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INDEFINITE COPOSITIVE MATRICES WITH

EXACTLY ONE POSITIVE EIGENVALUE OR

EXACTLY ONE NEGATIVE EIGENVALUE∗
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Abstract. Checking copositivity of a matrix is a co-NP-complete problem. This paper studies

copositive matrices with certain spectral properties. It shows that an indefinite matrix with exactly

one positive eigenvalue is copositive if and only if the matrix is nonnegative. Moreover, it shows

that finding out if a matrix with exactly one negative eigenvalue is strictly copositive or not can be

formulated as a combination of two convex quadratic programming problems which can be solved

efficiently.
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1. Introduction. Let S be the space of n×n symmetric matrices. Given A ∈ S,
we say that A is copositive if

xTAx ≥ 0 for all x ∈ R
n
+,

where R
n
+ is the nonnegative orthant. We say that A is strictly copositive if

xTAx > 0 for all x ∈ R
n
+ \ {0}.

The set of copositive matrices forms a closed convex cone, the copositive cone

C = {A ∈ S | xTAx ≥ 0 for all x ∈ R
n
+}.

Many combinatorial optimization problems such as the clique number, stability num-

ber and chromatic number can be formulated as linear optimization problems over

the copositive cone. For further details, see [4].

It is known in [7] that checking copositivity is a co-NP-complete decision problem.

Therefore, in general it is not likely that the copositive cone can be described explicitly.

In this paper, we study some subsets of the copositive cone which can be characterized

easily, depending on the number of negative eigenvalues of the matrix.
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Clearly, checking copositivity of a matrix A is equivalent to verifying if the

quadratic form xTAx is nonnegative over the standard simplex, {x ∈ R
n
+ |

n∑
i=1

xi = 1}.
Note that the quadratic form given by a matrix A can be simplified by transforming

it into diagonal form.

To this end, let the eigenvalues of A be ordered as λ1 ≤ · · · ≤ λn−1 ≤ λn. Since

A ∈ S, we can decompose A into A = QΛQT , where Λ = Diag(λ1, . . . , λn) and Q

is an orthogonal matrix whose columns are the corresponding eigenvectors. Denote

the linearly independent rows of Q as q1, . . . , qn ∈ R
n, and define the convex hull

Q := conv{q1, . . . , qn} and y := QTx . With these notations, we have

(1.1) A ∈ C ⇔ yTΛy ≥ 0 for all y ∈ Q.

Note that Q is a polytope. Actually, Q is the image of the standard simplex, which

is a base of Rn
+, under the linear mapping x 7→ QTx, whence Q is also a simplex.

Definition 1.1. We say that the Perron-Frobenius property holds for a matrix

A ∈ S if there is a z ∈ R
n
+ \ {0} such that Az = λnz, where λn is the largest

eigenvalue.

The Perron-Frobenius property of copositive matrices was studied in [1], [5] and

[6]. In particular, it is known (e.g. [6, Theorem 11]) that if an indefinite matrix

with exactly one positive eigenvalue is copositive, then it has the Perron-Frobenius

property. In this paper, we show that the converse is true for matrices with nonnega-

tive diagonal elements. We also give a simple characterization of indefinite copositive

matrices with exactly one positive eigenvalue.

Furthermore, we show that we can check whether or not a matrix with exactly one

negative eigenvalue is strictly copositive by solving two convex quadratic problems.

Thus, checking strict copositivity of matrices in this subset turns out to be “easy”.

Throughout the paper, bd(S) and int(S) denote the boundary of the set S and

the interior of the set S, respectively.

2. Copositive matrices with exactly one positive eigenvalue. As any pos-

itive semidefinite matrix is copositive, we may and do assume in the following that

A has a negative eigenvalue. Moreover, this section deals with an indefinite matrix

with exactly one positive eigenvalue, i.e.,

(2.1) λ1 ≤ · · · ≤ λn−1 ≤ 0 < λn and λ1 < 0.

It is known that A ∈ C satisfying (2.1) has the Perron-Frobenius property, see e.g. [6,

Theorem 11]. However, in the case λ1 = 0, the Perron-Frobenius property might not
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be fulfilled. For instance, consider ([6, p. 280])

A =

[
1 −1

−1 1

]
.

In this case, λ1 = 0 and λ2 = 2, and A has a nonnegative eigenvector corresponding

to λ1, but not to λ2.

We study further copositive matrices satisfying (2.1).

Proposition 2.1. Let A be an indefinite matrix with exactly one positive eigen-

value. Then A is copositive if and only if the following two conditions both hold:

(a) Aii ≥ 0 for all i = 1, . . . , n, and

(b) the Perron-Frobenius property holds for A.

Proof. Let A ∈ C satisfy (2.1). Then it is well known that Aii ≥ 0 for all i and

the Perron-Frobenius property holds for A. Thus, one implication is clear.

Now let us consider the other direction. Suppose properties (a) and (b) hold.

Define

Pos(A) := {z ∈ R
n | zTΛz ≥ 0}.

Obviously, Pos(A) is a cone. Let

Pos+(A) := {z ∈ R
n | zn ≥ 0, zTΛz ≥ 0} and Pos−(A) := {z ∈ R

n | zn ≤ 0, zTΛz ≥ 0}.

It is clear that

Pos(A) = Pos+(A) ∪ Pos−(A).

We claim that both Pos+(A) and Pos−(A) are convex cones and prove this for

Pos+(A). Obviously, Pos+(A) is a cone. Define a function of (n− 1) variables as

f(z1, . . . , zn−1) := |λn|−
1

2

(
n−1∑

i=1

|λi|z2i

) 1

2

.

It is easy to see that f is convex. With this, we have

Pos+(A) = {z ∈ R
n | zn ≥ 0, λnz

2
n ≥ |λ1|z21 + · · ·+ |λn−1|z2n−1}

= {z ∈ R
n | zn ≥ f(z1, . . . , zn−1)} = epi(f).

So, Pos+(A) is the epigraph of a convex function, and hence convex. An analogous

argument shows that Pos−(A) is a convex cone.

From property (a), we have 0 ≤ Aii = (qi)TΛqi, so qi ∈ Pos(A) for all i. Note

that the last components of the qis make up the eigenvector corresponding to the
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largest eigenvalue λn. Using property (b), we have that the qin have the same sign

for all i. This implies that either qi ∈ Pos+(A) for all i or qi ∈ Pos−(A) for all i. If

qi ∈ Pos+(A) for all i, then using convexity of Pos+(A) we have that Q ⊆ Pos+(A)

and hence A ∈ C. If qi ∈ Pos−(A) for all i, then using similar arguments we have

that Q ⊆ Pos−(A) which implies A ∈ C.

Let us denote the cone of nonnegative matrices as

N := {M ∈ S | Mij ≥ 0 for all i, j}.

It is well known that by the Perron-Frobenius theorem, nonnegative matrices have

the Perron-Frobenius property. In our case, the copositive matrices satisfying (2.1)

turn out to be nonnegative.

Proposition 2.2. Let A be an indefinite matrix with exactly one positive eigen-

value. Then

A ∈ C ⇔ A ∈ N .

Proof. Clearly, N ⊂ C, so one implication is trivial. To prove the converse, let

A ∈ C and pick arbitrary indices i, j. We need to show that 0 ≤ Aij = (qi)TΛqj .

Since by Proposition 2.1 the Perron-Frobenius property holds for A = QΛQT , the

last column of Q is nonnegative, so qin ≥ 0 and qjn ≥ 0.

From Proposition 2.1(a), we have 0 ≤ (ql)TΛql =
n∑

k=1

λk(q
l
k)

2 for l = i, j. Using

λ1 ≤ · · · ≤ λn−1 ≤ 0 < λn, this implies

(λn)
1

2 qln ≥
(

n−1∑

k=1

|λk|(qlk)2
) 1

2

for l = i, j.

By multiplying these two inequalities and using Cauchy-Schwarz, we get

λnq
i
nq

j
n ≥

(
n−1∑

k=1

|λk|(qik)2
) 1

2
(

n−1∑

k=1

|λk|(qjk)2
) 1

2

≥ |λ1|qi1qj1 + · · ·+ |λn−1|qin−1q
j
n−1.

This is equivalent to

0 ≤
n∑

k=1

λkq
i
kq

j
k = (qi)TΛqj = Aij

which shows that A ∈ N .

By combining Propositions 2.1 and 2.2, we obtain the following theorem:
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Theorem 2.3. Let A be an indefinite symmetric matrix with exactly one positive

eigenvalue. Then the following are equivalent:

(a) The Perron-Frobenius property holds for A and Aii ≥ 0 for all i,

(b) A is nonnegative,

(c) A is copositive.

Furthermore, we can easily identify whether or not the copositive/nonnegative

matrices satisfying (2.1) are on the boundary of the copositive cone.

Corollary 2.4. Let A be an indefinite matrix with exactly one positive eigen-

value. Then A ∈ bd C if and only if A ∈ N and there exists an index i such that

Aii = 0.

Proof. If Aii = 0, then (ei)TAei = 0 where ei is the i-th unit vector, so A ∈ bd C.
To show the converse, let A ∈ bd C. By Theorem 2.3, we have A ∈ N . From (1.1),

we have that A ∈ bd C if and only if there exists y ∈ Q such that yTΛy = 0. Suppose

by contradiction that 0 < Aii = (qi)TΛqi for all i. Consider an arbitrary y ∈ Q, i.e.,

y =
n∑

i=1

αiq
i with αi ≥ 0 and

n∑
i=1

αi = 1. From 0 ≤ Aij = (qi)TΛqj for all i, j and

0 < Aii = (qi)TΛqi for all i, we get

yTΛy =
∑

i,j

αiαj [(q
i)TΛqj ] > 0.

Since y ∈ Q was arbitrary, this is a contradiction to the fact that there exists y ∈ Q
such that yTΛy = 0.

3. Copositive matrices with exactly one negative eigenvalue. In this

section, we assume that A is an indefinite matrix with exactly one negative eigen-

value, i.e.,

(3.1) λ1 < 0 ≤ λ2 ≤ · · · ≤ λn and 0 < λn.

Similar to Section 2, we study copositivity of a matrix A which satisfies (3.1) by

transforming its quadratic form into diagonal form. Consider the cone

Neg(A) := {z ∈ R
n | zTΛz ≤ 0}.

Clearly, we have Neg(A) = Pos(−A). So similarly as in the proof of Proposition 2.1,

we can decompose Neg(A) into two full-dimensional convex cones, i.e.,

Neg(A) = Neg+(A) ∪ Neg−(A)

with

Neg+(A) := {z ∈ R
n | z1 ≥ 0, zTΛz ≤ 0} and Neg−(A) := {z ∈ R

n | z1 ≤ 0, zTΛz ≤ 0}.
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From (1.1), it is clear that

(3.2) A ∈ C ⇔ Q∩ intNeg(A) = ∅.

Using λ1 < 0 < λn and Neg+(A) ∩ Neg−(A) = {z ∈ R
n | zi = 0 if λi 6= 0}, we have

(3.3) intNeg+(A) ∩ intNeg−(A) = ∅.

Combining (3.2) and (3.3), we have

A ∈ C ⇔ Q∩ intNeg+(A) = ∅ and Q∩ intNeg−(A) = ∅.

Hence, we have transformed the problem of checking copositivity into two convex

feasibility problems. We can summarize these findings as follows:

Proposition 3.1. Let A be an indefinite matrix with exactly one negative eigen-

value. Consider the following two convex problems

(3.4)

inf ||x− z||2

s. t. x ∈ Q
z ∈ intNeg(A)±

where the set Neg(A)± is either Neg+(A) or Neg−(A). If for at least one of the sets

Neg+(A) and Neg−(A), the optimal value of problem (3.4) is zero and the optimal

solution is attained, then A is not copositive. Otherwise, A is copositive.

Observe that the feasible set in (3.4) is not closed, which is disadvantageous for

practical implementations. Considering the closure of the feasible set, it is easy to see

that

A ∈ int C ⇔ Q ∩ Neg+(A) = ∅ and Q∩ Neg−(A) = ∅.

Thus, we have the following:

Theorem 3.2. Let A be an indefinite matrix with exactly one negative eigenvalue.

To check if A is strictly copositive, we have to solve the following two convex problems

(3.5)

inf ||x− z||2

s. t. x ∈ Q
z ∈ Neg(A)±

where the set Neg(A)± is either Neg+(A) or Neg−(A). If the optimal value of (3.5) is

strictly positive for both problems, then A is strictly copositive. Otherwise, A /∈ int C.
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The problems (3.5) can be written as the following two second order cone pro-

gramming problems (SOCP) with variables (z, x, α) ∈ R
2n+1:

(3.6)

min α min α

s. t. ||x− z|| ≤ α s. t. ||x− z|| ≤ α

|| z̃ || ≤
√
|λ1|z1 || z̃ || ≤ −

√
|λ1|z1

x ∈ Q, z1 ≥ 0 x ∈ Q, z1 ≤ 0

where z̃ = (
√
λ2 z2, . . . ,

√
λn zn) ∈ R

n−1. The inequality constraints are so called sec-

ond order cone constraints. Also recall that Q is a polytope. Therefore, the constraint

x ∈ Q can be transformed into a set of linear equations and inequalities as follows: We

need one linear equation describing the affine space spanned by {q1, . . . , qn}, and n

linear inequalities obtained computing the span of {0, q1, . . . , qn}\{qi} for i = 1, . . . , n.

In this format, problems (3.6) can now be solved efficiently using algorithms such as

interior point methods. There is standard software for this, for example SeDuMi [8].

We illustrate this approach by a numerical example:

Example 3.3. Consider the following matrix from [2, Example 2.12], which has

eigenvalues as studied in this section,

A =




1 1.63 1 −0.77 −0.67

1.63 1 0 0.32 −0.82

1 0 1 −0.26 −0.67

−0.77 0.32 −0.26 1 0.77

−0.67 −0.82 −0.67 0.77 1



.

Solving problems (3.6) for A give α = 0 and z = x = (0.008, 0.315, 0.258, 0.009, 0.41)T .

Note that x is a negative certificate which means xTAx = −0.0052 < 0, so A /∈ C.

We conclude this paper by relating our approach to the one proposed in [9], where

the following was shown: If the order of the maximal positive definite principal subma-

trix is (n− 1), then copositivity of the matrix can be checked by a convex quadratic

program. The following example shows that an indefinite matrix with exactly one

negative eigenvalue does not necessarily contain a maximal positive definite principal

submatrix of order (n− 1), so the two approaches are complementary.

Example 3.4. Consider the following matrix from [9, Example 4.1],

A =




1 −1 1 2 −3

−1 2 −3 −3 4

1 −3 5 6 −4

2 −3 6 5 −8

−3 4 −4 −8 16



.

A is indefinite and has exactly one negative eigenvalue, but the maximal positive
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semidefinite submatrix of A is the leading 3 × 3 principal submatrix. So, in this

example, the formulation of [9] is not a convex quadratic problem.

We numerically tested copositivity of A by solving (3.6). There is no negative

certificate and the optimal values are very close to zero, so within a given accuracy

A is not strictly copositive. This can also be checked directly since xTAx = 0 for

x = (1, 2, 1, 0, 0). In fact, it can be shown that A is copositive by the methods

from [3].

4. Conclusion. We studied copositive matrices with certain spectral properties.

It turns out that an indefinite matrix with exactly one positive eigenvalue is copositive

if and only if the matrix is nonnegative. The problem to check if a matrix with exactly

one negative eigenvalue is strictly copositive can be formulated as a combination of

two convex quadratic programming problems.

The proofs were based on the fact that the sets Pos(A) respectively Neg(A)

have a certain nice structure for matrices with the considered spectral properties.

Unfortunately, this structure breaks down in case the single positive (respectively

negative) eigenvalue has multiplicity bigger than one. In these situations, checking

copositivity remains a difficult problem.
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