q+ ξPL(P )P = QL(ξQ)Q+ P (ξP )P = L(ξI).(3.15)

In addition, by Claim 7, we have L(ξI) = d(ξI) + L(I)(ξI) = d(ξI) + ξL(I). This

equation and Eq.(3.15) yield d(ξI) = 0.

Now, since d is a derivation, for any X ∈ U , we have d(ξX) = d(ξI)X +

(ξI)d(X) = ξd(X). The claim holds.

The proof of the theorem is complete.

4. Characterizing additive ξ-Lie derivations by acting on zero products.

In this section, we give another characterization of ξ-Lie derivations on triangular

algebras by acting on zero products. Since the cases ξ = 1 and ξ = 0 are considered

in [10] and Theorem 3.1 respectively, we only deal with the case ξ 6= 0, 1. Our main

result is the following.

Theorem 4.1. Let A and B be unital algebras over a field F , and M be an

(A,B)-bimodule, which is faithful as a left A-module and also as a right B-module.

Let U = Tri(A,M,B) be the triangular algebra and ξ ∈ F with ξ 6= 0, 1. Assume that

L : U → U is an additive map. If U satisfies PZ(U)P = Z(PUP ) and QZ(U)Q =

Z(QUQ), then L satisfies [L(X), Y ]ξ+[X,L(Y )]ξ = L([X,Y ]ξ) for any X,Y ∈ U with

XY = 0 if and only if L(I) ∈ Z(U) and there exists an additive derivation d : U → U

with d(ξI) = ξL(I) such that L(X) = d(X) + L(I)X for all X ∈ U .

Applying Theorem 4.1 to Banach space nest algebras case and noting that all

additive derivations on infinite dimensional Banach space nest algebras are inner, we

have the following result.

Theorem 4.2. Let N be a nest on an infinite dimensional Banach space X over

the real or complex field F , and let AlgN be the associated nest algebra. Assume that

ξ ∈ F with ξ 6= 0, 1 and L : AlgN → AlgN is an additive map. If there exists a

non-trivial element in N which is complemented in X, then L satisfies [L(A), B]ξ +

[A,L(B)]ξ = L([A,B]ξ) for any A,B ∈ AlgN with AB = 0 if and only if there exists

an operator T ∈ AlgN such that L(A) = AT − TA for all A ∈ AlgN .

Proof of Theorem 4.1. We use the same symbol as that in Theorem 3.1. Still, we

only need to prove the “only if” part.

Claim 1. For any X ∈ U , we have QL(PXP )Q = 0, PL(QXQ)P = 0,

PL(PXP )Q = −PXPL(Q)Q and PL(QXQ)Q = −PL(P )QXQ.

For any X,Y ∈ U , since PXPQYQ = 0, we have

[L(PXP ), QY Q]ξ + [PXP,L(QYQ)]ξ = 0.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 26, pp. 816-835, November 2013



ELA

832 X.F. Qi

Now, by the same argument as that of Claim 1 in Theorem 3.1, one can check that

the claim is true.

By Claim 1, for P and Q, we have

QL(P )Q = 0, PL(Q)P = 0 and PL(Q)Q = −PL(P )Q.(4.1)

Claim 2. For any X ∈ U , we have L(PXQ) ∈ PUQ and PL(P )PXQ =

PXQL(Q)Q.

Taking any X ∈ U , since PXQP = 0, we get L([PXQ,P ]ξ) = [L(PXQ), P ]ξ +

[PXQ,L(P )]ξ, that is,

L(−ξPXQ) = L(PXQ)P − ξPL(PXQ) + PXQL(P )− ξL(P )PXQ.(4.2)

Since QPXQ = 0, we get

L(−ξPXQ) = L(Q)PXQ− ξPXQL(Q) +QL(PXQ)− ξL(PXQ)Q.(4.3)

Eqs.(4.2) and (4.3) imply

L(PXQ)P − ξPL(PXQ) + PXQL(P )− ξL(P )PXQ

= L(Q)PXQ− ξPXQL(Q) +QL(PXQ)− ξL(PXQ)Q.
(4.4)

Multiplying by P from both sides in Eq.(4.4), one obtains

PL(PXQ)P = ξPL(PXQ)P.

Note that ξ 6= 1 and F is a field. It follows that PL(PXQ)P = 0. Similarly,

multiplying by Q from both sides in Eq.(4.4), one can obtain QL(PXQ)Q = 0.

Hence,

L(PXQ) = PL(PXQ)Q ∈ PUQ.

Multiplying by P and Q from the left and the right respectively in Eq.(4.4),

by Eq.(4.1), one gets ξPL(P )PXQ = ξPXQL(Q)Q, which implies PL(P )PXQ =

PXQL(Q)Q as ξ 6= 0. The claim holds.

Claim 3. L(I) ∈ Z(U).

By Claim 2, PL(P )PXQ = PXQL(Q)Q for all X ∈ U . It follows from Lemma

3.3 that PL(P )P ∈ Z(PUP ) = PZ(U)P , QL(Q)Q ∈ Z(QUQ) = QZ(U)Q and

PL(P )P+QL(Q)Q ∈ Z(U). By Eq.(4.1), we get L(I) = PL(P )P+QL(Q)Q ∈ Z(U).

Claim 4. For any X,Y ∈ U , we have

PL(PXPY P )P = PL(PXP )PY P + PXPL(PY P )P − PL(P )PXPY P.
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Taking any X,Z ∈ U , since (PXP + PXPZQ)(PZQ−Q) = 0, we have

[L(PXP + PXPZQ), PZQ−Q]ξ + [PXP + PXPZQ,L(PZQ−Q)]ξ = 0.

By Claims 1-2, the above equation reduces to

PL(PXPZQ)Q = PL(PXP )PZQ+ PXPL(PZQ)Q− PXPZQL(Q)Q,(4.5)

that is,

PL(PXP )PZQ = PL(PXPZQ)Q− PXPL(PZQ)Q+ PXPZQL(Q)Q

= PL(PXPZQ)Q− PXPL(PZQ)Q+ PL(P )PXPZQ
(4.6)

for all X,Z ∈ U . Now, taking any Y ∈ U , by Eqs.(4.5)-(4.6) and Claim 2, one can

easily check that

PL(PXPY P )PZQ = {PL(PXP )PY P + PXPL(PY P )P − PL(P )PXPY P}PZQ

holds for all X,Y, Z ∈ U . Note that M is a faithful left A-module. It follows that

PL(PXPY P )P = PL(PXP )PY P + PXPL(PY P )P − PL(P )PXPY P

holds for all X,Y ∈ U . The claim is true.

Similarly, one can show that the following Claim 5 is true.

Claim 5. For any X,Y ∈ U , we have

QL(QXQYQ)Q = QL(QXQ)QYQ+QXQL(QYQ)Q−QXQYQL(Q)Q.

Now by a similar argument to that of Claim 7 in Theorem 3.1, one can show the

following claim.

Claim 6. There exists an additive derivation d : U → U such that L(X) =

d(X) + L(I)X for all X ∈ U .

Claim 7. d(ξI) = ξL(I).

We first show d(ξI) ∈ Z(U). In fact, since d is a derivation, for any X ∈ U , we

have

d(ξX) = d(ξI)X + (ξI)d(X) = d(X)(ξI) +Xd(ξI).

It follows that d(ξI)X = Xd(ξI) for all X ∈ U , which implies d(ξI) ∈ Z(U).
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Next, for any X ∈ U , since PXQP = 0, by the assumption on L and Claim 6,

we get

d(−ξPXQ)− ξL(I)PXQ = L(−ξPXQ) = L([PXQ,P ]ξ)

= [L(PXQ), P ]ξ + [PXQ,L(P )]ξ
= [d(PXQ) + L(I)PXQ,P ]ξ + [PXQ, d(P ) + L(I)P ]ξ
= −ξd(PXQ)− 2ξL(I)PXQ.

That is, d(ξPXQ) = ξd(PXQ) + ξL(I)PXQ for all X ∈ U . Note that d(ξPXQ) =

d(ξI)PXQ+ξd(PXQ). It follows that (d(ξI)−ξL(I))PXQ = 0 for all X ∈ U , which

implies d(ξI) = ξL(I) as M is a faithful (A,B)-bimodule and d(ξI)− ξL(I) ∈ Z(U).

The proof of the theorem is complete.

Acknowledgment. The author thanks the referee(s) for helpful comments and

suggestions.
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