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COPIES OF A ROOTED WEIGHTED GRAPH ATTACHED TO AN
ARBITRARY WEIGHTED GRAPH AND APPLICATIONS*

DOMINGOS M. CARDOSOT, ENIDE A. MARTINST, MARIA ROBBIANOf, AND OSCAR
ROJOS

Abstract. The spectrum of the Laplacian, signless Laplacian and adjacency matrices of the
family of the weighted graphs R {#}, obtained from a connected weighted graph R on r vertices
and r copies of a modified Bethe tree H by identifying the root of the i-th copy of H with the i-th
vertex of R, is determined.

Key words. Weighted graph, Generalized Bethe tree, Laplacian matrix, Signless Laplacian
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1. Introduction. Let G = (V(G), E(G)) be a simple undirected graph with
vertex set V(G) = {1,...,n} and edge set E(G). We assume that each edge e € E(G)
has a positive weight w (e). The adjacency matrix A (G) = (a; ;) of G is the n x n
matrix in which a; ; = w (e) if there is an edge e joining ¢ and j and a; ; = 0 otherwise.
Let D (G) be the diagonal matrix in which the diagonal entry d;; = >~ w (e) where
the sum is over all the edges e incident to the vertex ¢. The Laplacian matrix and the
signless Laplacian matrix of G are L (G) = D (G) — A(G) and Q (G) = D (G) + A(G),
respectively. The matrices L (G), @ (G) and A(G) are real and symmetric. From
Gersgorin’s theorem, it follows that the eigenvalues of L (G) and Q (G) are nonnegative
real numbers. Since the rows of L (G) sum to 0, (0,e) is an eigenpair for L (G), where
e is the all ones vector. Fiedler [9] proved that G is a connected graph if and only
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if the second smallest eigenvalue of L (G) is positive. This eigenvalue is called the
algebraic connectivity of G. The signless Laplacian matrix has recently attracted the
attention of several researchers and some papers on this matrix are [2, 4, [l [6] [7]. In
this paper, M (G) is one of the matrices L (G), Q(G) or A(G). If w(e) = 1 for all
e € E(G) then G is an unweighted graph.

Let R be a connected weighted graph on r vertices. Let vi,v2,...,v, be the
vertices of R. As usual, v; ~ v; means that v; and v; are adjacent. Let €; ; =€, ; be
the weight of the edge v;v; if v; ~ v;, and let €; ; = €;; = 0 otherwise. Moreover, for
i=1,2,...,r, let g; = Zu,wu,, €;j. Let R{H} be the graph obtained from R and r
copies of a rooted weighted graph H by identifying the root of i—copy of H with v;.

ExAMPLE 1.1. If R is the graph depicted in Figure [[LT] and #H is the graph

Fic. 1.1. The cycle Cy.

depicted in Figure then R {H} is the graph depicted in Figure [[3

Root

Fic. 1.2. A modified Bethe tree, H, with four levels.

We recall that for a rooted graph the level of a vertex is one more than its distance
from the root vertex. Let B be a weighted generalized Bethe tree of k£ > 1 levels, that
is, B is a rooted tree in which vertices at the same level have the same degree and edges
connecting vertices at consecutive levels have the same weight. Consider a nonempty
subset A C {1,2,...,k — 1} and a family of graphs F = {G; : j € A}. For j € A, we
assume that the edges of G; have weight u;. Let B (F) be the graph obtained from B
and the graphs in F' identifying each set of children of B at level k — j 4+ 1 with the
vertices of G;.



Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 26, pp. 706-717, October 2013

708 D.M. Cardoso, E.A. Martins, M. Robbiano, and O. Rojo

FiG. 1.3. The graph R {H}.

EXAMPLE 1.2. Let B (F) be the graph depicted in Figure[[.2l In this graph, B is
a generalized Bethe tree of k = 4 levels, A = {1,3}, F={G1,Gs}, where G; is a star
of 4 vertices and Gs is a path of 2 vertices.

In this paper, we derive a general result on the spectrum of M (R {H}). Using
this result, we characterize the eigenvalues of the Laplacian matrix, including their
multiplicities, of the graph R {B(F)}; and also of the signless Laplacian and adja-
cency matrices whenever the subgraphs in F are regular. They are the eigenvalues
of symmetric tridiagonal matrices of order j, 1 < j < k. In particular, the Randié¢
eigenvalues are characterized.

Denote by o (C) the multiset of eigenvalues of a square matrix C.

2. A result on the spectrum of M (R{#}). Let E be the matrix of order
n x n with 1 in the (n,n) —entry and zeros elsewhere. For i = 1,2,...,r, let d (v;) be
the degree of v; as a vertex of R and let n be the order of #. Then R {#H} has rn
vertices. We label the vertices of R {H} as follows: for ¢ = 1,2,...,r, using the labels
(i—1Dn+1,(i—1)n+2,...,in, we label the vertices of the i — th copy of H from
the bottom to the vertex v; and, at each level, from the left to the right. With this
labeling, M (R {H}) is equal to

Vi (H) +ae1E se12E - _ se1,. B
se12F . . sea B
(2.1) : : ,

. M (H) +ag; 1 E sep_10E
se1 B seq B - ser—1,E M (H) + ae,.E |
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where
—1 if M is the Laplacian matrix,
(2.2) 5= . . . . . .
1 if M is the signless Laplacian or adjacency matrix
and
0 if M is the adjacency matrix,
(2.3) a= . . . . . .
1 if M is the Laplacian or signless Laplacian matrix.

In this paper, the identity matrix of appropriate order is denoted by I and I,
denotes the identity matrix of order m. Furthermore, |A| denotes the determinant of
the matrix A and A7 is the transpose of A.

We recall that the Kronecker product [12] of two matrices A = (a; ;) and B =
(bi,j) of sizes m x m and n X n, respectively, is defined as the (mn) x (mn) matrix
A® B = (a;;B). Then, in particular, I, ® I, = IL,,. Some basic properties of
the Kronecker product are (A ® B)" = AT @ BT and (A® B) (C ® D) = AC @ BD
for matrices of appropriate sizes. Moreover, if A and B are invertible matrices then
(A9B) '=A"1eB L

THEOREM 2.1. Let p1 (R),p2(R),...,pr (R) be the eigenvalues of M (R). Then
(2.4) o (M (R{M})) = Uszro (M (H) + ps (R) E).

Proof. From (21]), it follows
MR{HN=I,M(H)+ M(R)QE.
Let
V= [ Vi Vg - Vel Vg }

be an orthogonal matrix whose columns vi,ve, ..., Vv, are eigenvectors corresponding
to the eigenvalues p1 (R),p2 (R),...,pr (R), respectively. Then
VRL)MR{HY) (VI ®L)=VeL)(,oMH) +MR)E) (VI 1,)
=LoMH)+(VMR)V") ® E.

We have

p1(R)
p2 (R)

(VM (R) V)@ E = ®FE

pr(R)
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f1 (R) E
p2 (R)E
i pr(R)E |

Therefore,

(Ve lL)MR{MH}Y) (VI ®I,)

MH)+p1 (R)E
M (H)+p2(R) E

M (H)+pr (R)E |

Since M (R{H}) and (V ® I,) M (R{H}) (VT ® I,) are similar matrices, we con-
clude (24). O

3. Application to a modified generalized Bethe tree with subgraphs at
some levels. Let B be a weighted generalized Bethe tree of k levels (k > 1). For
1 <j <k, n; and d; are the number and the degree of the vertices of B at the level
k — j + 1, respectively. Thus, di is the degree of the root vertex (assumed greater
than 1), ng = 1, d; = 1 and n, is the number of pendant vertices. For 1 < j <k —1,
let w; be the weight of the edges connecting the vertices of B at the level kK —j +1
with the vertices at the level k£ — j. We consider

w; if j =1,
(Sji (dj—l)wj_l—l—wj 1f2§j§k’—1,
dkwk,1 lf] =k.
We observe that d; is the sum of the weights of the edges of B incident with a vertex
at thelevel k—j+1andifwy =wy = =wr_1 =1thend; =d; forj=1,2,... k.
Let m; = nnil for j =1,2,...,k — 1. Then
J

mj=dj1—1(1<j<k-2),
dp, = Ng—1 = Mp_1.
Note that m; is the cardinality of each set of children at the level £ — j + 1.

Let M; = M (G;) . From now on, we assume that py (M), ..., fm, (M;) are the
eigenvalues of M; and e,,; is an eigenvector for pi,,,; (M;), that is,

(31) Mjemj = /J/'mj (Mj)emj.
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We observe that (31 holds when M (G;) = L(G;) and when M (G;) = Q(G,) or
M (G;) = A(G;) if G is a regular graph.

Assuming (31)), in [I1], we characterize the eigenvalues of the matrix M (B (F)) =
Iny ® 51 $Tny ® wiem,

slngy ® wle,:‘r,;l

Ing 1 ® Skp—2 sln;,_ 1 @ wp_gemy o
sl 1 @ wg_2emy o Sp—1 swp_1emy_ 4
Swp_1€my_q ady,
in which, for j =1,2,...,k — 1,
aéjImj —+ M(g]) 1f] S A,
(3.2) S; = o oA
a J mj 1 .7 ¢ b

with s and @ as in (Z22) and (23)).

The results in [I1] generalize several previous contributions (see [3} [8] [10]).

DEFINITION 3.1. For j =1,...,k, let X; be the j x j leading principal submatrix
of the k x k symmetric tridiagonal matrix X =

ad1 + pm, (M1) w14/m1
w1/m1 ad2 + pmy (M2)
. . Wi—24/Mk—2
Wi—2y/Mi—2  ap—1 + pmy_; (Mi—1) Wi—1/Mk—1
Wi 14/Mk_1 ady,

DEFINITION 3.2. For j=1,2,...,k—1landi=1,...,m; — 1, let X;; =
ad1 + pmy (M1)  wiy/ma
w1 /M1 '
Wj—2/Mj—2

wj—2y/Mj—2 adj—1+pm;_y (Mj-1) wj—1y/mMj-1
Wji—1/M5—1 a5j+u¢ (M])

Finally, let
Q:{]].Sjgk’*]., nj>nj+1}.

We are ready to state the main result published in [11].

THEOREM 3.3. [11]

B8 =0 ()0 (S0 () 0 (s Lo 0,07

7
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where o (X;)™ "% and o (X;,;)"™™ mean that each eigenvalue in o (X;) and in
o (X)) must be considered with multiplicity n; — n;41 and nji1, respectively. Fur-
thermore, the multiplicities of equal eigenvalues obtained in different matrices (if any),
must be added.

An equivalent version of Theorem [3.3] is:

THEOREM 3.4.

M =M BE) =D [[ @) ] T[] @),
jEQ—A JEA i=1

where, for j=1,2,...,kandi=1,2,...,m; —1, D; (A) and D, ; (\) are the charac-
teristic polynomials of the matrices X; and X ;, respectively.

Let A be the submatrix obtained from a square matrix A by deleting its last row
and its last column.

Moreover, from the proofs of Lemma 2.2, Theorem 2.5 and Lemma 2.7 in [11],
we obtain:

LEMMA 3.5.
—_—~— mj_l
M-MBE)| =Da(N) [ @) I T @)™+
jeQ-A jeA i=1
DEFINITION 3.6. For s =1,2,...,r, let Y (s) =
ady + pm, (M1) w1/my
wi/m1 ad2 + fimy (M2)
' Wk—2\/ME—3

Wh_oy/Mg—2  Op—1 + pmy_, (Mi_1) wWi_1/Mp_1
Wh—1+/Th—1 adg + ps (R)

We are ready to apply Theorem [Z1lto H = B (F).
THEOREM 3.7. If G = R{B(F)}, then

o (M (9) = (Ugea-ao (X;)" 7m0 ) U (Ujea U o (X041 ) U (Uisio (Y (),

where o (X;)"™ 7" and o (X;;)™"*" mean that each eigenvalue in o (X;) and in
o (X)) must be considered with multiplicity v (nj —njy1) and rnjp1, respectively.
Furthermore, the multiplicities of equal eigenvalues obtained in different matrices (if
any), must be added.
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Proof. For H = B (F), from Theorem 2T} we have
(3.3) o (M (R{B(F)})) = Uizi0 (M (B(F)) + ps (R) E) .
Let 1 < s < r. By linearity on the last column, we have
ML= M (B (F)) = p (R) E| = |\ = M (B(F))| — ps (R) |\ — M (B(F)|.

Using Theorem B4 and Lemma B5 A\ — M (B (F)) — ps (R) E| has the form

(D (A) = ps (R) Di—1 (N)) H (Dj (X)) "+t H H (D (N)"+
jea-Aa JEA i=1

Now, by linearity on the last column, we have

AL =Y ()] = I\ = Xi| = py (R) A = Xo_1] = Dy (\) = py (R) Dt (A).

Therefore,
IR | CTRE | mH (Dss )+
Applying @3), A — M (R{B(F)})| becomes
f[ vis) IT ;o™ mﬁl (D (V)™ . O
s=1 jea-a jea i1

4. On the Laplacian, signless Laplacian and adjacency eigenvalues of
RA{B(F)}. For each j, let

p1(G5) > p2 (Gy) > - > pm;—1(G5) > pim, (G5) = 0,
and let
pr(R) 2 p2(R) == pr (R) =0
be the Laplacian eigenvalues of G; and R, respectively.

Applying Theorem 3.7 to the determination of the Laplacian spectrum of G, we
obtain:

THEOREM 4.1. The Laplacian spectrum of G = R{B (F)} is

o (L(9) = (UjEQ—AU (Uj)r(nj_nj“)) U (UjeA U?;jfl U(Uj,z')mﬁl)
@y U Uiy (W (5)))
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where, for j =1,...,k—1, U; is the j x j leading principal submatriz of the k x k
matriz Ug, = X, except for the diagonal entries which in Uy are

51752a' "75167175]{3;

and, fori=1,2,...,m; — 1, U;; = X;; except for the diagonal entries which in Uj;
are

01,02, ...,0j-1,0; + i (Gj);
and, for s =1,2,...,r, W {(s) =Y (s) except for the diagonal entries which in W (s)
are

01,02, ..., 0p—1,0k + ps (R).
The multiplicities of the eigenvalues of L (G) are considered as in Theorem [3.7.

Proof. Tt must be noted that, since M (G) = L (G), we have a = 1,

{ 8iIm, + L(G;) if j € A,
S; =

5]'Imj ifj%A and Sk:(SkIT+L(R).

Therefore, L (G;)em; = 0 = Oe,,, and the Laplacian spectrum of G is given by
Theorem [B.7] replacing the matrices X;, X;;, and Y (s) by the matrices U;, U, ; and
W (s), respectively. O

As above, let G = R{B (F)} . We apply now Theorem B.7] to find the eigenvalues
of Q (G) and A (G) whenever each §; is a regular graph of degree r;. For convenience,
the signless Laplacian eigenvalues and adjacency eigenvalues are denoted in increasing
order. Let

71(9)<q2(9) <9 < <agm-1(9) <qm(9)
and
AM(G) <X (G) < <A1 (G) S A (9)

be the eigenvalues of the signless Laplacian matrix and adjacency matrix of any graph
g, respectively. If G is a regular graph of degree ¢t and order m in which the edges
have a weight equal to u then Q (G) e,,, = 2tue,, and A (G) e, = tue,,. In this case,
we may write A, (G) = tu and ¢y, (G) = 2tu.

THEOREM 4.2. If for each j € A the graph G; is a regular graph of degree r; and
r; = 0 whenever j ¢ A, then the signless Laplacian spectrum of G = R{B (F)} is

7 (Q(@) = (Viea-ao (V)™ ) U(Ujea U™ 0 (Vi)™ ) U(UiLyo (U (5)))
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where, for j =1,2,3,...,k—1,V; is the j x j leading principal submatriz of Vi, = Xy,
except for the diagonal entries which in Vi are

01 + 2ryu, 62 + 2rousg, . .., 01 + 2Tk _1Uk—1, Ok;

and, fori=1,2,...,m; — 1, V;; = X;; except for the diagonal entries which in Vj;
are

01 + 2r1uy, 62 + 2roug, ..., 051 + 2rj_1u;1,05 + ¢ (Gj);

and, for s =1,2,...,r, U(s) =Y (s) except for the diagonal entries which in U (s)
are

01 + 2riuq, 60 + 2roug, ..., 0p_1 + 27k _1UE_1, 0k + s (R) .
The multiplicities of the eigenvalues of Q (G) must be considered as in Theorem[3.7
Proof. For M (G) = Q (G), we have a = 1,

Sj_{ é(gj)ZOif]j¢A and Sy =kl +Q (R),

Q (Gj) em; = 2rjujen,; if j € A and r; =0 for j ¢ A. From Theorem 3.7, we obtain
that the set of eigenvalues of @ (G) is given replacing the matrices X;, X, ;, and Y,
by the matrices V;, V;; and U (s), respectively. O

THEOREM 4.3. If for each j € A the graph G; is a regular graph of degree r; and
r; = 0 whenever j ¢ A, then the adjacency spectrum of G = R{B (F)} is

7 (A9)) = (Uea-a0 ()™ 7)) U(Usea U o (13,0 ) UULL0 (R (5))

where, for j =1,2,3,...,k—1, T} is the j x j leading principal submatriz of T, = Xy,
except for the diagonal entries which in Ty are

T1UL, T2U2, - - s T—1Uk—1, 0
and, fori=1,2,...,m; —1, T;; = X;; except for the diagonal entries which in T} ;
are
iUy, r2U2, . . ., Tj—1Uj—1, )\1 (g]) N

and, for s =1,2,...,r, R(s) =Y (s) except for the diagonal entries which in R (s)
are

U, T2U2, -« oy Tk—1Uk—1, )\s (R) .

The multiplicities of the eigenvalues of Q (G) must be considered as in Theorem[3.7]
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Proof. For M (G) = A(G), we have a = 0,

A(G))
S; = I d Sp=A(R
: { Ag)=oirjga 4 A=A,
and A (Gj) em; = rjen; if j € A and r; = 0 for j ¢ A. Then, from Theorem B.7 we
conclude that the set of eigenvalues of A (G) is obtained replacing the matrices X,

X, and Y (s) by the matrices T}, T;; and R(s), respectively. O

5. On the Randié¢ eigenvalues of R{B(F)}. Let H be a simple connected
graph with n vertices vy, va,...,v,. Denote by d(v1),d (v2),...,d(v,) the degrees
of vy, v, ..., vy, respectively. The Randi¢ matrix of H is the square matrix of order
n whose (i, j) —entry is equal to

NN
d (vi) d (v;)

if v; and v; of H are connected and 0 otherwise [I]. The Randi¢ eigenvalues of H are
the eigenvalues of the Randi¢ matrix of . The purpose of this section is to determine
the Randi¢ eigenvalues of G = R{B (F)} when each G, is regular of degree r; and R
is a connected regular graph of degree p on r vertices vi,va, ..., V.

Keep in mind that r; = 0 if j ¢ A. As usual v; ~ v; means that v; and v; are
adjacent. Observe that, for ¢ = 1,2, ..., r, the degree of vy as a vertex of R{B(F)} is
di. +p. The Randi¢ matrix of R{B (F)} is the adjacency matrix of the weighted graph
in which the edges joining the vertices at the level j + 1 with the vertices at the level
j of B(F) have weights

1

V@di—ji1 +rr—j1) (di—j +75—5)
1

V{d +p) (dg—1 +75-1)

the edges of graph G; have weights

1 op s
(5.2) uj =4 4t 1f] €A
0 if j & A,

(5.1) Wi_j = (2<j<k-1),

Wg—1 =

and the weights of the edge v;v; of R are

1 .
—— ifv; ~y
(53) €il =€l = pt+dy i . )
0 otherwise.

THEOREM 5.1. If for each j € A the graph G; is a regular graph of degree r; and
the graph R is a regular graph of degree p then the Randié spectrum of G = R{B (F)}



Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 26, pp. 706-717, October 2013
Copies of a Rooted Weighted Graph Attached to an Arbitrary Weighted Graph 717

18
(Wiea-a0 (@) 7Y U (Ujea U o (15" ) U (U0 (R(5)))

in which the matrices T;,T;; and R (s) are those of Theorem [[.3 with the weights
indicated in (&), (2) and B3). The eigenvalues multiplicities must be considered
as in Theorem [3.7.
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