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Abstract. It is known that, for a simple graph G and a real number α, the quantity s′
α
(G)

is defined as the sum of the α-th power of non-zero singless Laplacian eigenvalues of G. In this

paper, first some majorization bounds over s′
α
(G) are presented in terms of the degree sequences,

and number of vertices and edges of G. Additionally, a connection between s′
α
(G) and the first

Zagreb index, in which the Hölder’s inequality plays a key role, is established. In the last part of

the paper, some bounds (included Nordhauss-Gaddum type) for signless Laplacian Estrada index

are presented.
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1. Introduction and preliminaries. Let G be a simple graph with n vertices.

The Laplacian matrix of G is defined by L (G) = ∆−A, where A and ∆ are the (0, 1)-

adjacency matrix and the diagonal matrix of the vertex degrees of G, respectively. We

know that Laplacian spectrum of G consists of the eigenvalues µ1, µ2, . . . , µn (arranged

in non-increasing order) of L (G). It is also known that µn = 0 and the multiplicity

of 0 is equal to the number of connected components of G. We may refer [26] and

its citations for detailed properties of the Laplacian spectrum. On the other hand,

the signless Laplacian matrix of G is defined by Q (G) = ∆ + A. We denote the

eigenvalues of Q (G) by q1 ≥ q2 ≥ · · · ≥ qn ≥ 0.

Let α be a real number. Then we denote by sα (G) the sum of the α-th power of

non-zero Laplacian eigenvalues of G. In other words,

sα = sα (G) =

t
∑

i=1

µα
i ,(1.1)

where t is the number of non-zero Laplacian eigenvalues of G. In a similar manner,
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the α-th power of the non-zero signless Laplacian eigenvalues of G is denoted by

s′α = s′α (G) =

h
∑

i=1

qαi ,(1.2)

where h is the number of non-zero signless Laplacian eigenvalues of G. In here, the

cases α = 0 and α = 1 are trivial since s′0 (G) = h and s′1 (G) = 2m, where m is the

number of edges of G. In the literature, the bounds over quantities sα and s′α have

been studied largely. For instance, in [30], Zhou established some properties of sα for

α 6= 0 and α 6= 1. He also discussed further properties by taking into account s 1
2
and

s2. In fact, some of the results obtained in [30] are improved in [27]. Additionally,

some bounds for sα (G) related to degree sequences have been established in [31]. On

the other hand, in [33], by taking G as a bipartite graph, some new bounds over sα (G)

have been given. In detail, lower and upper bounds for incidence energy, and also

lower bounds for Kirchhoff index and Laplacian Estrada index have been deduced.

Furthermore, Akbari et al. [1] obtained some relations between sα and s′α for the

ranges 0 < α ≤ 1, 1 < α < 2 and 2 ≤ α < 3.

The Estrada index of a graph G with eigenvalues λ1, λ2, . . . , λn is defined as

EE = EE (G) =
∑n

i=1 e
λi . It is very useful descriptors in a large variety of problems,

including those in biochemistry and m complex networks [10, 11, 12]. (We also refer

[14, 20, 29] for some recent results.) Further, in [13], the Laplacian-spectral counterpart

of the Estrada index is defined as

LEE = LEE (G) =

n
∑

i=1

eµi .(1.3)

(One can also look at the studies [4, 8, 24, 31, 32] for more details on the theory of the

Laplacian Estrada index.) The next step of LEE is termed as the signless Laplacian

Estrada index [2] of G with n vertices which is defined as

SLEE = SLEE (G) =

n
∑

i=1

eqi .(1.4)

By [15, 16], since the Laplacian and signless Laplacian spectra of bipartite graphs

coincide, we easily say that LEE and SLEE coincide in the case of bipartite graphs.

Therefore, since the vast majority of molecular graphs are bipartite, SLEE gives

nothing new outcomes relative to the previously studied LEE. On the other hand,

chemically interesting case in which SLEE and LEE differ are the fullerenes, fluo-

ranthenes and other non-alternant conjugated species (see [3, 9, 21, 22, 23]).

In the next section, we present some majorization bounds for s′α in terms of the

degree sequences, and number of vertices and edges of a simple graph G. Moreover,
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we establish a connection between s′α(G) and the first Zagreb index. In the final

section, we give some bounds (included Nordhauss-Gaddum type) for SLEE.

2. New bounds over s′α. In this first main section, we will give some bounds

on the quantities presented in (1.1) and (1.2).

For any two non-increasing sequences

x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ,

we say that x is majorized by y, denoted by x � y, if

j
∑

i=1

xi ≤
j
∑

i=1

yi for j = 1, 2, . . . , n− 1, and

n
∑

i=1

xi =

n
∑

i=1

yi.

For a real-valued function f defined on a set in Rn, if f(x) < f(y) whenever

x � y but x 6= y, then f is said to be strictly Schur-convex [25]. The following lemma

makes clear the property of strictly Schur-convexity for the function f .

Lemma 2.1 ([25]). Let α be a real number such that α 6= 0 and α 6= 1.

(i) For i = 1, 2, . . . , h, suppose xi ≥ 0. Then the following hold:

• f(x) =

h
∑

i=1

xα
i is strictly Schur-convex if α > 1.

• f(x) = −
h
∑

i=1

xα
i is strictly Schur-convex if 0 < α < 1.

(ii) For i = 1, 2, . . . , h, suppose xi > 0. Then f(x) =

h
∑

i=1

xα
i is strictly Schur-

convex if α < 0.

We also remind that the degree sequence of G is a list of the degrees of the

vertices in non-increasing order which is denoted by (d) = (d1, d2, . . . , dn). We let

denote (d) = (d1 + 1, d2, . . . , dn−1, dn − 1), where d1 is the maximum vertex degree

of G. We similarly denote (µ) = (µ1, µ2, . . . , µn) and (q) = (q1, q2, . . . , qn) as the

spectrums of the Laplacian and signless Laplacian matrices, respectively.

Remark 2.2. In [17], Grone proved that if G has at least one edge, then (d) � (µ)

is correct while (d) � (q) is not. For example, if G is a connected non-bipartite graph

with at least one pendant vertex, then

d1 + 1 + d2 + · · ·+ dn−1 = 2m > q1 + q2 + · · ·+ qn−1

since G is non-bipartite (which implies qn > 0).
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It is well known that (see, for example, [25, p. 218]) the spectrum of a positive

semi definite Hermitian matrix majorizes its main diagonal (when both are rearranged

in non-increasing order). As a result of this, we can give the following proposition.

Proposition 2.3. For the graph G with signless Laplacian spectrum (q) =

(q1, q2, . . . , qn) and degree sequence (d) = (d1, d2, . . . , dn), it is always true that (d) �
(q).

We also need the following preliminary results for our main theorems in this

paper.

Proposition 2.4 ([1]). Let G be a graph of order n and α be a real number.

Then we have the following relations for the quantities in (1.1) and (1.2):

i) If 0 < α ≤ 1 or 2 ≤ α ≤ 3, then s′α ≥ sα.

ii) If 1 ≤ α ≤ 2, then s′α ≤ sα.

On the other hand, for the quantity sα in (1.1), it has been obtained the following

lower and upper bounds in [31] by considering degree sequences.

Proposition 2.5 ([31]). Let G be a connected graph with n ≥ 2 vertices.

(i) If α > 1, then sα ≥ (d1 + 1)α +
n−1
∑

i=2

dαi + (dn − 1)α.

(ii) If 0 < α < 1, then sα ≤ (d1 + 1)α +
n−1
∑

i=2

dαi + (dn − 1)α.

Moreover, equalities hold in both (i) and (ii) if and only if G = Sn, where Sn is a

star graph with n vertices.

After all, as the first main result of this paper, we give the new lower and upper

bounds for the quantity s′α in (1.2) depending on the degree sequence.

Theorem 2.6. Let G be a graph with n ≥ 2 vertices.

(i) If α > 1, then s′α ≥
n
∑

i=1

dαi .

(ii) If 0 < α < 1, then s′α ≤
n
∑

i=1

dαi .

Moreover, equalities hold in both cases if and only if (q) = (d).

Proof. Suppose that α > 1. Then, by Lemma 2.1-(i), f(x) =

h
∑

i=1

xα
i (such that
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xi ≥ 0) is strictly Schur-convex which together with Proposition 2.3, implies that

s′α =
n
∑

i=1

qαi ≥ dα1 + dα2 + · · ·+ dαn ,

where equality holds if and only if (q1, q2, . . . , qn) = (d1, d2, . . . , dn).

Now let us assume that 0 < α < 1. Then again, by Lemma 2.1-(i), f(x) = −
h
∑

i=1

xα
i

(such that xi ≥ 0) is strictly Schur-convex which implies that

−s′α = −
n
∑

i=1

qαi ≥ − [dα1 + dα2 + · · ·+ dαn] ,

or equivalently,

s′α =

n
∑

i=1

qαi ≤ dα1 + dα2 + · · ·+ dαn .

It is clear that the equality holds if and only if (q1, q2, . . . , qn) = (d1, d2, . . . , dn).

Hence, the result.

Using Lemma 2.1, it is easy to see the following result.

Corollary 2.7. Let G be a graph. Then the following inequalities hold:

a) If α > 1 or α < 0, then

n
∑

i=1

dαi < (d1 + 1)α +
n−1
∑

i=2

dαi + (dn − 1)α .

(We should note that for the case α < 0, we also need the assumption di > 1

or equivalently, G has no pendant vertices.)

b) If 0 < α < 1, then

n
∑

i=1

dαi > (d1 + 1)
α
+

n−1
∑

i=2

dαi + (dn − 1)
α
.

We note that Theorem 2.6 can be converted to bipartite graphs as in the following.

Theorem 2.8. Let G be a connected bipartite graph with n ≥ 3 vertices. If

α > 1, then

s′α ≥ (d1 + 1)
α
+

n−1
∑

i=2

dαi + (dn − 1)
α

>

n
∑

i=1

dαi .
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Proof. For the first inequality, by Lemma 2.1-(i), f(x) =

h
∑

i=1

xα
i is strictly Schur-

convex for xi ≥ 0, where i = 1, 2, . . . , h. Since G is bipartite, it is known that qn = 0,

and Q (G) and L (G) share the same eigenvalues. Thus, by Remark 2.2, we obtain

(d1 + 1, d2, . . . , dn−1, dn − 1) � (q1, q2, . . . , qn) .

Hence,

s′α =

n
∑

i=1

qαi ≥ (d1 + 1)
α
+

n−1
∑

i=2

dαi + (dn − 1)
α
,

as required. We note that the second inequality follows immediately from Corollary

2.7-a).

From Lemma 2.1, Remark 2.2, Proposition 2.4 and Corollary 2.7, we get the

following result.

Corollary 2.9. Let G be a graph. Therefore,

a) if 0 < α < 1, then sα <

n
∑

i=1

dαi ,

b) if 1 < α, then sα >

n
∑

i=1

dαi ,

c) if 2 ≤ α ≤ 3, then s′α ≥ (d1 + 1)
α
+

n−1
∑

i=2

dαi + (dn − 1)
α
.

Recall that the first Zagreb index M1 (G) of the graphG is the sum of the sequares

of the degrees of vertices of G. (One can find the details about this graph invariant

in [19] and the refences cited therein.) This index actually has been found in many

applications, specially, in chemistry [19] and received wide investigations, and lots of

properties of which have been reported (see [5, 7, 18, 28] for the detials).

Now, by using the Hölder’s inequality, we only establish a lower bound for the

quantity s′α given in (1.2) in terms of the first Zagreb index M1(G). By using this

theorem, we may have a chance to derive lots of bounds over s′α for a connected

(molecular) graph G related to its number of vertices (atoms) and edges (bonds).

Theorem 2.10. Let G be a graph with n vertices and m ≥ 1 edges. If α < 0 or

0 < α < 1 or α > 2, then

s′α ≥ (2m)
2−α

(M1 (G) + 2m)1−α
.(2.1)
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Equality holds in (2.1) if and only if q1 = q2 = · · · = qn. Furthermore, if 1 < α < 2,

then the inequality in (2.1) is reversed.

Proof. Let x1, x2, . . . , xs be positive real numbers, and let p be a real number

with p 6= 0, p 6= 1
2 , p 6= 1. If p < 0 or p > 1, then 2p−1

p
> 1. By Hölder’s inequality,

we have

s
∑

i=1

x
p
i =

s
∑

i=1

x
p

2p−1

i x
2p(p−1)
2p−1

i

≤
[

s
∑

i=1

(

x
p

2p−1

i

)

2p−1
p

]

p

2p−1
[

s
∑

i=1

(

x
2p(p−1)
2p−1

i

)

2p−1
p−1

]

p−1
2p−1

=

(

s
∑

i=1

xi

)

p

2p−1
(

s
∑

i=1

x
2p
i

)

p−1
2p−1

.

Shortly, we get

(

s
∑

i=1

xi

)

p

2p−1

≥

s
∑

i=1

x
p
i

(

s
∑

i=1

x
2p
i

)

p−1
2p−1

.

Thus,

s
∑

i=1

xi ≥

(

s
∑

i=1

x
p
i

)

2p−1
p

(

s
∑

i=1

x
2p
i

)

p−1
p

,(2.2)

where the equality holds if and only if x1 = x2 = · · · = xs.

Now if we write s = n, xi = qαi and p = 1
α
in (2.2), then (2.1) follows immediately

when α < 0 or 0 < α < 1 since s′1 (G) = 2m and s′2 (G) = M1 (G) + 2m. Furthermore

the equality in (2.1) holds if and only if q1 = q2 = · · · = qn. The proofs for the cases

α > 2 and 1 < α < 2 are similar (here, take 0 < p < 1
2 and 1

2 < p < 1, respectively).

Example 2.11. Together with some known bounds for the first Zagreb index

[5, 7, 18, 28], the bound in (2.1) may directly yield a lot different bounds for s′α. For

example, let us consider the bound [5]

M1 (G) ≤ m

(

2m

n− 1
+ n− 2

)
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for the first Zagreb index. This bound implies that, if α < 0 or 0 < α < 1 (resp.,

1 < α < 2), then

s′α ≥ (resp.,≤)
2m

(

m
n−1 + n

2

)1−α
.

Example 2.12. Suppose that G is Kr+1-free with 2 ≤ r ≤ n− 1. Then

M1(G) ≤ 2r − 2

r
nm

such that equality holds if and only if G is complete bipartite graph for r = 2, and a

regular complete r-bipartite graph for r ≥ 3 (cf. [28]). This yields that if α < 0 or

0 < α < 1 (resp., 1 < α < 2), then

s′α > (resp., <)
2m

(

r−1
r

n+ 1
)1−α

.

We need the next lemma for another result over s′α.

Lemma 2.13. We have

n
∑

i=1

dαi
ր
ց

≥ n1−α (2m)
α

if α < 0 or α > 1

≤ n1−α (2m)
α

if 0 < α < 1
.(2.3)

Proof. Observe that for x > 0, the function xα is strictly convex if and only if

α < 0 or α > 1. Hence, let us suppose that α < 0 or α > 1. Then
(

n
∑

i=1

1

n
di

)α

≤
n
∑

i=1

1

n
dαi ,

and in other words,

n
∑

i=1

dαi ≥ 1

nα−1

(

n
∑

i=1

di

)α

= n1−α (2m)α ,

as required.

From Theorem 2.6 and Lemma 2.13, we obtain the following consequence.

Corollary 2.14. Let G be a graph with n vertices and m edges. Then for the

ranges 0 < α < 1 and α > 1, we obtain the bounds

s′α ≤ n

(

2m

n

)α

and n

(

2m

n

)α

≤ s′α,
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respectively.

The following lemma will be needed for a new bound over s′α (see Theorem 2.16

below).

Lemma 2.15 ([6]). Let G be a connected graph with n vertices and m edges.

Then q1 ≥ 4m
n

with equality if and only if G is a regular graph.

Theorem 2.16. Let G be a connected graph with n ≥ 3 vertices and m edges.

i) If α < 0 or α > 1, then

s′α ≥
(

2m

n

)α

(2α + n− 2) .

ii) If 0 < α < 1, then

s′α ≤
(

2m

n

)α

(2α + n− 2) .

Proof. As in the proof of Lemma 2.13, it is clear that xα (where x > 0) is a

strictly convex function if and only if α < 0 or α > 1. Therefore, let us suppose that

α < 0 or α > 1. We then have

(

n−1
∑

i=2

1

n− 2
qi

)α

≤
n−1
∑

i=2

1

n− 2
qαi , or equivalently,

n−1
∑

i=2

qαi ≥ 1

(n− 2)
α−1

(

n−1
∑

i=2

qi

)α

,

where the equality holds if and only if q2 = · · · = qn−1. It follows that

s′α ≥ qα1 + qαn +
1

(n− 2)
α−1

(

n−1
∑

i=2

qi

)α

= qα1 + qαn +
(2m− q1 − qn)

α

(n− 2)
α−1 .

Now let us consider the function f (x, y) = xα+yα+ (2m−x−y)α

(n−2)α−1 , for x > 0, y > 0.

In order to find its minimum, we have the following derivations for this function:

fx = α

[

xα−1 − (2m− x− y)α−1

(n− 2)
α−1

]

, fy = α

[

yα−1 − (2m− x− y)α−1

(n− 2)
α−1

]

,

fxx = α (α− 1)

[

xα−2 +
(2m− x− y)

α−2

(n− 2)
α−1

]

, fxy = fyx = α (α− 1)
(2m− x− y)

α−2

(n− 2)
α−1

and

fyy = α (α− 1)

[

yα−2 +
(2m− x− y)

α−2

(n− 2)α−1

]

.
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A simple calculation implies that

fx = fy = 0 =⇒ (n− 1)x+ y = 2m and x+ (n− 1) y = 2m =⇒ x+ y =
4m

n
.

For x+ y = 4m
n
, we clearly get fxx > 0 and fxxfyy − f2

xy > 0.

From above, it is concluded that f (x, y) has a minimum value at x+ y = 4m
n

and

that the minimum value is xα +
(

4m
n

− x
)α

+
(2m− 4m

n )α

(n−2)α−1 . By Lemma 2.15, q1 ≥ 4m
n
.

Thus,

qα1 +

(

4m

n
− q1

)α

+

(

2m− 4m
n

)α

(n− 2)
α−1 ≥

(

4m

n

)α

+

(

2m− 4m
n

)α

(n− 2)
α−1 .

Hence, the result.

Remark 2.17. One can easily see that the bounds in Theorem 2.16 are better

than the bounds in Corollary 2.14.

One can also consider the next lemma.

Lemma 2.18 ([2]). Let G be a graph on n vertices. Then q1 ≥ 2 (k − 1) where k

is the chromatic number. Equality holds if and only if G ∼= Kn or G is the cycle Cn

of odd length.

Hence, as a consequence of Theorem 2.16 and Lemma 2.18, we get the following

corollary.

Corollary 2.19. Let G be a connected graph with n ≥ 3 vertices and m edges.

i) If α < 0 or α > 1, then

s′α ≥ 2α
[

(k − 1)
α
+

(

2m

n
− k + 1

)α

+
(m

n

)α

(n− 2)

]

.

ii) If 0 < α < 1, then

s′α ≤ 2α
[

(k − 1)α +

(

2m

n
− k + 1

)α

+
(m

n

)α

(n− 2)

]

.

3. Bounds for signless Laplacian Estrada index. Let G be a graph with n

vertices. We recall that, for a non-negative integer k and the eigenvalues q1 ≥ q2 ≥
· · · ≥ qn of Q (G),

Tr (G) =

n
∑

i=1

qri(3.1)
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denotes the r-th signless Laplacian spectral moment of G. Obviously, T0 (G) = n and

Tr (G) = s′r for r ≥ 1. In fact, (3.1) will also be needed in our results.

By [2], it is obvious that SLEE in (1.4) can be written as

SLEE =
∞
∑

r=0

Tr

r!
,

where Tr is defined as in (3.1). In this section, we claim to convert the properties and

obtained results in the previous section into the signless Laplacian Estrada index.

Theorem 3.1. Let G be a graph with n ≥ 2 vertices. Then

SLEE ≥
n
∑

i=1

edi .

Moreover, the equality holds in above if and only if (q) = (d).

Proof. We know that T0 = n, T1 = 2m,

T2 =

n
∑

i=1

di (di + 1) = M1 (G) + 2m

and Tr = s′r (G) for r ≥ 1. By Theorem 2.6-(i),

Tr ≥
n
∑

i=1

dri for r = 0, 1

such that equality holds for r = 0, 1. Thus,

SLEE =
∑

r≥0

Tr

r!
≥
∑

r≥0

∑n
i=1 d

r
i

r!
=

n
∑

i=1

edi ,

as desired.

Theorem 3.2. Let G be a graph with n ≥ 2 vertices and m vertices. Then

SLEE ≤ n+ 2m− 1−
√

M1 (G) + 2m + e
√

M1(G)+2m

with equality holding if and only if at most one of q1, q2, . . . , qn is non-zero.

Proof. It is well known that

n
∑

i=1

q2i = M1 (G) + 2m. For an integer r ≥ 3,

(

n
∑

i=1

q2i

)r

≥
n
∑

i=1

q2ri + r
∑

1≤i<j≤n

(

q2i q
2(r−1)
j + q

2(r−1)
i q2j

)

≥
n
∑

i=1

q2ri + 2r
∑

1≤i<j≤n

qri q
r
j ≥

(

n
∑

i=1

qri

)2

,
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and then,

n
∑

i=1

qri ≤
(

n
∑

i=1

q2i

)
r
2

= (M1 (G) + 2m)
r
2

with equality holding if and only if at most one of q1, q2, . . . , qn is non-zero.

It is easily seen that

SLEE = n+ 2m+
∑

r≥2

1

r!

n
∑

i=1

qri ≤ n+ 2m+
∑

r≥2

1

r!

(

√

M1 (G) + 2m
)r

= n+ 2m− 1−
√

M1 (G) + 2m + e
√

M1(G)+2m.

Finally, we will give a Nordhauss-Gaddum type bound for SLEE.

Theorem 3.3. Let G be a graph with n ≥ 2 vertices and m edges. Also let G be

the complement of G. Then

SLEE (G) + SLEE
(

G
)

> 2
[

en−1 + (n− 2) e
n−1
2

]

.

Proof. By the arithmetic-geometric inequality, we have

SLEE = eq1 + eq2 + · · ·+ eqn ≥ e
4m
n + (n− 2) e

2m
n + 1

(cf. [2]). Let m be the number of edges of G. Thus,

SLEE(G) + SLEE(G) ≥ 2 + e
4m
n + e

4m
n + (n− 2)

(

e
2m
n + e

2m
n

)

≥ 2 + 2e
2(m+m)

n + 2 (n− 2) e
m+m

n

= 2 + 2e(n−1) + 2 (n− 2) e
n−1
2

> 2en−1 + 2 (n− 2) e
n−1
2 .

Hence, the result.
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[21] I. Gutman and J. Durdević. Fluoranthene and its congeners - A graph theoretical study. MATCH

Commun. Math. Comput. Chem., 60:659–670, 2008.
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