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APERTURE ANGLE ANALYSIS FOR ELLIPSOIDS∗

ALBERTO SEEGER†

Abstract. Let Ω ⊆ Rn be a compact convex set and x be a point in the exterior of Ω. The

aperture angle of x relative to Ω is defined as the maximal angle of the smallest closed convex cone

that contains Ω − x. This note provides an explicit formula, based on eigenvalues of symmetric

matrices, for the aperture angle of a point relative to an ellipsoid.
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1. Introduction. Let R
n be equipped with its usual inner product 〈·, ·〉 and

associated norm ‖ · ‖. Let Ω be a compact convex set in R
n and let x ∈ Ωc. The

supporting cone to Ω at x is defined by

V (x) := {t(u− x) : t ≥ 0, u ∈ Ω},

i.e., as the smallest closed convex cone that contains Ω−x. Recall that a convex cone

is a nonempty set that is stable under addition and under multiplication by positive

scalars. The aperture angle of x relative to Ω is defined as the number

ϑ(x) := θmax(V (x)),(1.1)

where

θmax(K) := max
p,q∈K∩ Sn

arccos 〈p, q〉

stands for the maximal angle of a closed convex cone K ⊆ R
n. Here and in the sequel,

Sn denotes the unit sphere of Rn. The number (1.1) belongs to the interval [0, π].

From the very definition of V (x) one sees that

ϑ(x) = max
u,v∈Ω

arccos

〈

u− x

‖u− x‖ ,
v − x

‖v − x‖

〉

.(1.2)

The concept of aperture angle plays a fundamental role in various approximation,

illumination, and visibility problems, cf. [1, 2, 8]. It is an interesting concept also from

∗Received by the editors on October 31, 2012. Accepted for publication on October 6, 2013.

Handling Editor: Panayiotis Psarrakos.
†University of Avignon, Department of Mathematics, 33 rue Louis Pasteur, 84000 Avignon, France

(alberto.seeger@univ-avignon.fr).

732

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 26, pp. 732-741, October 2013



ELA

Aperture Angle Analysis for Ellipsoids 733

a purely academic point of view. Aperture angle computation is a difficult numerical

task, even if Ω has a relatively simple structure. Observe that (1.2) is a nonconvex

optimization problem, because one needs to maximize a function that is not concave.

Example 1.1. If Ω = co{a1, . . . , am} is a polytope, then its supporting cone at

x ∈ Ωc is given by

V (x) =

{

m
∑

i=1

ti
ai − x

‖ai − x‖ : t1 ≥ 0, . . . , tm ≥ 0

}

.(1.3)

As explained in [6, Theorem3], computing the maximal angle of a polyhedral cone

like (1.3) boils down to solve a collection of generalized eigenvalue problems. Un-

fortunately, the number of generalized eigenvalue problems to be solved increases

exponentially with m.

Fig. 1.1. Aperture angle relative to an ellipsoid.

The purpose of this note is to derive an explicit formula for evaluating ϑ(x)

when Ω is a solid bounded ellipsoid. Such sort of set is the prototype example of a

smooth convex body. The adjective “solid” applied to a set indicates that the set has

nonempty interior.

Remark 1.2. Figure 1.1 displays the aperture angle of x relative to an ellipsoid.

For easy of visualization, instead of V (x) we are drawing the translated set x+V (x).

We mention in passing that x + V (x) is sometimes called the visual cone to Ω with

vertex at x, cf. [3].

1.1. Preliminary material. Let Bn denote the closed unit ball of Rn and On

be the group of orthogonal matrices of order n. The notation Sn refers to the space

of symmetric matrices of order n and

Pn := {A ∈ Sn : A is positive definite}.
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In the sequel, one assumes that Ω is a solid bounded ellipsoid in R
n, i.e.,

Ω = {u ∈ R
n : 〈u− z, A(u− z)〉 ≤ 1}(1.4)

with z ∈ R
n and A ∈ Pn. The vector z corresponds to the “center” of the ellipsoid,

whereas the matrix A determines its shape and orientation.

The next lemma shows that any supporting cone to (1.4) is an ellipsoidal cone.

By the latter expression one means a set representable as

L(Q, b) :=
{

w ∈ R
n :
√

〈w,Qw〉 ≤ 〈b, w〉
}

(1.5)

for some pair (Q, b) ∈ Pn × R
n satisfying the strict inequality

〈b,Q−1b〉 > 1.(1.6)

The condition (1.6) ensures that L(Q, b) is a proper cone. Recall that a closed convex

cone in R
n is said to be proper if it is pointed and solid.

Remark 1.3. There are many equivalent ways of representing an ellipsoidal cone.

For instance, (1.5) can be written as the image of the n-dimensional Lorentz cone

Kn :=







w ∈ R
n :

(

n−1
∑

i=1

w2
i

)1/2

≤ wn







under a nonsingular matrix of order n.

Lemma 1.4. Let Ω be an ellipsoid as in (1.4). Then, for all x ∈ Ωc, one has

V (x) = L(A, bx)(1.7)

with

bx := [〈x− z, A(x− z)〉 − 1]−1/2 A(z − x).(1.8)

Proof. The ellipsoid (1.4) can be written in the form

Ω = {z +A−1/2ξ : ξ ∈ Bn}.

Hence, for all x ∈ Ωc, one has

V (x) =
{

t(z +A−1/2ξ − x) : t ≥ 0, ξ ∈ Bn

}

= A−1/2
[

VBn
(A1/2(x − z))

]

,(1.9)
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where VBn
(ξ) stands for the supporting cone to Bn at a point ξ ∈ B

c
n. A supporting

cone to a ball is known to be a revolution cone. Indeed, a matter of computation

shows that

VBn
(ξ) = Γ

(

− ξ

‖ξ‖ ,
(

1− 1

‖ξ‖2
)1/2

)

,(1.10)

where

Γ(y, s) := {w ∈ R
n : s‖w‖ ≤ 〈y, w〉}

stands for the revolution cone with sharpness coefficient s ∈]0, 1[ and central axis

generated by y ∈ Sn. The combination of (1.9) and (1.10) leads to

V (x) = A−1/2 [Γ (yx, sx )] ,(1.11)

where

yx :=
A1/2(z − x)

‖A1/2(z − x)‖ and sx :=

(

1− 1

‖A1/2(z − x)‖2
)1/2

.

It is not difficult to check that (1.11) can be written under the format (1.7) with

bx = (1/sx)A
1/2yx. Finally, note that 〈bx, A−1bx〉 = 1/s2x is greater than 1.

The formula (1.7) has many useful consequences. However, such a characteriza-

tion of V (x) is not very helpful when it comes to evaluate the number (1.1). The proof

of the next lemma explains how to convert V (x) into a “standard” ellipsoidal cone by

means of a suitable orthogonal transformation. By a standard ellipsoidal cone in R
n

we understand a set of the form

E(G) :=











w ∈ R
n :





n−1
∑

i,j=1

gi,j wiwj





1/2

≤ wn











(1.12)

with G ∈ Pn−1. A crucial advantage of working with standard ellipsoidal cones is

that the maximal angle of (1.12) is a well known function of the smallest eigenvalue

of G. We shall come back to this point in Section 2.

Lemma 1.5. Let (Q, b) ∈ Pn × R
n be a pair satisfying (1.6). Then there are

matrices G ∈ Pn−1 and U ∈ On such that

L(Q, b) = U [E(G)].(1.13)

Proof. We explain how to construct the matrices G and U . Our first observation

is that

L(Q, b) = {w ∈ R
n : 〈w,Rw〉 ≤ 0, 〈b, w〉 ≥ 0} ,
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where R := Q − bbT is a rank one perturbation of Q. The matrix R is clearly

symmetric. Let

λ1(R) ≥ · · · ≥ λn−1(R) ≥ λn(R)

be the eigenvalues of R arranged in nonincreasing order. Similarly, one arranges

in nondecreasing order the eigenvalues of Q. The interlacing theorem for rank one

perturbation of symmetric matrices yields the chain of inequalities

λ1(Q) ≥ λ1(R) ≥ · · · ≥ λn−1(Q) ≥ λn−1(R) ≥ λn(Q) ≥ λn(R).

But λn(R) is negative thanks to the assumption (1.6), and λn(Q) is positive because

Q ∈ Pn. In short,

λn−1(R) > 0 > λn(R),

i.e., R has exactly one negative eigenvalue and n − 1 positive eigenvalues (counting

multiplicity). Our second observation is that

“ 〈b, w〉 = 0 and 〈w,Rw〉 ≤ 0 ” implies w = 0.

In view of the above property, one can apply [9, Proposition2.1] and obtain

L(Q, b) = {w ∈ R
n : 〈w,Rw〉 ≤ 0, 〈c, w〉 ≥ 0} ,(1.14)

where c is the unique vector in R
n such that

Rc = λn(R) c, ‖c‖ = 1, 〈b, c〉 > 0.

Note that c is a unit eigenvector of R associated with the eigenvalue λn(R). The

set on the right-hand side of (1.14) corresponds to an ellipsoidal cone in the Stern-

Wolkowicz sense (cf. [9]). Consider now a matrix U ∈ On with columns formed with

an orthonormal basis of eigenvectors of R. As last column of U we take the vector c.

By working out the set on the right-hand side of (1.14), one arrives at the equality

(1.13) with U ∈ On as just mentioned, and

G = Diag

(

λ1(R)

−λn(R)
, . . . ,

λn−1(R)

−λn(R)

)

.

The above matrix G is a positive definite diagonal matrix of order n − 1. This

completes the proof of the lemma.

2. The main result. As shown in [7, Theorem1], the maximal angle of the

standard ellipsoidal cone (1.12) admits the characterization

θmax(E(G)) = arccos

(

λmin(G)− 1

λmin(G) + 1

)

,(2.1)
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where λmin(G) is the smallest eigenvalue of G. With this information at hand, we

now are ready to state the main result of this paper.

Theorem 2.1. Let Ω be an ellipsoid as in (1.4). Then, for all x ∈ Ωc, one has

ϑ(x) = arccos

(

λn−1(x) + λn(x)

λn−1(x)− λn(x)

)

,(2.2)

where λn(x) and λn−1(x) denote, respectively, the smallest and the second smallest

eigenvalue of the symmetric matrix

Rx := A− 1

〈x− z, A(x− z)〉 − 1
A(x− z)[A(x− z)]T .

Proof. Note that Rx = A− bxb
T
x with bx as in (1.8). Let λ1(x), . . . , λn(x) be the

whole collection of eigenvalues of Rx, which we arrange in nonincreasing order. The

interlacing inequalities for Rx take the form

λ1(A) ≥ λ1(x) ≥ · · · ≥ λn−1(A) ≥ λn−1(x) ≥ λn(A) ≥ λn(x).

As in Lemma1.5, one deduces that

λn−1(x) > 0 > λn(x).

By combining Lemmas 1.4 and 1.5, one gets a representation formula for V (x) of the

type

V (x) = U [E(Gx)](2.3)

with U ∈ On and

Gx := Diag

(

λ1(x)

−λn(x)
, . . . ,

λn−1(x)

−λn(x)

)

.

Since the maximal angle of a proper cone is invariant under orthogonal transforma-

tions, the combination of (2.1) and (2.3) yields

ϑ(x) = θmax(E(Gx)) = arccos

(

λmin(Gx)− 1

λmin(Gx) + 1

)

.

For completing the proof of (2.2), note that λmin(Gx) is equal to the last diagonal

entry of Gx.

The numerical computation of (2.2) offers no difficulty: one just needs to know

the two smallest eigenvalues of Rx. Curiously enough, the remaining eigenvalues of

Rx are irrelevant in connection with the evaluation of ϑ(x). As a matter of fact, ϑ(x)

depends only on the ratio between λn−1(x) and −λn(x). We mention in passing that

the smallest eigenvalue λn(x) is always simple, but the second smallest eigenvalue

λn−1(x) could be multiple.
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3. Additional results and by-products. Many additional properties of V (x)

can be derived by exploiting the representation formula (2.3) and the fact that a stan-

dard ellipsoidal cone is a very well known mathematical object. The representation

formula (2.3) holds for any matrix U ∈ On such that

{

the columns of U are an orthonormal basis

of eigenvectors of Rx, and Uen = cx.
(3.1)

Here, en is the n-th column of the identity matrix In and cx stands for the unique

solution to the system

Rxc = λn(x) c, ‖c‖ = 1, 〈bx, c〉 > 0.

Note that cx is a unit vector in the interior of V (x). As we shall see in the next

proposition, cx has a very interesting geometric interpretation.

3.1. Central axis of V (x). Some comments on terminology are in order. The

incenter of a proper coneK ⊆ R
n is defined as the unique solution to the maximization

problem

̺(K) := max
w∈K∩ Sn

dist[w, ∂K],

where dist[w, ∂K] denotes the distance from w to the boundary of K. Geometrically

speaking, the incenter of K is the “most interior” unit vectors of K. Hence, the ray

generated by that vector can be seen as a sort of central axis of K. See [4, 5] for a

long discussion on the theory of incenters for general proper cones.

Proposition 3.1. Let Ω be an ellipsoid as in (1.4) and let x ∈ Ωc. Then V (x)

is symmetric with respect to the line

Lx := Ker[Rx − λn(x)In].

In particular, the incenter of V (x) is equal to cx.

Proof. Symmetry relative to a line is to be understood in the classical sense, i.e.,

invariance with respect to reflections through that line. Take U as in (3.1), so that

the representation formula (2.3) holds. Since the standard ellipsoidal cone E(Gx) is

symmetric with respect to the line generated by en, the image of E(Gx) under U is

symmetric with respect to the line generated by Uen = cx. This takes care of the

first part of the theorem. The second part is immediate, because if a proper cone is

symmetric with respect to a line, then its incenter is a unit vector on that line.

3.2. Antipodality in V (x). The next theorem explains how to construct an

antipodal pair of V (x). By this expression one understands a pair {p, q} of unit
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vectors in V (x) that achieve the maximal angle of the cone V (x).

Theorem 3.2. Let Ω be an ellipsoid as in (1.4) and let x ∈ Ωc. Take any unit

vector w in the eigenspace

Ex := Ker[Rx − λn−1(x)In].

Then

p :=
1

√

λn−1(x)− λn(x)

(

√

−λn(x)w +
√

λn−1(x) cx

)

,

q :=
1

√

λn−1(x)− λn(x)

(

−
√

−λn(x)w +
√

λn−1(x) cx

)

form an antipodal pair of V (x).

Proof. Since λn−1(x) and λn(x) are distinct, the associated eigenvectors w and

cx are orthogonal. Let en−1 denote the (n− 1)-th column of In. Let U be a matrix

as in (3.1) and with the additional property that Uen−1 = w. In other words, the

(n − 1)-th column of U is equal to w. A direct application of [7, Theorem1] shows

that

p̃ :=
1

√

1 + λmin(Gx)

[

en−1 +
√

λmin(Gx) en

]

,

q̃ :=
1

√

1 + λmin(Gx)

[

−en−1 +
√

λmin(Gx) en

]

form an antipodal pair of E(Gx). It suffices now to use the representation formula

(2.3) and observe that (p, q) = (Up̃, U q̃).

One may see Theorem3.2 as an extension of Theorem2.1. Indeed, a quick com-

putation shows that p and q are unit vectors in the boundary of V (x), and that

〈p, q〉 = λn−1(x) + λn(x)

λn−1(x)− λn(x)
.

This equality is consistent with the formula (2.2) for the maximal angle of V (x).

3.3. A curious paradox. Our last result deals with the paradox of the ellip-

soid with nondifferentiable aperture angle function. Although it is against geometric

intuition, it is possible to construct a solid bounded ellipsoid in R
3 whose aperture

angle function is nondifferentiable. Such pathological ellipsoids can be constructed

also in higher dimensional spaces, but not in R
2. All this is explained next in a clear

cut-manner.

Theorem 3.3. Let Ω be an ellipsoid as in (1.4) and let x∗ ∈ Ωc. Let λ∗ be the

largest eigenvalue of the symmetric matrix

S∗ := A−1 − (x∗ − z)(x∗ − z)T .
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Then the aperture angle function ϑ : Ωc → R is differentiable at x∗ if and only if one

of the following conditions holds:

(i) E∗ := Ker (S∗ − λ∗In) has dimension 1,

(ii) E∗ has dimension greater than 1 and it is contained in x⊥
∗ .

Proof. For all x ∈ Ωc, the smallest eigenvalue λn(x) of Rx is simple. Hence,

λn : Ωc → R is a differentiable function. From (2.2) and the differentiability of λn,

one deduces that ϑ is differentiable at x∗ if and only if λn−1 : Ωc → R is differentiable

at x∗. But the second smallest eigenvalue of Rx is related to the largest eigenvalue of

the inverse matrix

R−1
x = A−1 − (x− z)(x− z)T .

In fact, for all x ∈ Ωc, one has

λn−1(x) = [λmax(R
−1
x )]−1.

So, everything boils down to study the differentiability at x∗ of the real-valued func-

tion x 7→ f(x) := λmax(R
−1
x ). Note that f(x) can be seen as the optimal-value

f(x) = max
ξ∈Sn

〈ξ, [A−1 − (x− z)(x− z)T ]ξ〉

of a parametric optimization problem. By applying Danskin’s directional differentia-

bility theorem, one sees that the directional derivative

f ′(x∗;h) := lim
t→0+

f(x∗ + th)− f(x∗)

t

exists in all directions and it is given by

f ′(x∗;h) = max
ξ∈E∗∩ Sn

−2〈x∗ − z, ξ〉〈ξ, h〉.

In other words,

f ′(x∗; ·) = max
η∈N(x∗)

〈η, ·〉

is the support function of the nonempty compact set

N(x∗) := {−2〈x∗ − z, ξ〉 ξ : ξ ∈ E∗ ∩ Sn}.

Hence, f is differentiable at x∗ if and only if N(x∗) is a singleton. This completes the

proof of the theorem.
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Below we give the promised example of solid bounded ellipsoid in R
3 with nondif-

ferentiable aperture angle function. I thank my young colleague M.Torki (University

of Avignon) who gave me a hand in building this example.

Example 3.4. Consider the particular case

A =







1
1+

√
2

0 0

0 1
3 0

0 0 1






, z =





0

0

0



 , x∗ =





0

1

1



 .

One can easily check that x∗ ∈ Ωc. The largest eigenvalue of

S∗ =





1 +
√
2 0 0

0 2 −1

0 −1 0





is λ∗ = 1+
√
2 and it has multiplicity equal to 2. Note that the associated eigenvector

ξ∗ = (0, 1 +
√
2 , −1)T is not orthogonal to x∗. Hence, ϑ is not differentiable at x∗.
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