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Abstract. The spectrum of the Laplacian, signless Laplacian and adjacency matrices of the

family of the weighted graphs R{H}, obtained from a connected weighted graph R on r vertices

and r copies of a modified Bethe tree H by identifying the root of the i-th copy of H with the i-th

vertex of R, is determined.
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1. Introduction. Let G = (V (G), E(G)) be a simple undirected graph with

vertex set V (G) = {1, . . . , n} and edge set E(G). We assume that each edge e ∈ E(G)

has a positive weight w (e). The adjacency matrix A (G) = (ai,j) of G is the n × n

matrix in which ai,j = w (e) if there is an edge e joining i and j and ai,j = 0 otherwise.

Let D (G) be the diagonal matrix in which the diagonal entry di,i =
∑

ew (e) where

the sum is over all the edges e incident to the vertex i. The Laplacian matrix and the

signless Laplacian matrix of G are L (G) = D (G)−A (G) and Q (G) = D (G) +A (G),

respectively. The matrices L (G) , Q (G) and A (G) are real and symmetric. From

Geršgorin’s theorem, it follows that the eigenvalues of L (G) and Q (G) are nonnegative

real numbers. Since the rows of L (G) sum to 0, (0, e) is an eigenpair for L (G), where

e is the all ones vector. Fiedler [9] proved that G is a connected graph if and only
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if the second smallest eigenvalue of L (G) is positive. This eigenvalue is called the

algebraic connectivity of G. The signless Laplacian matrix has recently attracted the

attention of several researchers and some papers on this matrix are [2, 4, 5, 6, 7]. In

this paper, M (G) is one of the matrices L (G), Q (G) or A (G). If w (e) = 1 for all

e ∈ E(G) then G is an unweighted graph.

Let R be a connected weighted graph on r vertices. Let v1, v2, . . . , vr be the

vertices of R. As usual, vi ∼ vj means that vi and vj are adjacent. Let εi,j = εj,i be

the weight of the edge vivj if vi ∼ vj , and let εi,j = εj,i = 0 otherwise. Moreover, for

i = 1, 2, . . . , r, let εi =
∑

vj∼vi
εi,j . Let R{H} be the graph obtained from R and r

copies of a rooted weighted graph H by identifying the root of i−copy of H with vi.

Example 1.1. If R is the graph depicted in Figure 1.1 and H is the graph

Fig. 1.1. The cycle C4.

depicted in Figure 1.2 then R{H} is the graph depicted in Figure 1.3.

R r r
Root

Fig. 1.2. A modified Bethe tree, H, with four levels.

We recall that for a rooted graph the level of a vertex is one more than its distance

from the root vertex. Let B be a weighted generalized Bethe tree of k > 1 levels, that

is, B is a rooted tree in which vertices at the same level have the same degree and edges

connecting vertices at consecutive levels have the same weight. Consider a nonempty

subset ∆ ⊆ {1, 2, . . . , k − 1} and a family of graphs F = {Gj : j ∈ ∆}. For j ∈ ∆, we

assume that the edges of Gj have weight uj . Let B (F) be the graph obtained from B

and the graphs in F identifying each set of children of B at level k − j + 1 with the

vertices of Gj .
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R r r

Rrr

Rrr

R r r

Fig. 1.3. The graph R{H}.

Example 1.2. Let B (F) be the graph depicted in Figure 1.2. In this graph, B is

a generalized Bethe tree of k = 4 levels, ∆ = {1, 3} , F= {G1,G3}, where G1 is a star

of 4 vertices and G3 is a path of 2 vertices.

In this paper, we derive a general result on the spectrum of M (R{H}). Using

this result, we characterize the eigenvalues of the Laplacian matrix, including their

multiplicities, of the graph R{B (F)}; and also of the signless Laplacian and adja-

cency matrices whenever the subgraphs in F are regular. They are the eigenvalues

of symmetric tridiagonal matrices of order j, 1 ≤ j ≤ k. In particular, the Randić

eigenvalues are characterized.

Denote by σ (C) the multiset of eigenvalues of a square matrix C.

2. A result on the spectrum of M (R{H}). Let E be the matrix of order

n× n with 1 in the (n, n)−entry and zeros elsewhere. For i = 1, 2, . . . , r, let d (vi) be

the degree of vi as a vertex of R and let n be the order of H. Then R{H} has rn

vertices. We label the vertices of R{H} as follows: for i = 1, 2, . . . , r, using the labels

(i− 1)n + 1, (i− 1)n + 2, . . . , in, we label the vertices of the i − th copy of H from

the bottom to the vertex vi and, at each level, from the left to the right. With this

labeling, M (R{H}) is equal to




M (H) + aε1E sε1,2E · · · · · · sε1,rE

sε1,2E
. . .

. . . sε2,rE
...

. . .
. . .

. . .
...

...
. . . M (H) + aεi,r−1E sεr−1,rE

sε1,rE sε2,rE · · · sεr−1,rE M (H) + aεrE




,(2.1)
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where

s =

{
−1 if M is the Laplacian matrix,

1 if M is the signless Laplacian or adjacency matrix
(2.2)

and

a =

{
0 if M is the adjacency matrix,

1 if M is the Laplacian or signless Laplacian matrix.
(2.3)

In this paper, the identity matrix of appropriate order is denoted by I and Im
denotes the identity matrix of order m. Furthermore, |A| denotes the determinant of

the matrix A and AT is the transpose of A.

We recall that the Kronecker product [12] of two matrices A = (ai,j) and B =

(bi,j) of sizes m × m and n × n, respectively, is defined as the (mn) × (mn) matrix

A ⊗ B = (ai,jB) . Then, in particular, In ⊗ Im = Inm. Some basic properties of

the Kronecker product are (A⊗B)
T
= AT ⊗BT and (A⊗B) (C ⊗D) = AC ⊗ BD

for matrices of appropriate sizes. Moreover, if A and B are invertible matrices then

(A⊗B)
−1

= A−1 ⊗B−1.

Theorem 2.1. Let ρ1 (R) , ρ2 (R) , . . . , ρr (R) be the eigenvalues of M (R). Then

σ (M (R{H})) = ∪r
s=1σ (M (H) + ρs (R)E) .(2.4)

Proof. From (2.1), it follows

M (R{H}) = Ir ⊗M (H) +M (R)⊗ E.

Let

V =
[
v1 v2 · · · vr−1 vr

]

be an orthogonal matrix whose columns v1,v2, . . . ,vr are eigenvectors corresponding

to the eigenvalues ρ1 (R) , ρ2 (R) , . . . , ρr (R) , respectively. Then

(V ⊗ In)M (R{H})
(
V T ⊗ In

)
= (V ⊗ In) (Ir ⊗M (H) +M (R)⊗ E)

(
V T ⊗ In

)

= Ir ⊗M (H) +
(
VM (R)V T

)
⊗ E.

We have

(
VM (R)V T

)
⊗ E =




ρ1 (R)

ρ2 (R)
. . .

. . .

ρr (R)




⊗ E
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=




ρ1 (R)E

ρ2 (R)E
. . .

. . .

ρr (R)E




.

Therefore,

(V ⊗ In)M (R{H})
(
V T ⊗ In

)

=




M (H) + ρ1 (R)E

M (H) + ρ2 (R)E
. . .

. . .

M (H) + ρr (R)E




.

Since M (R{H}) and (V ⊗ In)M (R{H})
(
V T ⊗ In

)
are similar matrices, we con-

clude (2.4).

3. Application to a modified generalized Bethe tree with subgraphs at

some levels. Let B be a weighted generalized Bethe tree of k levels (k > 1). For

1 ≤ j ≤ k, nj and dj are the number and the degree of the vertices of B at the level

k − j + 1, respectively. Thus, dk is the degree of the root vertex (assumed greater

than 1), nk = 1, d1 = 1 and n1 is the number of pendant vertices. For 1 ≤ j ≤ k− 1,

let wj be the weight of the edges connecting the vertices of B at the level k − j + 1

with the vertices at the level k − j. We consider

δj =






wj if j = 1,

(dj − 1)wj−1 + wj if 2 ≤ j ≤ k − 1,

dkwk−1 if j = k.

We observe that δj is the sum of the weights of the edges of B incident with a vertex

at the level k− j+1 and if w1 = w2 = · · · = wk−1 = 1 then δj = dj for j = 1, 2, . . . , k.

Let mj =
nj

nj+1
for j = 1, 2, . . . , k − 1. Then

mj = dj+1 − 1 (1 ≤ j ≤ k − 2) ,

dk = nk−1 = mk−1.

Note that mj is the cardinality of each set of children at the level k − j + 1.

Let Mj = M (Gj) . From now on, we assume that µ1 (Mj) , . . . , µmj
(Mj) are the

eigenvalues of Mj and emj
is an eigenvector for µmj

(Mj) , that is,

Mjemj
= µmj

(Mj) emj
.(3.1)
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We observe that (3.1) holds when M (Gj) = L (Gj) and when M (Gj) = Q (Gj) or

M (Gj) = A (Gj) if Gj is a regular graph.

Assuming (3.1), in [11], we characterize the eigenvalues of the matrix M (B (F)) =































In2
⊗ S1 sIn2

⊗ w1em1

sIn2
⊗ w1e

T
m1

.
.
.

.
.
.

.
.
. Ink−1

⊗ Sk−2 sInk−1
⊗ wk−2emk−2

sInk−1
⊗ wk−2emk−2

Sk−1 swk−1emk−1

swk−1emk−1
aδk































in which, for j = 1, 2, . . . , k − 1,

Sj =

{
aδjImj

+M (Gj) if j ∈ ∆,

aδjImj
if j /∈ ∆,

(3.2)

with s and a as in (2.2) and (2.3) .

The results in [11] generalize several previous contributions (see [3, 8, 10]).

Definition 3.1. For j = 1, . . . , k, let Xj be the j×j leading principal submatrix
of the k × k symmetric tridiagonal matrix Xk =




















aδ1 + µm1
(M1) w1

√
m1

w1

√
m1 aδ2 + µm2

(M2)
. . .

. . .
. . . wk−2

√
mk−2

wk−2

√
mk−2 aδk−1 + µmk−1

(Mk−1) wk−1

√
mk−1

wk−1

√
mk−1 aδk





















.

Definition 3.2. For j = 1, 2, . . . , k − 1 and i = 1, . . . ,mj − 1, let Xj,i =




















aδ1 + µm1
(M1) w1

√
m1

w1

√
m1

. . .
. . .

. . .
. . . wj−2

√
mj−2

wj−2

√
mj−2 aδj−1 + µmj−1

(Mj−1) wj−1

√
mj−1

wj−1

√
mj−1 aδj + µi (Mj)





















.

Finally, let

Ω = {j : 1 ≤ j ≤ k − 1, nj > nj+1} .

We are ready to state the main result published in [11].

Theorem 3.3. [11]

σ (M (B (F))) = σ (Xk) ∪
(
∪j∈Ω−∆σ (Xj)

nj−nj+1

)
∪
(
∪j∈∆ ∪

mj−1
i=1 σ (Xj,i)

nj+1

)
,
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where σ (Xj)
nj−nj+1 and σ (Xj,i)

nj+1 mean that each eigenvalue in σ (Xj) and in

σ (Xj,i) must be considered with multiplicity nj − nj+1 and nj+1, respectively. Fur-

thermore, the multiplicities of equal eigenvalues obtained in different matrices (if any),

must be added.

An equivalent version of Theorem 3.3 is:

Theorem 3.4.

|λI −M (B (F))| = Dk (λ)
∏

j∈Ω−∆

(Dj (λ))
nj−nj+1

∏

j∈∆

mj−1∏

i=1

(Dj,i (λ))
nj+1 ,

where, for j = 1, 2, . . . , k and i = 1, 2, . . . ,mj − 1, Dj (λ) and Dj,i (λ) are the charac-

teristic polynomials of the matrices Xj and Xj,i, respectively.

Let Ã be the submatrix obtained from a square matrix A by deleting its last row

and its last column.

Moreover, from the proofs of Lemma 2.2, Theorem 2.5 and Lemma 2.7 in [11],

we obtain:

Lemma 3.5.

∣∣∣λI − ˜M (B (F))
∣∣∣ = Dk−1 (λ)

∏

j∈Ω−∆

(Dj (λ))
nj−nj+1

∏

j∈∆

mj−1∏

i=1

(Dj,i (λ))
nj+1 .

Definition 3.6. For s = 1, 2, . . . , r, let Y (s) =




















aδ1 + µm1
(M1) w1

√
m1

w1

√
m1 aδ2 + µm2

(M2)
. . .

. . .
. . . wk−2

√
mk−2

wk−2

√
mk−2 aδk−1 + µmk−1

(Mk−1) wk−1

√
mk−1

wk−1

√
mk−1 aδk + ρs (R)





















.

We are ready to apply Theorem 2.1 to H = B (F).

Theorem 3.7. If G = R{B (F)}, then

σ (M (G)) =
(

∪j∈Ω−∆σ (Xj)
r(nj−nj+1)

)

∪
(

∪j∈∆ ∪mj−1

i=1
σ (Xj,i)

rnj+1

)

∪ (∪r
s=1σ (Y (s))) ,

where σ (Xj)
r(nj−nj+1) and σ (Xj,i)

rnj+1 mean that each eigenvalue in σ (Xj) and in

σ (Xj,i) must be considered with multiplicity r (nj − nj+1) and rnj+1, respectively.

Furthermore, the multiplicities of equal eigenvalues obtained in different matrices (if

any), must be added.
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Proof. For H = B (F) , from Theorem 2.1, we have

σ (M (R{B (F)})) = ∪r
s=1σ (M (B (F)) + ρs (R)E) .(3.3)

Let 1 ≤ s ≤ r. By linearity on the last column, we have

|λI −M (B (F))− ρs (R)E| = |λI −M (B (F))| − ρs (R)
∣∣∣λI − ˜M (B (F))

∣∣∣ .

Using Theorem 3.4 and Lemma 3.5, |λI −M (B (F))− ρs (R)E| has the form

(Dk (λ)− ρs (R)Dk−1 (λ))
∏

j∈Ω−∆

(Dj (λ))
nj−nj+1

∏

j∈∆

mj−1∏

i=1

(Dj,i (λ))
nj+1 .

Now, by linearity on the last column, we have

|λI − Y (s)| = |λI −Xk| − ρs (R) |λI −Xk−1| = Dk (λ)− ρs (R)Dk−1 (λ) .

Therefore,

|λI −M (B (F))− ρs (R)E| = Y (s)
∏

j∈Ω−∆

(Dj (λ))
nj−nj+1

∏

j∈∆

mj−1∏

i=1

(Dj,i (λ))
nj+1 .

Applying (3.3) , |λI −M (R{B (F)})| becomes

r∏

s=1

Y (s)
∏

j∈Ω−∆

(Dj (λ))
r(nj−nj+1)

∏

j∈∆

mj−1∏

i=1

(Dj,i (λ))
rnj+1 .

4. On the Laplacian, signless Laplacian and adjacency eigenvalues of

R{B (F)}. For each j, let

µ1 (Gj) ≥ µ2 (Gj) ≥ · · · ≥ µmj−1 (Gj) ≥ µmj
(Gj) = 0,

and let

µ1 (R) ≥ µ2 (R) ≥ · · · ≥ µr (R) = 0

be the Laplacian eigenvalues of Gj and R, respectively.

Applying Theorem 3.7 to the determination of the Laplacian spectrum of G, we

obtain:

Theorem 4.1. The Laplacian spectrum of G = R{B (F)} is

σ (L (G)) =
(
∪j∈Ω−∆σ (Uj)

r(nj−nj+1)
)
∪
(
∪j∈∆ ∪

mj−1
i=1 σ (Uj,i)

rnj+1

)

∪ (∪r
s=1σ (W (s)))(4.1)
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where, for j = 1, . . . , k − 1, Uj is the j × j leading principal submatrix of the k × k

matrix Uk = Xk except for the diagonal entries which in Uk are

δ1, δ2, . . . , δk−1, δk;

and, for i = 1, 2, . . . ,mj − 1, Uj,i = Xj,i except for the diagonal entries which in Uj,i

are

δ1, δ2, . . . , δj−1, δj + µi (Gj) ;

and, for s = 1, 2, . . . , r, W (s) = Y (s) except for the diagonal entries which in W (s)

are

δ1, δ2, . . . , δk−1, δk + µs (R) .

The multiplicities of the eigenvalues of L (G) are considered as in Theorem 3.7.

Proof. It must be noted that, since M (G) = L (G), we have a = 1,

Sj =

{
δjImj

+ L (Gj) if j ∈ ∆,

δjImj
if j /∈ ∆

and Sk = δkIr + L (R) .

Therefore, L (Gj) emj
= 0 = 0emj

and the Laplacian spectrum of G is given by

Theorem 3.7, replacing the matrices Xj , Xj,i, and Y (s) by the matrices Uj , Uj,i and

W (s), respectively.

As above, let G = R{B (F)} . We apply now Theorem 3.7 to find the eigenvalues

of Q (G) and A (G) whenever each Gj is a regular graph of degree rj . For convenience,

the signless Laplacian eigenvalues and adjacency eigenvalues are denoted in increasing

order. Let

q1 (G) ≤ q2 (G) ≤ q3 (G) ≤ · · · ≤ qm−1 (G) ≤ qm (G)

and

λ1 (G) ≤ λ2 (G) ≤ · · · ≤ λm−1 (G) ≤ λm (G)

be the eigenvalues of the signless Laplacian matrix and adjacency matrix of any graph

G, respectively. If G is a regular graph of degree t and order m in which the edges

have a weight equal to u then Q (G) em = 2tuem and A (G) em = tuem. In this case,

we may write λm (G) = tu and qm (G) = 2tu.

Theorem 4.2. If for each j ∈ ∆ the graph Gj is a regular graph of degree rj and

rj = 0 whenever j /∈ ∆, then the signless Laplacian spectrum of G = R{B (F)} is

σ (Q (G)) =
(
∪j∈Ω−∆σ (Vj)

r(nj−nj+1)
)
∪
(
∪j∈∆ ∪

mj−1
i=1 σ (Vj,i)

rnj+1

)
∪(∪r

s=1σ (U (s)))
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where, for j = 1, 2, 3, . . . , k− 1, Vj is the j× j leading principal submatrix of Vk = Xk

except for the diagonal entries which in Vk are

δ1 + 2r1u1, δ2 + 2r2u2, . . . , δk−1 + 2rk−1uk−1, δk;

and, for i = 1, 2, . . . ,mj − 1, Vj,i = Xj,i except for the diagonal entries which in Vj,i

are

δ1 + 2r1u1, δ2 + 2r2u2, . . . , δj−1 + 2rj−1uj−1, δj + qi (Gj) ;

and, for s = 1, 2, . . . , r, U (s) = Y (s) except for the diagonal entries which in U (s)

are

δ1 + 2r1u1, δ2 + 2r2u2, . . . , δk−1 + 2rk−1uk−1, δk + qs (R) .

The multiplicities of the eigenvalues of Q (G) must be considered as in Theorem 3.7.

Proof. For M (G) = Q (G), we have a = 1,

Sj =

{
δjImj

+Q (Gj) ,

Q (Gj) = 0 if j /∈ ∆
and Sk = δkIr +Q (R) ,

Q (Gj) emj
= 2rjujemj

if j ∈ ∆ and rj = 0 for j /∈ ∆. From Theorem 3.7, we obtain

that the set of eigenvalues of Q (G) is given replacing the matrices Xj , Xj,i, and Ys

by the matrices Vj , Vj,i and U (s), respectively.

Theorem 4.3. If for each j ∈ ∆ the graph Gj is a regular graph of degree rj and

rj = 0 whenever j /∈ ∆, then the adjacency spectrum of G = R{B (F)} is

σ (A (G)) =
(
∪j∈Ω−∆σ (Tj)

r(nj−nj+1)
)
∪
(
∪j∈∆ ∪

mj−1
i=1 σ (Tj,i)

rnj+1

)
∪(∪r

s=1σ (R (s)))

where, for j = 1, 2, 3, . . . , k− 1, Tj is the j× j leading principal submatrix of Tk = Xk

except for the diagonal entries which in Tk are

r1u1, r2u2, . . . , rk−1uk−1, 0;

and, for i = 1, 2, . . . ,mj − 1, Tj,i = Xj,i except for the diagonal entries which in Tj,i

are

r1u1, r2u2, . . . , rj−1uj−1, λi (Gj) ;

and, for s = 1, 2, . . . , r, R (s) = Y (s) except for the diagonal entries which in R (s)

are

r1u1, r2u2, . . . , rk−1uk−1, λs (R) .

The multiplicities of the eigenvalues of Q (G) must be considered as in Theorem 3.7.
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Proof. For M (G) = A (G), we have a = 0,

Sj =

{
A (Gj) ,

A (Gj) = 0 if j /∈ ∆
and Sk = A (R) ,

and A (Gj) emj
= rjemj

if j ∈ ∆ and rj = 0 for j /∈ ∆. Then, from Theorem 3.7, we

conclude that the set of eigenvalues of A (G) is obtained replacing the matrices Xj ,

Xj,i, and Y (s) by the matrices Tj , Tj,i and R(s), respectively.

5. On the Randić eigenvalues of R{B (F)}. Let H be a simple connected

graph with n vertices v1, v2, . . . , vn. Denote by d (v1) , d (v2) , . . . , d (vn) the degrees

of v1, v2, . . . , vn, respectively. The Randić matrix of H is the square matrix of order

n whose (i, j)−entry is equal to

1√
d (vi) d (vj)

if vi and vj of H are connected and 0 otherwise [1]. The Randić eigenvalues of H are

the eigenvalues of the Randić matrix of H. The purpose of this section is to determine

the Randić eigenvalues of G = R{B (F)} when each Gj is regular of degree rj and R

is a connected regular graph of degree p on r vertices v1, v2, . . . , vr.

Keep in mind that rj = 0 if j /∈ ∆. As usual vi ∼ vj means that vi and vj are

adjacent. Observe that, for i = 1, 2, . . . , r, the degree of vk as a vertex of R{B (F)} is

dk+p. The Randić matrix of R{B (F)} is the adjacency matrix of the weighted graph

in which the edges joining the vertices at the level j + 1 with the vertices at the level

j of B (F) have weights

wk−j =
1√

(dk−j+1 + rk−j+1) (dk−j + rk−j)
(2 ≤ j ≤ k − 1) ,(5.1)

wk−1 =
1√

(dk + p) (dk−1 + rk−1)
,

the edges of graph Gj have weights

uj =

{
1

dj+rj
if j ∈ ∆,

0 if j /∈ ∆,
(5.2)

and the weights of the edge vivl of R are

εi,l = εl,i =

{
1

p+dk
if vi ∼ vl,

0 otherwise.
(5.3)

Theorem 5.1. If for each j ∈ ∆ the graph Gj is a regular graph of degree rj and

the graph R is a regular graph of degree p then the Randić spectrum of G = R{B (F)}
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is
(
∪j∈Ω−∆σ (Tj)

r(nj−nj+1)
)
∪
(
∪j∈∆ ∪

mj−1
i=1 σ (Tj,i)

rnj+1

)
∪ (∪r

s=1σ (R (s)))

in which the matrices Tj , Tj,i and R (s) are those of Theorem 4.3 with the weights

indicated in (5.1) , (5.2) and (5.3) . The eigenvalues multiplicities must be considered

as in Theorem 3.7.
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least eigenvalue of the signless Laplacian of a non-bipartite graph. Linear Algebra Appl.,

429:2770–2780, 2008.

[3] D.M. Cardoso, E.A. Martins, M. Robbiano, and V. Trevisan. Computing the Laplacian spectra

of some graphs. Discrete Appl. Math., 160:2645–2654, 2012.
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