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Abstract. A general method is presented for establishing universal factorization equalities for
2×2 and 4×4 block matrices. As applications, some universal factorization equalities for matrices over
four-dimensional algebras are established, in particular, over the Hamiltonian quaternion algebra.
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1. Introduction. We consider in this article how to establish universal factor-
ization equalities for block matrices. This work is motivated by the following two
well-known factorizations of 2× 2 block matrices (see, e.g., [4, 6])�

A B
B A

�
= Q(2)

m

�
A + B 0

0 A − B

�
Q(2)

n , Q
(2)
t =

1√
2

�
It It

It −It

�
, t = m, n,(1.1)

�
A −B
B A

�
=P (2)

m

�
A + iB 0

0 A − iB

�
P (2)

n , P
(2)
t =

1√
2

�
It iIt

−iIt −It

�
, t = m, n.(1.2)

Obviously P (2)
t = (P (2)

t )−1 andQ(2)
t = (Q(2)

t )−1 (t = m, n), and they are independent
of A and B. Thus (1.1) and (1.2) could be called universal factorization equalities for
block matrices. From these two equalities we find many useful consequences, such as

rank
[
A B
B A

]
= rank(A+B) + rank(A−B),

det
[
A −B
B A

]
= det(A+ iB) det(A− iB),

(A+ iB)† =
1
2
[ In, iIn ]

[
A −B
B A

]†[
Im

−iIm
]
,

and so on. Here (·)† denotes the Moore–Penrose inverse.
In this article we shall present a general method for establishing such univer-

sal factorizations, and then establish some useful factorization equalities for block
matrices.
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2. The 2×2 case. We begin with a simple but essential problem on similarity of a

matrix. Suppose P =
[
p1 p2
p3 p4

]
is a given nonsingular matrix over an arbitrary field

F , i.e., |P | = p1p4−p2p3 �= 0. Then find the general expression ofX such that PXP−1

is a diagonal matrix. The answer is trivially obvious: X = P−1

[
λ1 0
0 λ2

]
P , where

λ1, λ2 ∈ F are arbitrary, that is,

X = P−1

[
λ1 0
0 λ2

]
P =

1
|P |

[
p4 −p2

−p3 p1

][
λ1 0
0 λ2

] [
p1 p2
p3 p4

]
.(2.1)

The motivation for us to consider (2.1) is that if we replace λ1 and λ2 by some
particular expressions, or if P in (2.1) has some special form, then X in (2.1) will
have some nice expressions. All of our subsequent results are in fact derived from this
consideration. From (2.1), we can derive the following theorem.

THEOREM 2.1. Let p1, . . . , p4 ∈ F with p1p4 �= p2p3 be given. Then for any
a, b ∈ F , the following two equalities hold

�
a −p2p4b

p1p3b a + ( p1p4 + p2p3 )b

�
=

�
p1 p2

p3 p4

�−1�
a + p2p3b 0

0 a + p1p4b

��
p1 p2

p3 p4

�
,(2.2)

�
a − p2p3b −p2p4b

p1p3b a + p1p4b

�
=

�
p1 p2

p3 p4

�−1�
a 0
0 a − ( p2p3 − p1p4 )b

��
p1 p2

p3 p4

�
.(2.3)

In particular, if p1p4 = −p2p3 �= 0, then[
a −p2p4b

p1p3b a

]
=

[
p1 p2
p3 p4

]−1[
a+ p2p3b 0

0 a− p2p3b
][
p1 p2
p3 p4

]
.(2.4)

If p �= 0, then[
a p2b
b a

]
=

[
1 p
p−1 −1

]−1 [
a+ pb 0

0 a− pb
][

1 p
p−1 −1

]
.(2.5)

If p, q ∈ C , the field of complex numbers, with pq �= 0, then

[
a pb
qb a

]
=


 1

√
p
q√

q
p −1



−1[

a+
√
pq b 0

0 a−√
pq b

]
 1

√
p
q√

q
p −1


.(2.6)

Proof. Substituting λ1 = a+ p2p3b and λ2 = a+ p1p4b in (2.1) yields (2.2) and
then substituting λ1 = a and λ2 = a − ( p2p3 − p1p4b ) in (2.1) yields (2.3). The
factorizations (2.4)–(2.6) are direct consequences of (2.2). ✷

3. The 2 × 2 and 4 × 4 block cases. The factorization equalities in Theorem 2.1
can be easily extended to the 2× 2 block case. In fact, replacing a and b in (2.2) with
two m× n matrices A and B, pi with piIm and piIn(i = 1, 2, 3, 4), respectively, we
immediately have the following theorem.
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THEOREM 3.1. Let p1, . . . , p4 ∈ F be given with p1p4 �= p2p3, and A, B ∈ Fm×n .
Then [

A −p2p4B
p1p3B A+ ( p1p4 + p2p3 )B

]
(3.1)

=
[
p1Im p2Im
p3Im p4Im

]−1[
A+ p2p3B 0

0 A+ p1p4B

][
p1In p2In
p3In p4In

]
.

If p1p4 = −p2p3 �= 0, then[
A −p2p4B

p1p3B A

]
(3.2)

=
[
p1Im p2Im
p3Im p4Im

]−1[
A+ p2p3B 0

0 A− p2p3B
][
p1In p2In
p3In p4In

]
.

If p �= 0, then[
A p2B
B A

]
=

[
Im pIm
p−1Im −Im

]−1[
A+ pB 0

0 A− pB
][

In pIn
p−1In −In

]
.(3.3)

If p, q ∈ C with pq �= 0, then[
A pB
qB A

]
(3.4)

=


 Im

√
p
q Im√

q
p Im −Im



−1[

A+
√
pq B 0

0 A−√
pq B

]
 In

√
p
q In√

q
p In −In


.

Clearly, the two equalities in (1.1) and (1.2) are special cases of (3.3) when p = 1
and p2 = −1, respectively. Without much effort, we can extend the universal block
matrix factorizations in (3.1)–(3.4) to 4 × 4 block matrices. For simplicity, we only
give the extension of (3.3) and its consequences.

THEOREM 3.2. Let A0, . . . , A3 ∈ Fm×n be given, and λ, µ ∈ F with λµ �= 0.
Then they satisfy the universal factorization equality

A :=



A0 λ2A1 µ2A2 µ2λ2A3

A1 A0 µ2A3 µ2A2

A2 λ2A3 A0 λ2A1

A3 A2 A1 A0


 = Q(4)

m



N1

N2

N3

N4


Q(4)

n ,(3.5)

where

N1 = A0 + λA1 + µA2 + µλA3, N2 = A0 − λA1 + µA2 − µλA3,

N3 = A0 + λA1 − µA2 − µλA3, N4 = A0 − λA1 − µA2 + µλA3,

Q
(4)
t = (Q(4)

t )−1 =
1
2




It λIt µIt λµIt
λ−1It −It λ−1µIt −µIt
µ−1It λµ−1It −It −λIt

(λµ)−1It −µ−1It −λ−1It It


, t = m, n.
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In particular, when m = n, (3.5) becomes a universal similarity factorization equality
over F .

Proof. Let

E =
[
A0 λ2A1

A1 A0

]
, F =

[
A2 λ2A3

A3 A2

]
.

Then by (3.3), we first obtain[
E µ2F
F E

]
= S(4)

m

[
E + µF 0

0 E − µF
]
S(4)

n ,(3.6)

where

S
(4)
t = (S(4)

t )−1 =
1√
2

[
I2t µI2t

µ−1I2t −I2t

]
, t = m, n,

and

E+µF =
[
A0 + µA2 λ2(A1 + µA3 )
A1 + µA3 A0 + µA2

]
, E−µF =

[
A0 − µA2 λ2(A1 − µA3 )
A1 − µA3 A0 − µA2

]
.

Applying (3.3) to E ± µF , we further have

E + µF = P (2)
m

[
A0 + λA1 + µA2 + µλA3 0

0 A0 − λA1 + µA2 − µλA3

]
P (2)

n

= P (2)
m

[
N1 0
0 N2

]
P (2)

n ,

E − µF = P (2)
m

[
A0 + λA1 − µA2 − µλA3 0

0 A0 − λA1 − µA2 + µλA3

]
P (2)

n

= P (2)
m

[
N3 0
0 N4

]
P (2)

n ,

where

P
(2)
t = (P (2)

t )−1 =
1√
2

[
It λIt

λ−1It −It
]
, t = m, n.

Thus (3.6) becomes

[
E µ2F
F E

]
=S(4)

m

[
P

(2)
m 0
0 P

(2)
m

]

N1

N2

N3

N4




[
P

(2)
n 0
0 P

(2)
n

]
S(4)

n .(3.7)

Now let

Q(4)
m = S(4)

m

[
P

(2)
m 0
0 P

(2)
m

]
and Q(4)

n =

[
P

(2)
n 0
0 P

(2)
n

]
S(4)

n .
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Then it is easy to verify that (Q(4)
m )−1 = Q

(4)
m and (Q(4)

n )−1 = Q
(4)
n . Thus (3.7) is

exactly (3.5). ✷

We now let λ = µ = 1 in (3.5) and permute the second and third block rows and
block columns of diag(N1, N2, N3, N4 ) in (3.5). Then we immediately obtain the
following corollary.

COROLLARY 3.3. Let A0, ..., A3 ∈ Fm×n be given. Then they satisfy the
universal factorization equality


A0 A1 A2 A3

A1 A0 A3 A2

A2 A3 A0 A1

A3 A2 A1 A0


 = Q(4)

m



N1

N2

N3

N4


Q(4)

n ,(3.8)

where

N1 = A0 +A1 +A2 +A3, N2 = A0 +A1 −A2 −A3,

N3 = A0 −A1 +A2 −A3, N4 = A0 −A1 −A2 +A3,

Q
(4)
t = (Q(4)

t )T = (Q(4)
t )−1 =

1
2



It It It It
It It −It −It
It −It It −It
It −It −It It


, t = m, n.(3.9)

In particular, when m = n, (3.8) becomes a universal similarity factorization equality
over F .

The equalities (3.5) and (3.8) can be used to establish various universal factor-
ization equalities over quaternion algebras. We present the corresponding results in
the next section.

4. Applications. We now present one of the most valuable applications of uni-
versal block-matrix factorizations, one which substantially reveals the relationship
between real quaternion matrices and real block matrices.

THEOREM 4.1. Let A = A0 + iA1+ jA2+ kA3 ∈ Hm×n , where H is the Hamilton
real quaternion algebra, A0, ..., A3 ∈ Rm×n , i2 = j2 = k2 = −1 and ijk = −1. Then
A satisfies the universal factorization equality

U (4)
m



A

A
A

A


U (4)

n =



A0 −A1 −A2 −A3

A1 A0 −A3 A2

A2 A3 A0 −A1

A3 −A2 A1 A0


 := φ(A),(4.1)

where

U
(4)
t = (U (4)

t )∗ = (U (4)
t )−1 =

1
2




It iIt jIt kIt
−iIt It kIt −jIt
−jIt −kIt It iIt
−kIt jIt −iIt It


, t = m, n.(4.2)
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In particular, if m = n, then (4.1)becomes a universal similarity factorization equality
over H .

Proof. Observe that Q(4)
m and Q(4)

n in (3.8) only include identity blocks. Thus
the equality (3.8) is also true for matrices over an arbitrary ring with identity. Now
replacing A0, A1, A2, A3 in (3.8) by A0, iA1, jA2, kA3, respectively, we obtain the
following

M :=



A0 iA1 jA2 kA3

iA1 A0 kA3 jA2

jA2 kA3 A0 iA1

kA3 jA2 iA1 A0


 = Q(4)

m



N1

N2

N3

N4


Q(4)

n ,(4.3)

where Q(4)
m and Q(4)

n are as in (3.9), and

N1 = A0 + iA1 + jA2 + kA3, N2 = A0 + iA1 − jA2 − kA3,

N3 = A0 − iA1 + jA2 − kA3, N4 = A0 − iA1 − jA2 + kA3.

It is easy to verify that N2 = iAi−1, N3 = jAj−1 and N3 = kAk−1. Thus

diag(N1, N2, N3, N4 ) = J (4)
m diag(A, A, A, A )(J (4)

n )−1,(4.4)

where J (4)
t = diag( It, iIt, jIt, kIt ), t = m, n. On the other hand, it is easy to verify

that

(J(4)
m )−1

2
664

A0 iA1 jA2 kA3

iA1 A0 kA3 jA2

jA2 kA3 A0 iA1

kA3 jA2 iA1 A0

3
775 J(4)

n =

2
664

A0 −A1 −A2 −A3

A1 A0 −A3 A2

A2 A3 A0 −A1

A3 −A2 A1 A0

3
775 = φ(A).(4.5)

Now putting (4.3) and (4.4) in (4.5), we find

φ(A) = (J (4)
m )−1MJ (4)

n =(J (4)
m )−1Q(4)

m diag(N1, N2, N3, N4 )Q(4)
n J

(4)
n

=(J (4)
m )−1Q(4)

m J
(4)
m diag(A, A, A, A )(J (4)

n )−1Q(4)
n J

(4)
n .

Let U (4)
t = (J (4)

t )−1Q
(4)
t J

(4)
t , t = m, n. Then we have

U
(4)
t =

1
2



It

−iIt
−jIt

−kIt





It It It It
It It −It −It
It −It It −It
It −It −It It





It

iIt
jIt

kIt




=
1
2




It iIt jIt kIt
−iIt It kIt −jIt
−jIt −kIt It iIt
−kIt jIt −iIt It


,

which proves (4.1). ✷
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The equality (4.1) implies that for any quaternion matrix A, the corresponding
block-diagonal matrix diag(A, A, A, A ) is uniformly equivalent to its real repre-
sentation φ(A). In particular, if A is square, then diag(A, A, A, A ) is uniformly
and unitarily similar to its real representation φ(A). Hence (4.1) can be effectively
used for developing matrix analysis over the real quaternion algebra H . For example,
concerning the determinants of quaternion matrices, a fundamental topic related to
quaternion matrices that has been examined for many years (see, e.g., [1, 2]), if we
wish to define the determinant of a quaternion matrix satisfying only two axioms:

(i) D(In) = 1;
(ii) D(AB) = D(A)D(B),

then we see immediately from (4.1) and (4.2) that

1 = D(In) = D(U (4)
n U (4)

n ) = D(U (4)
n )D(U (4)

n ),

and then

D[φ(A)] = D(U (4)
n )D[diag(A, A, A, A )]D(U (4)

n ) = D[diag(A, A, A, A )].

This fact implies that if the above two axioms are satisfied, then the determinant of
the diagonal block matrix diag(A, A, A, A ) must be equal to the determinant of the
real matrix φ(A). Since the conventional determinant of a real matrix is well defined,
the equality (4.1) naturally suggests that we define the determinant of a quaternion
matrix through the determinant of its real representation matrix φ(A), that is, for
any square quaternion matrix A, we can define its determinant as

Rdet(A) := det[φ(A)],(4.6)

where det[φ(A)] is the conventional determinant of the real matrix φ(A). In that
case, it is easy to verify that this definition, up to some trivial power factors, is also
identical to the determinants of a quaternion matrix examined in [2]. However, the
merit of the definition (4.6) is in that the evaluation of det[φ(A)] can be trivially
realized in any case.

As an application of (4.1), suppose now two real matrices A and B satisfy A2 =
B2 = −In and AB +BA = 0, and let M = aIn + bA+ cB + dAB. In that case, we
see from (4.1) that M satisfies the matrix factorization

P



M

M
M

M


P−1 =



a −b −c −d
b a −d c
c d a −b
d −c b a


⊗In,(4.7)

where

P = P−1 =
1
2




In A B AB
−A In AB −B
−B −AB In A

−AB B −A In


,



ELA
122 Yongge Tian and George P. H. Styan

and ⊗ stands for the Kronecker product of matrices. This similarity factorization
reveals that the properties of M can all be determined by the matrix


a −b −c −d
b a −d c
c d a −b
d −c b a


.

We may find the determinant, rank, inverse, eigenvalues and eigenvectors, and so
on, for the matrix M from (4.7). Some other applications of (4.1) to quaternion
matrices were presented in Tian [12]. From (3.8) we can also derive another universal
factorization equality for matrices over the four-dimensional commutative algebra over
R generated by i and j with

i2 = j2 = 1, ij = ji.

The element of this algebra has the form a = a0 + ia1 + ja2 + ka3, where k = ij. In
that case, we have the following theorem.

THEOREM 4.2. Let A = A0 + iA1 + jA2 + kA3 be a matrix with A0, ..., A3 ∈
Rm×n , i2 = j2 = 1 and k = ij = ji. Then A satisfies the universal factorization
equality

V (4)
m



D1

D2

D3

D4


V (4)

n =



A0 A1 A2 A3

A1 A0 A3 A2

A2 A3 A0 A1

A3 A2 A1 A0


 := ψ(A),(4.8)

where

D1 = A0 + iA1 + jA2 + kA3, D2 = A0 + iA1 − jA2 − kA3,

D3 = A0 − iA1 + jA2 − kA3, D4 = A0 − iA1 − jA2 + kA3,

and

V
(4)
4 = (V (4)

4 )−1 =
1
2



It iIt jIt kIt
iIt It −kIt −jIt
jIt −kIt It −iIt
kIt −jIt −iIt It


 , t = m, n.

In particular, if m = n, then (4.8) becomes a universal similarity factorization equal-
ity.

Proof. Replacing A0, A1, A2, A3 in (3.8) by A0, iA1, jA2, kA3, respectively,
we obtain

M :=



A0 iA1 jA2 kA3

iA1 A0 kA3 jA2

jA2 kA3 A0 iA1

kA3 jA2 iA1 A0


 = Q(4)

m



D1

D2

D3

D4


Q(4)

n ,(4.9)
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where Q(4)
m and Q(4)

n are as in (3.9). It is easy to verify that D1 = iD1i
−1,

D2 = iD2i
−1, D3 = iD3i

−1, and D4 = iD4i
−1. Thus

diag(D1, D2, D3, D4 ) = J
(4)
4 diag(D1, D2, D3, D4 )J (4)

n ,(4.10)

where J (4)
t = (J (4)

t )−1 = diag( It, iIt, jIt, kIt ), t = m, n. On the other hand, it is
easy to verify that

J (4)
m



A0 iA1 jA2 kA3

iA1 A0 kA3 jA2

jA2 kA3 A0 iA1

kA3 jA2 iA1 A0


J (4)

n =



A0 A1 A2 A3

A1 A0 A3 A2

A2 A3 A0 A1

A3 A2 A1 A0


.(4.11)

Now putting (4.9) and (4.10) in (4.11), we find

ψ(A) = J (4)
m MJ (4)

n = J (4)
m Q(4)

m diag(D1, D2, D3, D4 )Q(4)
n J

(4)
n

= J (4)
m Q(4)

m J
(4)
m diag(D1, D2, D3, D4 )J (4)

n Q(4)
n J

(4)
n .

Let V (4)
t = J (4)

t QtJ
(4)
t , t = m, n. Then we have

V
(4)
t =

1
2



It

iIt
jIt

kIt





It It It It
It It −It −It
It −It It −It
It −It −It It






It

iIt
jIt

kIt




=
1
2



It iIt jIt kIt
iIt It −kIt −jIt
jIt −kIt It −iIt
kIt −jIt −iIt It


,

which proves (4.8). ✷

Substituting (3.8) into the right-hand side of (4.8), we also get

L4m



D1

D2

D3

D4


L4n =



N1

N2

N3

N4


,(4.12)

where

L4t=L−1
4t =



l1It l2It l3It l4It
l2It l1It −l4It −l3It
l3It −l4It l1It −l2It
l4It −l3It −l2It l1It




with

l1 = 1
4
(1 + i+ j + k), l2 = 1

4
(1 + i− j − k),

l3 = 1
4
(1− i+ j − k), l4 = 1

4
(1− i− j + k).
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In particular, whenm = n, (4.12) becomes a universal similarity factorization equality
over F .

From (4.12), we can establish a useful factorization equality for a linear com-
bination of involutory matrices. Suppose that A and B are two involutory ma-
trices, i.e., A2 = B2 = In, and suppose further that AB = BA. Then for any
M = aIn + bA+ cB + dAB, where a, b, c, d are scalars, the following factorization
equality holds

L



M1

M2

M3

M4


L−1 =



m1In 0 0 0
0 m2In 0 0
0 0 m3In 0
0 0 0 m4In


,(4.13)

where

M1 = aIn + bA+ cB + dAB, M2 = aIn + bA− cB − dAB,
M3 = aIn − bA+ cB − dAB, M4 = aIn − bA− cB + dAB,

m1 = a+ b+ c+ d, m2 = a+ b− c− d,
m3 = a− b+ c− d, m4 = a− b− c+ d,

and

L = L−1 =



L1 L2 L3 L4

L2 L1 −L4 −L3

L3 −L4 L1 −L2

L4 −L3 −L2 L1




with

L1 = 1
4
(In +A+B +AB), L2 = 1

4
(In +A−B −AB),(4.14)

L3 = 1
4
(In −A+B −AB), L4 = 1

4
(In −A−B +AB).(4.15)

Many properties ofM1, ..., M4 can be derived from (4.13). For example,M1, ..., M4

are all nonsingular if and only if m1, ..., m4 are nonzero. All M1, ..., M4 are
diagonalizable, and m1, ..., m4 are eigenvalues of M1, ..., M4. Moreover, it is easy
to find from (4.13) that M can be written as

M1 = m1L1 +m2L2 +m3L3 +m4L4,

where L1, ..., L4 are defined in (4.14) and (4.15) and they satisfy L2
i = Li and

LiLj = 0 for i �= j, i, j = 1, ..., 4. Thus it follows that

Mk
1 = mk

1L1 +mk
2L2 +mk

3L3 +mk
4L4

for any positive integer k.
We may also apply (4.13) to idempotent matrices. For any two idempotent ma-

trices A and B with AB = BA it follows that (I − 2A)2 = (I − 2B)2 = I, and
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(I − 2A)(I − 2B) = (I − 2B)(I − 2A). From (4.13) we obtain the following valuable
factorization equality for idempotent matrices.

THEOREM 4.3. Suppose A2 = A, B2 = B and AB = BA. Then

L



M1

M2

M3

M4


L−1 =



m1In 0 0 0
0 m2In 0 0
0 0 m3In 0
0 0 0 m4In


,(4.16)

where

M1 = a0In + a1A+ a2B + a3AB,
M2 = (a0 + a2)In + (a1 + a3)A− a2B − a3AB,
M3 = (a0 + a1)In − a1A+ (a2 + a3)B − a3AB,
M4 = (a0 + a1 + a2 + a3)In − (a1 + a3)A− (a2 + a3)B + a3AB,

m1 = a0, m2 = a0 + a2, m3 = a0 + a1, m4 = a0 + a1 + a2 + a3,

and

L = L−1 =



L1 L2 L3 L4

L2 L1 −L4 −L3

L3 −L4 L1 −L2

L4 −L3 −L2 L1




with

L1 = In −A−B +AB, L2 = B −AB, L3 = A−AB, L4 = AB.

These four matrices satisfy L2
i = Li and LiLj = 0 for i �= j; i, j = 1, . . . , 4.

From (4.16) we see that the matrix M1 in (4.16) can be written as

M1 = m1L1 +m2L2 +m3L3 +m4L4,

with

Mk
1 = mk

1L1 +mk
2L2 +mk

3L3 +mk
4L4,

for any positive integer k. From these results we may investigate various properties
of the matrix M1, such as idempotency, r-potency, involution, and so on.

The universal factorization equality (4.1) can also be extended to a generalized
quaternion algebra

(
u, v
F

)
(for more details on generalized quaternion algebras, see,

e.g., [7, 8, 9]). Here we only present the main result without proof.
THEOREM 4.4. Let A = A0 + iA1 + jA2 + kA3 ∈ (

u, v
F

)m×n
, where F is an

arbitrary field of characteristic not equal to two, u, v ∈ F , and A0, . . . , A3 ∈ Fm×n ,

i2 = u �= 0, j2 = v �= 0, k = ij = −ji.
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Then A satisfies the universal factorization equality

V (4)
m



A

A
A

A


V (4)

n =



A0 uA1 vA2 −uvA3

A1 A0 vA3 −vA2

A2 −uA3 A0 uA1

A3 −A2 A1 A0


,(4.17)

where

V
(4)
t = (V (4)

t )−1 =
1
2




It iIt jIt kIt
u−1iIt It −u−1kIt −jIt
v−1jIt v−1kIt It iIt

−(uv)−1kIt −v−1jIt u−1iIt It


, t = m, n.

In particular, when m = n, thefactorization (4.17) becomes a universal similarity
factorization equality over

(
u, v
F

)
.

Finally we point out that the two fundamental equalities in (4.1) and (4.17) can
also be extended to all 2n-dimensional Clifford algebras (real, complex, generalized).
The corresponding results can serve as a powerful tool for examining these kinds of
algebras; see [10, 11]. For more details on Clifford algebras see, e.g., [5, 9].

5. Conclusions. In this article, we have presented a simple method for establish-
ing universal factorization equalities for block matrices. Using this method, we can
derive various useful factorization equalities for 2 × 2 block matrices, as well as for
4×4 block matrices. These results can be further used to establish universal factoriza-
tion equalities for matrices over high-dimensional algebras. We also find a variety of
interesting results for determinants, ranks, inverses, generalized inverses, eigenvalues
and eigenvectors, and so on, for matrices over high-dimensional algebras.
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