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Abstract. Motivated by the observation that there exists one-to-one correspondence between column space
decompositions and row space decompositions of a matrix, the class of matrices dominated by this matrix under ‘≤’
is characterized in terms of characteristic of column spacedecompositions, where≤ is a matrix partial order such as
the star partial order, the sharp partial order, and the corepartial order. The dominance property of the minus partial
order over the other partial orders in the discussion resulted in providing a new definition of shorted matrix of a
matrix with respect to column space decomposition. Also, extensions of a few results given in [O.M. Baksalary and
G. Trenkler. Core inverse of matrices.Linear Multilinear Algebra, 58:681–697, 2010.] are presented in this paper.

Key words. Generalized inverse, Matrix partial order, Minus partial order, Star partial order, Core partial order,
Space decomposition.
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1. Introduction. In the literature, we have several matrix partial orders defined on dif-
ferent subclasses of rectangular matrices of the same size,and the ‘Minus Partial Order’
is a prominent among them [6, 23]. Many other matrix partial orders on the subclasses of
rectangular matrices of the same size, defined earlier and also in sequel to these papers, are
dominated by the minus partial order. The star [5], sharp [15] and core [3] partial orders
are some examples of such matrix partial orders. It is well known that a pair ofm×n ma-
tricesB andA−B decompose the matrixA with reference to the minus partial order (i.e.,
B, A−B≤− A) if and only if the column spaces ofB andA−B decompose the column space
of the matrixA (i.e.,C (B)⊕C (A−B) = C (A)). The same is true with reference to the row
spaces. In fact, given a matrixA, there is one-to-one correspondence between its matrix de-
compositions with reference to the minus partial order, itscolumn space decompositions, and
the row space decompositions. Some characterizations of certain matrix partial orders, such
as the star and sharp partial orders, are given by the characteristics of both column space and
row space decompositions. In fact, matrixB is less thanA under the star partial order if and
only if the column spaces ofB andA−B decompose the column space ofA orthogonally,
and row spaces ofB andA−B decompose the row space ofA orthogonally. Even the shorted
matrix of a matrix [1, 14, 18] is defined with respect to subspaces of column space and row
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space of the given matrix. Note that in [1], the choice of row subspace in the construction
of a shorted matrix was obvious from the selection of column subspace, as the matrices in
discussion were symmetric (in fact, positive semidefinite matrices), but the same is not true
when the matrices of our interest are not symmetric. Now, in the light of the one-to-one cor-
respondence between the column space decompositions and the row space decompositions
of a given matrixA, we shall characterize all those matrices dominated byA with reference
to star partial order (similarly, with reference to the sharp and core partial orders) in terms
of characteristics of column space decomposition alone. Inother words, with reference to a
matrix partial order under consideration, we shall characterize the subspaces of column space
of A corresponding to the matrix decompositions ofA.

2. Preliminaries.

2.1. Matrices and generalized inverses.By notationCn, we denote the vector space
of all n-tuples (usually written columnwise) with entries from thefield of complex numbers
C. The symbolsCm×n and Mat(C) denote the set of allm×n matrices and the class of all
matrices, respectively, overC. The dimension of a vector spaceV is denoted byD(V ).
The vector space spanned by the columns ofA is called thecolumn space (column span)
of A and denoted byC (A). The row space (row span)of A denoted byR(A) is C (A∗),
whereA∗ represents the conjugate transpose ofA. The dimension of column space (which is
incidentally the same as the dimension of row space) is called therank of A and is denoted
by ρ(A). Thenull space (kernel)of a matrixA, denoted byK (A), is a subspace{x ∈ Cn :
Ax= 0}. A matrix A is said to be aRange Hermitianor anEP matrixif C (A) = R(A).

Given a matrixA∈Cm×n, we shall consider the following Moore–Penrose equations:

(1) AXA= A, (2) XAX= X, (3) (AX)∗ = AX, (4) (XA)∗ = XA.

A matrix X satisfying (1) is called ageneralized inverseor 1-inverseor ag-inverseor some-
times aninner inverseof A. An arbitraryg-inverse is denoted byA−. Similarly, a matrixX
satisfying the matrix equation (2) is called a2-inverseor anouter inverseof A. An arbitrary
outer inverse is denoted byA=. A matrix X satisfying both (1) and (2) is called areflexive
generalized inverseor (1,2)-inverseof A. TheMoore–Penrose inverseof A, denoted byA+,
is the matrixX satisfying (1)–(4) of the Moore–Penrose equations. ForA ∈ Mat(C), the
Moore–Penrose inverseA+ always exists and is unique.

Wheneverm= n, i.e., for a square matrixA, we shall consider the following matrix
equations in addition to the Moore–Penrose equations:

(5) AX= XA, (1k) XAk+1 = Ak.

A square matrixX satisfying (1), (2) and (5) is called thegroup inverse(denoted byA# )
of A, andX satisfying (2), (5) and (1k), for some integerk, is called theDrazin inverseof
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A (denoted byAD). The group inverseA#, when it exists, is unique with the property that
C (A#) =C (A) andR(A#) =R(A). A matrixX satisfying (2), (3) and (1k) for k= 1 is called
thecore–EP generalized inverseof A (or simply, thecore inverseas termed by Baksalary–
Trenkler [3]). The core-EP generalized inverse ofA, denoted byA #© when it exists, is an
outer inverse whose column space and row space are identical, and equal to the column space
of A. ForA∈ Cn×n with index one, bothA# andA #© exist. For the details regarding the core
inverse, readers are referred to [3, 11].

DEFINITION 2.1 (Space Decomposition). For any two subspacesU andV , the sum
W = U +V is said to be adirect sumand we writeW = U ⊕V if U ∩ V = (0). In
such a case, we say thatU ⊕V is aspace decompositionof W . By U ⊥©V = W we mean
thatU andV decomposesW orthogonally, i.e.,U andV are orthogonal to each other and
U +V = W .

DEFINITION 2.2 (Disjoint Matrices). GivenB,C∈Cm×n are said to bedisjoint matrices
if C (B)∩C (C) = (0) andR(B)∩R(C) = (0).

The results in the following lemmas are quite elementary, but useful at several places in
the present paper. The ‘if part’ of the Lemma 2.3 is given in [24, Lemma 2.2.4 (iii)], reader
may refer to [10, Theorem 2.7] for a complete proof.

LEMMA 2.3. Given nonnull matrices A∈Cm×n, B∈Cp×n, and C∈Cm×q, the following
statements are equivalent.

(i) BA−C is invariant for any choice of A−.
(ii) C (C)⊆ C (A) andR(B)⊆ R(A).

LEMMA 2.4. Given a matrix A∈Cn×n of index one, let B be a matrix such thatC (B) =
S⊆ C (A). Thenρ(AB) = ρ(B) = D(S).

Proof. Proof follows immediately from the fact thatA# exists, and therefore,C (B) =
S⊆ C (A) impliesB= AA#B= A#AB.

Readers are referred to [4, 24] for further reading on the fundamentals of matrices and
generalized inverses of matrices.

2.2. Partial order on a set. A relation on a setS is called apreorderon S if it satisfies
reflexive and transitive properties. A preorder that is alsoan antisymmetric is called apartial
order. A set S associated with a partial order (preorder; total order)≤ is called apartially
ordered(preordered; ordered) set. A partially ordered set is also known as a ‘poset’ in short.
A partial order≤1 on a setS1 is said to be anextended partial orderof a partial order≤2 on
S2, if S2 ⊆ S1 and fora,b∈ S2,

b≤1 a⇔ b≤2 a.
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A partial order≤2 on a setS2 is said to bedominatedby a partial order≤1 defined onS1 if
S2 ⊆ S1 and fora,b∈ S2,

b≤2 a⇒ b≤1 a.

In such a case, we say that≤1 is a dominant partial order with reference to other partial order
≤2.

Let (S,≤) be a partially ordered set and letS1 ⊆ S. An elementx ∈ S1 is said to be a
maximal (minimal)element inS1 if from x≤ y (y ≤ x) for anyy∈ S1 it follows thatx = y.
An elementz∈ S is said to be alower bound(anupper bound) of S1 if z≤ x (x≤ z) for every
x∈ S1. Thegreatest lower bound(also known asinfimum) of S1, when it exists, is the unique
maximal element in the set of lower bounds ofS1. The g.l.b., i.e., the greatest lower bound of
S1, when it exists, is denoted by∧S1 or infS1. Similarly, theleast upper bound(also known
assupremum) of S1, when it exists, is the unique minimal element in the set of all upper
bounds ofS1. The l.u.b., i.e., the least upper bound ofS1, when it exists, is denoted by∨S1

or supS1. WheneverS1 = {x1,x2} is a two-elements set,∧S1 and∨S1 are also denoted by
x1∧x2 andx1∨x2, respectively. A poset(S,≤) is said to be alattice if x1∧x2 andx1∨x2 are
well defined for every pair ofx1,x2 in S.

2.3. Minus partial order. Löwner [9] introduced a partial order on the class of nonneg-
ative definite matrices defined by the relationB≤L A wheneverA−B is nonnegative definite.
The same has been extended to the class of all Hermitian matrices. This partial order was
called the Löwner order. Subsequently, several other matrix partial orders on the different
subclasses of rectangular matrices have been studied. The star, minus, sharp, and core partial
orders are a few amongst such prominent matrix partial orders. Readers are referred to [17]
for further reading on matrix partial orders.

Inspired by Drazin’s work [5] on the star partial order defined on a semigroup with proper
involution, Hartwig [6] introduced plus partial order (later renamed as minus partial order or
simply minus order) on the set of regular elements in a semigroup. In the context of matrices,
it was seen thatB≤∗ A (B related toA under the star relation) is equivalent to the conditions
B+A = B+B andAB+ = BB+. The question was whether the Moore–Penrose inverse was
really necessary in the conditions to define a partial order on the set of regular elements in
a semigroup. Hartwig in [6] replaced the Moore–Penrose inverse with a reflexiveg-inverse
in the conditions, and found that just a generalized inversewould suffice to obtain a partial
order.

DEFINITION 2.5 (Minus Order. Hartwig [6], and Nambooripad [23]). Theminus order
on the setCm×n is a relation ‘≤−’ defined byB≤− A if

B−A= B−B,

AB− = BB−
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for some choice ofB−. In such a case, we say that the matrixB is less than the matrixA under
the minus order.

The following lemma provides different characterizationsof the minus partial order. For
the proof, we refer to [14]. In fact, the equivalence of (i), (v) and (vi) in the context of left
and right ideals in a regular ring is proved in [8].

LEMMA 2.6. For A,B∈ Cm×n, the following statements are equivalent.

(i) B and A−B are disjoint matrices,
i.e.,C (B)∩C (A−B) = (0) andR(B)∩R(A−B) = (0).

(ii) ρ(B)+ρ(A−B) = ρ(A).
(iii) B≤− A.
(iv) {A−} ⊆ {B−}.
(v) C (B)⊕C (A−B) = C (A).
(vi) R(B)⊕R(A−B) = R(A).

Let S= C (E) andT = R(F), for someE ∈ Cm×p andF ∈Cq×n. Define the set

C = {C∈ Cm×n : C (C)⊆ S,R(C)⊆ T}
= {C= EXF : X ∈ Cp×q}.

DEFINITION 2.7 (Shorted Matrix. Mitra–Puri [21, 22]). A matrixB ∈ C is called a
shorted matrix of A relative toS andT, and denoted byS[A|S,T] or S[A|E,F ] if

(2.1) ρ(A−B) = min
C∈C

ρ(A−C).

An equivalent maximality condition [18] for the minimalitycondition given in (2.1) is

(2.2) B= max
C∈C

{C≤− A}.

A shorted matrix, as defined above, is known to be unique undercertain regularity con-
ditions. The shorted matrix could also be unique in some pathological situations, where the
regularity conditions fail [16]. When regularity conditions hold, the unique shorted matrix
has many attractive properties [13, 14, 22]. Some of these properties are lost when the shorted
matrix is not unique.

The definition of shorted matrix as given in (2.2) extends thenotion of shorted operator
introduced by Anderson and Trapp. Initially, Anderson–Trapp [2] (also see [1]) introduced
the concept of shorted operator as an operator satisfying certain maximal property. The study
of shorted operator has significance in the context of electrical network theory. IfA is the
impedance matrix of a resistiven-port network, thenAs is the impedance matrix of the net-
work obtained by shorting the lastn−sports; thus, we callAs a shorted operator. This shorted
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operator satisfies the maximal properties under the Löwner partial order. The shorted oper-
ator defined under the Löwner partial order and the shorted matrix under the minus partial
order coincide when we confine to the class of positive semidefinite matrices. The notion of
shorted operator has very interesting interpretation in the linear model [19, 20].

3. Minus order and space decomposition.By the definition of the minus partial order
and its properties as stated in Lemma 2.6, we have the following lemma.

LEMMA 3.1. Let B≤− A and let C be any matrix such thatC (C) = C (B) andR(C) =
R(B) (i.e., B and C are space equivalent). Then C≤− A implies B=C. In other words, B is
the unique shorted matrix of A with respect to its column space and row space.

Proof. By Lemma 2.6, we get thatA− is ag-inverse for bothB andC. So,C (C) = C (B)
implies(CA−)B= B, andR(C) = R(B) impliesC(A−B) =C.

For every column space decompositionS⊕ S′ = C (A), the following statements are
easily verified.

(i) There exists a unique matrixB≤− A such thatC (B) = S andC (A−B) = S′ (Proof is
immediate from the observation that everyx ∈ C (A) is uniquely written asx = y+ z,
wherey∈ S andz∈ S′).

(ii) There exists a unique row space decompositionT ⊕T′ corresponding to the given col-
umn space decomposition, which is associated uniquely withB ≤− A satisfying (i)
above.

So, we have the following corollary.

COROLLARY 3.2. There is one-to-one correspondence between the set of all possible
column space decompositionsS⊕S′ = C (A) and the set of all possible row space decom-
positionsT ⊕T′ = R(A), where the correspondence is uniquely determined by the matrix B
that is less than A under the minus order such that

C (B) = S and C (A−B) = S′

and

R(B) = T and R(A−B) = T′.

For a nontrivial subspaceS of C (A), there are infinitely many choices ofS′ such that
S⊕S′ = C (A) and so there are infinitely many choices of the matricesB such thatB≤− A
andC (B) = S. It would be very interesting to observe that for any fixedS⊆ C (A), we have
infinitely many choices ofB such thatC (B) = S andB≤− A, butR(A−B) is the same for
all those choices ofB. We shall prove this result in Corollary 3.5. For further development of
discussion, it is necessary to recall the following conceptof separability.
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DEFINITION 3.3 (Separability of a pair of subspacesS and T. Mitra [16]). Given
A∈Cm×n, two subspacesS⊆ C (A) andT ⊆ R(A) are said to beseparable with reference to
the matrix A if

(3.1) FA−E = 0 for someA−,

whereE ∈ Cm×p andF ∈Cq×n are such thatC (E) = S andR(F) = T. Equivalently,

(3.2) y∗A−x= 0 for someA−

for all x∈ S andy∈ T.

Sincex andy are in the column space and the row space ofA respectively, by Lemma 2.3,
(3.2) holds for every choice ofA−. The same is true in the case of (3.1) asC (E) andR(F)

are subspaces of column and row spaces ofA, respectively. By saying thatS is separable
with T or T is separable withS, without referring to the matrixA, we mean thatS andT are
separable with reference toA. In the following theorem, we prove that there exists a unique
maximal separable subspace with reference to a given columnsubspace. The word ‘maximal’
in ‘maximal separable subspace’ is with reference to the partial order defined by ‘⊆’ on the
class of separable subspaces.

THEOREM 3.4. Given A∈Cm×n and a subspaceS⊆ C (A), we have the following.

(i) There exists a unique maximal separable subspaceT′ with S.
(ii) For any oblique projector P ontoS, the maximal separable spaceT′ as in(i) is given by

T′ = R(QA),

where Q= I −P.
(iii) For T′ as in(i),

D(S)+D(T′) = ρ(A).

Proof. (i) Let F be a matrix such thatR(F) is separable withS, but not maximal. If
y /∈ R(F) is separable withS, then forE such thatS= C (E) we have

y∗A−E = 0 for all A−.

Now for F1, a matrix obtained by augmenting the rowy∗ with F , it is obvious thatR(F1)%
R(F) but F1A−E = 0. Sinceρ(F1) > ρ(F) (as y /∈ R(F)), the existence of a maximal
separable subspace withS is proved. To prove uniqueness of the maximal separable subspace
with S, consider the matricesF1 andF2 such thatR(F1) andR(F2) are two maximal separable
subspaces withS. Further,F1A−E = 0 andF2A−E = 0 imply FA−E = 0, whereF is the
matrix obtained by appending the rows ofF2 with rows ofF1. So,R(F) is separable with
S. R(F1) 6= R(F2) (certainly not comparable) implies thatR(F) strictly contains each of
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R(F1) andR(F2), which contradicts the fact thatR(F1) andR(F2) are maximal separable
subspaces withS.

(ii): For a projectorP ontoS⊆C (A) andQ= I −P, we haveQAA−P=QP= 0, proving
the separability ofR(QA)with S=C (P). Now fory∈R(A), we can writey∗ = z∗A for some
z, andy∗ = z∗QA+ z∗PA. Further,y∗A−P= 0, i.e.,y∈ T′ impliesz∗PAA−P= z∗P= 0, and
therefore,y∗ = z∗QA. This proves thatR(QA) = T′ leading to (ii).

(iii): For P andQ as defined in (ii), note thatPA(A−)PA= PA. By Lemma 2.6, we get
PA≤− A, and therefore,

ρ(PA)+ρ(QA) = ρ(A).

SinceP is an oblique projector ontoS⊆ C (A), we haveρ(PA) = ρ(P) = D(S). From (ii) of
the theorem, we haveT′ = R(QA), and hence,D(S)+D(T′) = ρ(A).

With the observation that the matrices in{B : B≤− A andC (B) = S} are obtained byPA
for different oblique projectorsP ontoS, we arrive at the following corollary.

COROLLARY 3.5. For a fixed subspaceS of C (A), the subspaceR(A−B) is the same
for all choices of B such that B≤− A andC (B) = S. Similarly, for any fixed subspaceT of
R(A), theC (A−B) is the same for all choices of B such that B≤− A withR(B) = T.

In the following theorem, for a column space decompositionS⊕S′ = C (A), we give an
explicit expression for the matrixB satisfyingB≤− A , C (B) = S andC (A−B) = S′.

THEOREM 3.6. Given a matrix A∈ Cm×n, let E1 ∈ Cm×p and E2 ∈ Cm×q be any two
matrices such thatC (E1) = S andC (E2) = S′, whereS⊕S′ = C (A). Also, letT andT′ be
the subspaces ofR(A) such thatT is maximal separable subspace withS′ andT′ is maximal
separable subspace withS. Then we have the following.

(i) If y is any vector fromT separable with the entireS, then y is the zero vector. Similarly,
the vector fromT′ separable with the entireS′ is the zero vector. Further,T ⊕T′ =

R(A).
(ii) The unique matrix B satisfying B≤− A, C (B) = S, andC (A−B) = S′ is given by

(3.3) B= E1(F1A−E1)
−F1,

where A− is an arbitrary g-inverse of A, F1 = (I −E2E−
2 )A, and E−2 is an arbitrary

g-inverse of E2. In fact, for the matrix B as given in (3.3) we have

R(B) = T and R(A−B) = T′.

Proof. (i): Suppose thaty is any vector fromT separable with the entireS. Then from the
definition ofT′, we conclude thaty is also fromT′ ⊂ R(A) which implies thaty is separable
with the entireS⊕S′ = C (A). In other words,y∗ = y∗A−A= 0, and hence, the zero vector
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is the only vector fromT which is separable with the entireS. In fact, we have proved that
T ∩T′ = (0). Similarly, T′ has no nonzero vector which is separable withS′. Now referring
to (iii) of Theorem 3.4, we see thatD(S) +D(T′) = ρ(A) = D(S′) +D(T). Therefore,
T,T′ ⊆ R(A) andT ∩T′ = (0) imply thatT ⊕T′ = R(A).

(ii): For an arbitraryE−
2 , the matrixE2E−

2 is an oblique projector ontoS′. DefineF1 =

(I −E2E−
2 )A. Now, from the part (ii) of Theorem 3.4, we obtainT =R(F1). Again, referring

to the part (iii) of Theorem 3.4, we see that

ρ(A) = D(S′)+D(T),

and this impliesD(T) = D(S). In other words,ρ(E1) = ρ(F1). SinceC (E1) = S⊆ C (A),
we haveAA−E1 = E1 and

F1A−E1 = (I −E2E−
2 )AA−E1 = (I −E2E−

2 )E1.

Also note that the invariance ofF1A−E1 follows from Lemma 2.3, and the definitions of the
matricesE1 andF1. SinceS andS′ = K (I −E2E

−
2 ) are disjoint, we get

ρ(F1A−E1) = ρ((I −E2E−
2 )E1) = ρ(E1) = ρ(F1).

So,C (F1A−E1) = C (F1) andR(F1A−E1) = R(E1). Now referring to Lemma 2.3, we get
that the matrixB= E1(F1A−E1)

−F1 is uniquely determined. From this expression forB, it is
obvious thatρ(B)≤ ρ(F1),ρ(E1). By postmultiplying both sides ofB= E1(F1A−E1)

−F1 by
A−E1, we getBA−E1 = E1(F1A−E1)

−F1(A−E) = E1(F1A−E1)
−(F1A−E) = E1, and hence,

ρ(E1)≤ ρ(B). Thereforeρ(B) = ρ(E1) = ρ(F1). Now consider an arbitraryA− and observe
that

BA−B= E1(F1A−E1)
−F1A−E1(F1A−E1)

−F1 = E1(F1A−E1)
−F1 = B.

Therefore,B is a matrix such thatB ≤− A (by Lemma 2.6),C (B) = S, andR(B) = T.
SinceC (E2) is the maximal separable subspace withT =R(B), by Corollary 3.5 we get that
C (A−B) = S′, and similarly,R(A−B) = T′.

REMARK 3.7. Note that the expression we obtained forB in (3.3) is exactly the same as
the unique shorted matrixS[A|S,T] with the regularity conditionρ(FA−E) = ρ(F) = ρ(E),
whereC (E) =SandR(F) = T as in [18]. This prompts us to define a regular shorted matrix
with respect to a column space decomposition. The use of the word ‘regular’ is due to the
condition, under which we discuss the shorted matrix, equivalent to the regularity conditions
discussed in the literature with reference to uniqueness ofshorted matrix.

We shall consider any partial order≤ dominated by≤− on a subclassP of Cm×n. For a
matrixA and its column space decompositionS⊕S′ = C (A), define

C= {C∈Cm×n : C (C)⊆ S and C (A−C)⊇ S′}.
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DEFINITION 3.8 (Shorted matrix with respect to a column space decomposition). Given
a matrix partial order≤ on P, A ∈ P and subspaceS of C (A), a shorted matrix of A with
respect to a column space decompositionS⊕S′ = C (A) is a maximal element

S[A|S,S⊕S′] = max
C∈C

{C≤ A}.

A regular shorted matrixof A with respect to a column space decompositionS⊕S′ = C (A),
denoted byR[A|S,S⊕S′] when it exists, is the matrixB=S[A|S,S⊕S′] with C (B) = Sand
C (A−B) = S′.

Though we prefer to denote the above shorted matrix byS[A|S,S⊕S′] whenever the
matrix partial order under discussion is clear by context, sometimes we may denote the same
also byS[A,≤ |S,S⊕S′], particularly when we involve more than one partial order inthe
discussion. Similarly, for a givenS if the choice of possible decompositionS⊕S′ = C (A) is
unique due to the property of≤, we writeS[A|S,S⊕S′] simply asS[A|S] orS[A,≤ |S]. Also,
in the case of regular shorted matrixR[A|S,S⊕S′], we use the notationsR[A,≤ |S,S⊕S′],
R[A|S] andR[A,≤ |S] for convenience.

REMARK 3.9. If the partial order≤ is the same as the minus partial order≤−, then
by Theorem 3.6,S[A|S,S⊕S′] uniquely exists and is given by the expression (3.3). In fact,
S[A|S,S⊕S′] is the matrixB such thatB ≤− A, C (B) = S, andC (A−B) = S′. In other
words,S[A|S,S⊕S′] = R[A|S,S⊕S′] for every choice of decompositionS⊕S′ = C (A).
Also in this case,R[A|S′,S⊕S′] = A−B.

EXAMPLE 3.10. ConsiderA=

[

1 2
−2 1

]

, a nonsingular matrix of size 2×2. LetE1 =

[

1
1

]

andE2 =

[

−1
1

]

. Now forC (E1) = SandC (E2) =S′, we haveS⊕S′ =C (A) =C2.

To find a matrixB=S[A|S,S⊕S′], we shall first compute the following matrices:

E2E−
2 =

[

0 −1
0 1

]

and F1 = (I −E2E
−
2 )A=

[

−1 3
0 0

]

,

whereE−
2 =

[

0 1
]

is a choice of ag-inverse forE2. Now, F1A−E1 = F1A−1E1 =

[

2
0

]

and by taking(F1A−E1)
− =

[

1
2 0

]

, we obtain

B= E1(F1A−E1)
−F1 =

[

− 1
2

3
2

− 1
2

3
2

]

and A−B=

[ 3
2

1
2

− 3
2 − 1

2

]

.

It is easily verified thatBA−1B = B, and therefore, the matrixB so obtained is belowA
under minus partial order. From the structure ofB andA−B it is clear thatC (B) = S and
C (A−B) = S′.

Now, the natural problem is as follows.
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Problem. If a matrix partial order≤ is dominated by≤−, characterize all the subspacesS of
C (A), (andS′) for which there exists a matrixB≤A such thatC (B) =S(andC (A−B) =S′).

In the following sections, we shall address this problem forthe cases of the star, sharp,
and core orders.

4. Star partial order and column space decomposition.Drazin [5] was the first to
notice that the relation≤∗, as defined in (4.1), is a partial order on a semigroup with proper
involution and, Hartwig-Drazin [7] were the first to call this the star-order.

DEFINITION 4.1 (∗ - relation onCm×n). Given matricesA,B∈ Cm×n, we writeB≤∗ A
if

(4.1) B∗B= B∗A and BB∗ = AB∗.

≤∗ defined above is a partial order onCm×n and is calledthe star partial orderor simplythe
star-order.

The star partial order has some interesting lattice properties and we refer to [7, 12, 17]
for further reading.

The star partial order is dominated by the minus partial order (B≤∗ A ⇒ B≤− A) and
the proof follows from Definitions 2.5 and 4.1, and the equivalence of (iii) and (iv) of Lemma
4.2. Proof of the following lemma is immediate from the spaceequivalence ofB∗ andB+.

LEMMA 4.2. For A,B∈ Cm×n, the following statements are equivalent.

(i) C (B)⊥ C (A−B) andR(B)⊥ R(A−B).
(ii) B∗(A−B) = (A−B)B∗ = 0.

(iii) B∗A= B∗B and AB∗ = BB∗.

(iv) B+A= B+B and AB+ = BB+.

The above lemma presents different characterizations ofB for which B≤∗ A. In fact, (i)
of Lemma 4.2 characterizesB with respect to the column space and row space decompositions
of the matrixA. From the one-to-one correspondence between matrix decomposition under
the minus partial order, column space decompositions, and row space decompositions, as
we have seen in Corollary 3.2, we would like to replace (i) of the above Lemma 4.2 by
an appropriate condition on the column space decompositionalone. With reference to the
star partial order, unlike in the case of the minus partial order, a matrix decomposition of
A corresponding to an arbitrary column space decomposition may not exist. Lemma 4.2
(i) suggests that having chosenS for C (B), whereB ≤∗ A, then S′ in the corresponding
space decomposition is essentially orthogonal toS. In fact, with reference toS⊆ C (A)
there exists a unique orthogonal decomposition ofC (A). So, wheneverS⊥©S′ = C (A), we
may conveniently writeS[A|S,S⊥©S′] simply asS[A|S], when it exists. The uniqueness of
S[A|S] follows from the subsequent Theorem 4.3, and for the proof ofthis theorem we refer
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to [12, Theorem 14].

THEOREM 4.3. Let A be an m×n complex matrix and P,Q∈ [0, A], where[0, A] repre-
sents the set of all m×n matrices B such that B≤∗ A. Then P∨Q and P∧Q are well defined
in [0, A] with C (P∨Q) = C (P) +C (Q) and C (P∧Q) = C (P)∩C (Q). In other words,
[0, A] is a lattice.

Now we have the following theorem.

THEOREM 4.4. Given an m×n matrix A,S[A|S] is unique.

Proof. ForB,C≤∗ A, by Theorem 4.3 we getB∨C≤∗ A. Also,C (B),C (C)⊆ S implies
C (B∨C)⊆ S. Hence, the uniqueness ofS[A|S] follows.

Considering a subspaceSand the orthogonal decompositionS⊥©S′ of C (A), we may not
have a corresponding matrix decomposition with reference to the star partial order. In fact,
S[A|S] could be the zero matrix. In the following example, we find that for a matrixA and
subspaceSof C (A), there is no matrixB such thatB≤∗ A andC (B) = S. In fact, in this case
S[A|S,S⊥©S′] is the null matrix.

EXAMPLE 4.5. ConsiderA =

[

1 −2
−2 1

]

andS= C (E), whereE =

[

1
2

]

. Note

thatA is a nonsingular matrix andC (E)⊆ C (A). If B is a nonzero 2×2 matrix of rank one

such thatC (B) = C (E), thenB=

[

λ1 λ2

2λ1 2λ2

]

for someλ1,λ2, not both of them equal to

zero. Now,BB∗ =

[

λ 2
1 +λ 2

2 2(λ 2
1 +λ 2

2)

2(λ 2
1 +λ 2

2 ) 4(λ 2
1 +λ 2

2)

]

, AB∗ =

[

λ1−2λ2 2λ1−4λ2

−2λ1+λ2 −4λ1+2λ2

]

,

B∗B =

[

5λ 2
1 5λ1λ2

5λ1λ2 5λ 2
2

]

andB∗A =

[

−3λ1 0
−3λ2 0

]

. Suppose thatB∗B = B∗A, in which

caseλ2 = 0 andλ1 = 0 or −3/5. SinceB is a nonzero matrix, we are left with the only
possibility thatλ2 = 0 andλ1 =−3/5. But, for the matrixB obtained by substitutingλ2 = 0
andλ1 = −3/5, we find thatBB∗ 6= AB∗. Hence, there is no matrixB such thatB≤∗ A and
C (B) = S, and in fact,S[A|S] = 0 in this case.

Now, we shall consider a column space decompositionS⊕S′ = C (A). We know that
there exists a uniqueB such thatB≤− A andC (B) = S corresponding to any column space
decomposition considered. The conditionC (B) ⊥ C (A−B) holds if and only if (from the
unique correspondence of column space decomposition with matrix decomposition)B= PA
andA−B= (I −P)A for the orthogonal projectionP ontoS. Now considering the orthogo-
nality between row spaces ofB andA−B, we see thatB≤∗ A if and only if PAA∗(I −P) = 0.
So, we have the following theorem.

THEOREM 4.6. For A ∈ Cm×n, S= C (E1) ⊆ C (A), and P= E1E+
1 , the orthogonal

projector ontoS, the following statements are equivalent.
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(i) There exists a matrix B≤∗ A such thatC (B) = S.
(ii) PAA∗(I −P) = 0.

(iii) P commutes with AA∗, i.e., PAA∗ = AA∗P.
(iv) PAA∗ is Hermitian.

With S and P satisfying any one of the above equivalent conditions,the matrix B≤∗ A such
thatC (B) = S is given by PA.

The following corollary provides further characterizations ofS satisfying the properties
stated in the above theorem.

COROLLARY 4.7. For A ∈ Cm×n, S= C (E1) ⊆ C (A), the following statements are
equivalent.

(i) There exists a matrix B≤∗ A such thatC (B) = S.
(ii) S is an invariant space under AA∗ (i.e., AA∗(S)⊆ S).

(iii) QAA∗Q= AA∗Q for every oblique projector Q ontoS.

Proof. (i) ⇒ (ii) follows from (i) ⇒ (iii) of Theorem 4.6. (ii)⇒ (iii) follows from the
invariance property ofS underAA∗ and the fact thatQ is an oblique projector ontoS.

(iii) ⇒ (i): Let Q be the orthogonal projector ontoS, in particular, such thatQAA∗Q=

AA∗Q. Clearly,QAA∗Q is Hermitian, and hence,Q commutes withAA∗. Now (i) follows
from Theorem 4.6.

COROLLARY 4.8. For A∈ Cm×n, if S,T are any two subspaces ofC (A) such that

(i) there exist matrices B and C satisfying B,C≤∗ A, C (B) = S andC (C) = T,
(ii) S⊥ T,

then B+C≤∗ A andρ(B+C) = ρ(B)+ρ(C).

Proof. If P andQ are the orthogonal projectors ontoS andT, respectively, from (ii) we
getPQ=QP= 0, and therefore,P+Q is the orthogonal projector onto the subspaceS⊕T of
C (A). Clearly,ρ(P+Q) = ρ(P)+ρ(Q). Now referring to the conditions (i) of the corollary
and (iii) of Theorem 4.6, we see that bothP andQ commute withAA∗. This in turn means
that P+Q also commutes withAA∗, and therefore,B+C = (P+Q)A≤∗ A. Additionally,
note thatρ(B+C) = ρ(P+Q) = ρ(P)+ρ(Q) = ρ(B)+ρ(C).

The following corollary follows from Theorem 4.6.

COROLLARY 4.9. If E1 = y is a nonzero column vector fromC (A), in other words,
S= C (E1) is a one-dimensional subspace, then there exists a matrix B such that B≤∗ A and
C (B) = S if and only if y is an eigenvector of AA∗.

Proof. Note that the orthogonal projectorP ontoC (E1), as in Theorem 4.6, is given by
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1
y∗yyy∗. Now from (ii) of Theorem 4.6, we get

AA∗ 1
y∗y

yy∗(= AA∗P= PAA∗P) =
1

y∗y
yy∗AA∗ 1

y∗y
yy∗ =

1
(y∗y)2 yy∗AA∗yy∗.

Hence, by postmultiplying byy on both sides, we get thaty is an eigenvector ofAA∗.

Conversely, ify is an eigenvector ofAA∗, it is easily verified that the orthogonal projector
P= 1

y∗yyy∗ commutes withAA∗. Now, by Theorem 4.6 we conclude thatB= PA= 1
y∗yyy∗A

is the matrix of rank one such thatC (B) = C (E1) andB≤∗ A.

REMARK 4.10. ForA∈ Cm×n, we have the following.

(i) Start with an arbitrary eigenvector ofAA∗ corresponding to a singular value ofA, obtain
B1(≤

∗ A) of rank one as in Corollary 4.9. Now obtain a matrixB2 of rank one such that
B2 ≤

∗ (A−B1) in a similar way. Clearly,B∗
1B2 = 0= B∗

2B1. So, by Corollary 4.8 we
getB1+B2 ≤

∗ A. Continue to obtainBi ≤
∗ A− (B1+ · · ·+Bi−1); i = 2,3, . . . r, where

r is the rank of the matrixA. In fact,A can be written as a sum of matricesBi (≤
∗ A)

of rank one such thatB∗
i B j = 0= B∗

j Bi (i 6= j). For the benefit of readers, we give the
following quick proof.
Note thatB∗

1B2 = 0 andB1B∗
2 = 0 asB2 ≤∗ (A−B1). By Corollary 4.8, we get that

B1+B2≤
∗ A andρ(B1+B2)= 2. HavingBi ≤

∗ A−(B1+ · · ·+Bi−1) such thatB∗
kBl = 0

for k 6= l < i, we see that(B1 + · · ·+Bi−1)B∗
i = 0 impliesB∗

kBkB∗
i = 0, equivalently,

BkB∗
i = 0 for all k < i. Similarly, BkB∗

l = 0 for k 6= l < i together withB∗
i (B1+ · · ·+

Bi−1) = 0 imply B∗
i Bl = 0 for all l < i. So, the decomposition of matrixA of rankr as

a sum of rank one matrices with the said properties follows byinduction.
(ii) For the star order,S[A|S] is nonzero if and only if there exists at least one eigenvector of

AA∗ in S. In fact,S[A|S] is the sum of rank one matricesBi , i = 1, . . . , r, as in Corollary
4.9, corresponding to distinct and orthogonal eigenvectors ofAA∗ from S.

(iii) The interval of matrices[0, A] with reference to the star partial order is finite if and only
if there exists a unique choice for the set of orthonormal eigenvectors ofAA∗. In other
words, nonzero singular values ofA are distinct. If the nonzero singular values are not
distinct, then the interval[0, A] is not a finite set. For example, the interval[0, I ], where
I is the identity matrix, is not a finite set and every orthogonal projector is a member of
this interval.

EXAMPLE 4.11. Consider the same matrixA=

[

1 −2
−2 1

]

as in Example 4.5. Now

takeS= C (E), whereE =

[

1
1

]

and is an eigenvector ofAA∗. Further, the Moore–Penrose

inverse ofE is E+ =
1
2

[

1 1
]

and P = EE+ =

[ 1
2

1
2

1
2

1
2

]

. Now, write B1 = PA=

[

− 1
2 − 1

2
− 1

2 − 1
2

]

. From the structure ofB1, it is clear thatC (B1) = S. By direct computa-
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tion, it can be verified thatB1 satisfiesB∗
1B1 = B∗

1A andB1B∗
1 = AB∗

1, and hence,B1 is the
matrix withC (B1) = SandB1 ≤

∗ A.

Now, writeB2 = A−B1 =

[ 3
2 − 3

2
− 3

2
3
2

]

and observe thatA= B1+B2 is a sum of rank

one matrices such thatB1,B2 ≤
∗ A as in (i) of Remark 4.10.

Observe thatA, in this example, has distinct singular values (i.e., 1 and 3). For any
matrix B of rank one such thatB≤∗ A, referring to the construction ofB given in the proof
of Corollary 4.9, it is one of the matricesB1 andB2 we have above. So, the interval[0, A]
has exactly four elements (finite), i.e.,B1 andB2 given above and the trivial elements 0 and
A. So, we have demonstrated (iii) of Remark 4.10.

5. Sharp order and core order. Inspired by the role of the Moore–Penrose inverse in
providing an alternate definition for the star partial order(see (iv) of Lemma 4.2), Mitra [15]
used the group inverse to define the sharp order and later Baksalary–Trenkler [3] used the
core-EP generalized inverse to define the core partial orderon the class of square matrices
of index one. The star, sharp, and core partial orders are defined on the different classes of
matrices and are characterized by considering additional conditions on the choice ofB− in
the Definition 2.5 of the minus partial order. The star order is specified by takingB− = B+

– the Moore–Penrose inverse ofB in the Definition 2.5, we takeB# – the group inverse of
B in the case of the sharp order, and in the case of the core orderit is B #© – the core–EP
generalized inverse ofB. So, the minus partial order dominates each of the star, sharp, and
core orders in their respective class of matrices over whichthey are defined.

DEFINITION 5.1. For the matricesA andB of sizen×n and of index one, we say thatB
is less thanA with reference to a matrix relation calledthe sharp relationif

B#B= B#A and AB# = BB#

in which case, we writeB≤# A.

DEFINITION 5.2. For the matricesA andB of sizen×n and of index one,B is said to be
less thanA with reference to a matrix relation calledthe core relationif

B #©B= B #©A and AB #© = BB #©

in which case, we writeB≤ #© A.

It is well established in the literature [3, 15] that both thesharp and core relations define
partial orders on the class of matrices of index one. In this section, we are interested in study-
ingS[A|S,S⊕S′] with reference to each of these partial orders. In particular, our main inter-
est is to characterize the decompositionsS⊕S′ =C (A) for which we haveB=R[A|S,S⊕S′]

with C (B) = S. A few properties of the sharp and core relations are listed in the following
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lemma, some of which are required for the further discussionand the other are of academic
interest.

LEMMA 5.3. Let A,B ∈ Cn×n be matrices of index one and let C= A−B. Then the
following hold:

(i) B≤# A if and only if

(5.1) BA= B2 = AB, equivalently, BC=CB= 0.

(ii) B≤# A if and only if C is also of index one and C≤# A.
(iii) B≤ #© A if and only if

(5.2) B∗B= B∗A and B2 = AB, equivalently, B∗C=CB= 0.

(iv) The relation defined by≤ #© on the class of matrices of index one is a partial order.
(v) If the matrices A,B are from the class of Hermitian matrices (or to be more general, EP

matrices), a subset of matrices of index one, then

B≤∗ A⇔ B≤# A⇔ B≤ #© A.

Proof. Here, we provide a quick proof of the lemma. Readers may refer to [3, 15] for the
detailed and original proofs.

Proofs of the parts (i) and (iii) are immediate from the fact that

C (B) = R(B+) = C (B#) = C (B #©) = R(B #©) and R(B) = C (B+) = R(B#).

The part (v), in which case the matricesA andB are EP (range Hermitian), follows from
(i), (iii) and the definition of the star relation. In fact, inthis caseB+ = B# = B #©.

From the part (i),B≤# A impliesA2 = B2+C2. SinceA andB are of index one,A2 =

B2+C2 impliesρ(C2) = ρ(C). So,B andC simultaneously satisfy the conditions discussed
in the part (i), and hence, (ii) follows immediately.

The reflexive property of≤ #© is trivial from the definition. Antisymmetry of≤ #© fol-
lows from the fact that≤ #© is dominated by≤−. If D ≤ #© B andB ≤ #© A, the transitive
property of≤ #© follows immediately from (iii),C (D) ⊆ C (B) andR(D) ⊆ R(B). Hence,
≤ #© is a partial order on the class of the matrices of index one.

Now, we shall characterize all subspacesS of C (A) for which we have a subspace de-
compositionS⊕S′ = C (A) such that regular shorted matrixB=R[A,≤ #© |S,S⊕S′] exists.

THEOREM 5.4.For a matrix A of index one and the space decompositionS⊕S′ =C (A),
there exists a matrix B=R[A,≤ #© |S,S⊕S′] if and only if the following hold:

(i) S is an invariant space under A (equivalently, QAQ= AQ for every oblique projector Q
ontoS).
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(ii) S⊥ S′; in other wordsS⊥©S′ = C (A).

In the case of a space decompositionS⊕S′ = C (A) satisfying the above conditions, the
regular shorted matrix of A with respect to this space decomposition under the core order is
given by

R[A,≤ #© |S,S⊕S′] = PA= EE+A,

whereC (E) = S and P= EE+ is the orthogonal projector ontoS.

Proof. SupposeB is a regular shorted matrix ofA such thatB ≤ #© A, C (B) = S and
C (A−B) = S′. By (iii) of Lemma 5.3,B ≤ #© A implies B2 = AB. So, C (B) = S is an
invariant space underA and (i) is proved. Again referring to (5.2), we haveB∗(A−B) = 0,
and therefore,C (A−B) = S′ implies (ii).

Conversely, letS⊕S′ be a space decomposition ofC (A) such thatS is an invariant space
underA andS⊥ S′. From the invariance ofSunderA, we haveQAQ= AQ for every oblique
projectorQ onto S. Let E be a matrix such thatC (E) = S and writeQ = P = EE+, the
orthogonal projector ontoS. Now for B = PA, we shall prove thatB is the regular shorted
matrix with the required properties. From the definition ofB, we haveB∗A = A∗P∗A =

A∗PA=A∗P∗PA=B∗B andAB=APA=PAPA=B2. A is of index one andC (B) =S⊆C (A)
impliesρ(B) = ρ(AB) = ρ(B2) (by Lemma 2.4), and therefore,B is of index one. SinceP
is the orthogonal projector ontoS (⊆ C (A)), we haveC (PA)⊥©C ((I −P)A) = C (A) and
C (PA) = S. So, from the uniqueness of the orthogonal complementS′ of S in C (A), we have
C (A−B) = S′. Therefore,PA=R[A,≤ #© |S,S⊕S′].

The following corollaries are immediate from the above theorem.

COROLLARY 5.5. For a matrix A of index one andS⊆ C (A), let E be any matrix
such thatC (E) = S and P= EE+. Then PAP= AP if and only if there exists the unique
R[A,≤ #© |S,S⊕S′] for someS′. In fact, in this caseS′ = C ((I −P)A).

COROLLARY 5.6.For a matrix A of index one andS⊆C (A), a shorted matrixS[A,≤ #©

|S] with respect toS uniquely exists and is given byR[A,≤ #© |S1], whereS1 is the maximal
invariant space under A inS.

REMARK 5.7. In the Corollary 5.5, we have observed that for an invariant spaceS(⊆
C (A)) underA, there is a uniqueS′ for which the regular shorted matrixR[A,≤ #© |S,S⊕S′]

exists. Also, we have obtained a necessary and sufficient condition on a subspaceS of C (A)
to have a regular shorted matrixB of A under the core order withC (B) = S. The same
characterization, given in Corollary 5.5, also provides a reason due to whichB ≤ #© A need

not imply A−B ≤ #© A. Baksalary–Trenkler in [3] observed that forA =

[

1 1
0 1

]

, the

matrixB=

[

1 1
0 0

]

is such thatB≤ #© A butA−B� #© A. In this case,A−B=

[

0 0
0 1

]
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is a matrix whose column space equalsS′ =C (F), whereF =

[

0
1

]

andS′ is not an invariant

space underA. So, we cannot expectA−B≤ #© A in this case.

Now, we shall proceed to obtain a characterization of the decompositionS⊕S′ = C (A)
for whichR[A,≤# |S,S⊕S′] exists. In the following example, we observe that the invariance
property of spaceS is not sufficient for a matrixA of index one to have a regular shorted
matrix with reference to the sharp order.

EXAMPLE 5.8. Consider a matrixA =

[

1 1
0 1

]

, an invertible matrix in theJordan

form. Suppose there existsB= xy∗, a matrix of rank one such thatB≤# A andx=

[

x1

x2

]

and

y∗ =
[

y1 y2
]

. SinceB is of index one, (5.1) implies 06= B2 = xy∗xy∗ = xy∗A= Axy∗, and
therefore,x(y∗x) = Ax. So,x is an eigenvector ofA corresponding to the eigenvalueλ = y∗x.
Similarly, y is an eigenvector ofA∗ corresponding to the eigenvaluēλ = x∗y. Comparing
Ax= λx, we getλ = 1 andx2 = 0. Similarly, we gety1 = 0. This would imply that 1=
λ = y∗x = 0, a contradiction. So, the above matrixA of index one in the Jordan form has
no matrixB of rank one such thatB≤# A. From this example, we can even interpret that for
some invariant spaceS, spanned by an eigenvector, we may not have any choice ofS′ such
thatR[A,≤# |S,S⊕S′] exists.

THEOREM 5.9. Let A be an n×n matrix of index one andS be a subspace ofC (A).
Then the following are equivalent.

(i) There exists a matrix B such that B≤# A andC (B) = S.
(ii) For someS′ such thatS⊕S′ = C (A), the regular shorted matrixR[A,≤# |S,S⊕S′]

exists.
(iii) S is invariant space under A, for which there exists an invariant spaceS′ under A such

thatS⊕S′ = C (A).
(iv) There exists a space decompositionS⊕S′ =C (A) such that for every oblique projectors

P and Q ontoS andS′, respectively,

PAP= AP and QAQ= AQ.

Proof. (i) ⇒ (ii) is trivial, whereS′ in (ii) is C (A−B).

(ii) ⇒ (iii): For B=R[A,≤# |S,S⊕S′], from the definition of the regular shorted matrix,
we conclude thatB is a matrix such thatB ≤# A, C (B) = S andC (A−B) = S′. Now from
(5.1), we getB2 = AB, and therefore,S= C (B) is an invariant space underA. Again, from
(5.1), we see that the matrixC=A−B satisfiesC2 =CA=AC. SinceA is matrix of index one
andC (C) ⊆ C (A), by Lemma 2.4 we getρ(C) = ρ(AC). So,ρ(C2) = ρ(C), and therefore,
C2 = CA= AC impliesC ≤# A. Hence,S′ = C (C) is an invariant space underA (as in the
case ofB) and this proves (iii).
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(iii) ⇒ (iv) is trivial from the invariance property of subspacesS andS′ with reference
to A.

(iv) ⇒ (i): For E1 = P andE2 = Q, we haveC (E1) = S andC (E2) = S′. From (3.3) in
Theorem 3.6, we have

B= E1(F1A−E1)
−F1,

whereF1 = (I −Q)A, satisfiesB ≤− A with C (B) = S andC (A−B) = S′. Now by sub-
stitution, we getB= P[(I −Q)AA−P]−(I −Q)A= P[(I −Q)P]−(I −Q)A and similarlyC=

A−B=Q[P(I −Q)]−(I −P)A. From (iv), we have thatPAP=APandQAQ=AQ. Therefore,

BC= P[(I −Q)P]−(I −Q)AQ[P(I −Q)]−PA

= P[(I −Q)P]−(I −Q)QAQ[P(I −Q)]−PA= 0,

and similarly

CB= Q[P(I −Q)]−(I −P)AP[(I −Q)P]−(I −Q)A

= Q[P(I −Q)]−(I −P)PAP[(I −Q)P]−(I −Q)A= 0.

So,B2 = BA= AB. By Lemma 2.4,S= C (B)⊆ C (A) and sinceA is of index one, we have
ρ(B) = ρ(AB). Therefore,B2 = AB= BA implies thatB is of index one andB≤# A.

REMARK 5.10. It is quite interesting to note that a corollary analogue to Corollary
5.5 for the sharp order is not possible. In fact, forS⊆ C (A), even if we haveB such that
B≤# A with C (A) = S, the choice ofS′ need not be unique to haveR[A,≤ #© |S,S⊕S′]. For
example, considerA= I , the identity matrix of sizen×n, and a subspaceS⊆ Cn. Note that
every oblique projectorQ ontoS satisfiesQ ≤# I . So, in the case of the sharp order, we do
not take liberty of writingR[A,≤# |S,S⊕S′] asR[A,≤# |S].

Referring to (5.2), we haveB≤ #© A⇒ B2 = AB and in such a caseAB= BA⇔ B(A−

B) = 0. The following theorem extends Theorem 9 of [3].

THEOREM 5.11. Let A,B and C be matrices such that B+C= A and the index of A is
one. Then the following statements are equivalent.

(i) B≤# A and B≤ #© A.
(ii) B≤ #© A and BC= 0.

(iii) B≤ #© A and C≤ #© A.
(iv) B≤# A and B∗C=C∗B= 0.
(v) C≤# A and B∗C=C∗B= 0.
(vi) C≤ #© A and CB= 0.
(vii) B≤ #© A and B2 ≤ #© A2.
(viii) C≤ #© A and C2 ≤ #© A2.
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Proof. From (i) and (iii) of Lemma 5.3, it follows that each of (i), (ii), (iii), (iv), (v), and
(vi) of the theorem is equivalent toB∗C=C∗B= BC=CB= 0.

If any of (i)–(vi) holds, thenB ≤ #© A and furtherBC= CB= 0 yieldsA2 = B2 +C2.
SinceB andC are of index one, we have that the matricesB2 andC2 are also of index one.
Note thatCB= 0 impliesC2B2 = 0, andB∗C= 0 entails(B2)∗C2 = 0. Therefore,B2 ≤ #© A2,
thus proving (vii). Conversely, suppose (vii) holds. ThenB≤ #© A yields thatB is of index
one andB∗C=C∗B= 0=CB. Now,B2 ≤ #© A2 implies

(B2)∗B2 = (B2)∗A2 = (B2)∗(B2+BC+C2) (noting thatCB= 0),

from which we get

(5.3) (B2)∗BC+(B2)∗C2 = 0.

Noting thatB∗C = 0 implies(B2)∗C2 = 0, and thus, the equation (5.3) reduces to(B2)∗BC
= 0. SinceB is of index one, so isB∗, and therefore,(B2)∗BC= 0⇒ B∗BC= 0⇒ BC= 0.
Thus, (vii) is also equivalent toB∗C=C∗B= BC=CB= 0.

Similarly, the equivalence of (viii) with (i)–(vi) is proved.

Now the following corollary is immediate.

COROLLARY 5.12. If A,B and C are matrices of index one and A= B+C then any two
of the following conditions imply the third one.

(i) B≤ #© A.
(ii) BC= 0=CB.

(iii) B2 ≤ #© A2.
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