HARMONIC RECONSTRUCTION SYSTEMS*

PATRICIA MARIELA MORILLAS ${ }^{\dagger}$

Abstract

This paper considers group reconstruction systems (GRS's), for finite dimensional real or complex Hilbert spaces \mathcal{H}, that are associated with unitary representations of finite abelian groups. The relation between these GRS's and the generalized Fourier matrix is established. A special type of Parseval GRS, called harmonic reconstruction system (HRS), is defined. It is shown that there exist HRS's that present maximal robustness to erasures given characterizations of certain families.

Key words. Reconstruction systems, Fusion frames, g-Frames, Maximal robustness to erasures, Group matrix, Generalized Fourier matrix.

AMS subject classifications. 42C15, 15B99, 20K15, 20C15, 15A03.

1. Introduction. Let \mathcal{H}, \mathcal{K} be finite dimensional Hilbert spaces over $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$. Let $L(\mathcal{H}, \mathcal{K})$ be the space of linear transformations from \mathcal{H} to \mathcal{K}. Given $T \in L(\mathcal{H}, \mathcal{K})$, let T^{*} denote the adjoint of $T . G L(\mathcal{H})$ and $U(\mathcal{H})$ denote the group of invertible and unitary operators in $L(\mathcal{H})=L(\mathcal{H}, \mathcal{H})$, respectively.

Let $m, n, d \in \mathbb{N}$ and $\mathbf{n}=\left(n_{1}, \ldots, n_{m}\right) \in \mathbb{N}^{m}$. In the sequel, \mathcal{H} will be a finite dimensional Hilbert space over \mathbb{F} of dimension d.

Definition 1.1. A sequence $\left(T_{i}\right)_{i=1}^{m}$ where $T_{i} \in L\left(\mathbb{F}^{n_{i}}, \mathcal{H}\right)$ is an $(m, \mathbf{n}, \mathcal{H})$ reconstruction system (RS) if

$$
S=\sum_{i=1}^{m} T_{i} T_{i}^{*} \in G L(\mathcal{H})
$$

S is called the $R S$ operator of $\left(T_{i}\right)_{i=1}^{m}$. If $S=\alpha I_{\mathcal{H}}, \alpha>0$, we say that $\left(T_{i}\right)_{i=1}^{m}$ is a tight $R S$, and it is a Parseval $R S$ if $S=I_{\mathcal{H}}$. If $n_{1}=\cdots=n_{m}=n$, we write (m, n, \mathcal{H})-RS.

The set of $(m, \mathbf{n}, \mathcal{H})$-RS's will be denoted by $\mathcal{R S}(m, \mathbf{n}, \mathcal{H})$. The concept of (m, n, \mathcal{H})-RS (with \mathbb{F}^{n} replaced by any Hilbert space \mathcal{K} of dimension n) was intro-

[^0]duced in [12] and $\left(m, \mathbf{n}, \mathbb{F}^{d}\right)$-RS's are considered in [13]. RS's are a generalization of frames [3, 6, 10] and fusion frames (or frames of subspaces) [4, 5]. Concretely, an $(m, 1, \mathcal{H})$-RS is a frame and projective RS's can be viewed as fusion frames (see Remark 2.3 and Remark 2.4 in [14]). In [16] RS's for not necessarily finite dimensional Hilbert spaces are called g-frames and are shown to be equivalent to stable space splittings of Hilbert spaces [15]. g-frames with $S=I_{\mathcal{H}}$ are considered in [2] under the name of coordinate operators.

In the sequel, we suppose that none of the T_{i} is a null operator. Suppose that $\left(T_{i}\right)_{i=1}^{m} \in \mathcal{R} \mathcal{S}(m, n, \mathcal{H})$. In applications, an element $f \in \mathcal{H}$ (e.g., a signal) is converted into the data vectors $T_{i}^{*} f, i=1, \ldots, m$. These vectors are transmitted and f is reconstructed by the receiver using

$$
f=\sum_{i=1}^{m} S^{-1} T_{i} T_{i}^{*} f
$$

Sometimes some of the data vectors are lost, and it is necessary to reconstruct f with the partial information at hand. For this reason, it is important for $\left(T_{i}\right)_{i=1}^{m}$ to remain a RS after the erasure of certain operators T_{i}. If $\left(T_{i}\right)_{i=1}^{m}$ is an RS after the erasure of any $\left\lfloor\frac{n m-d}{m}\right\rfloor$ operators T_{i}, we say that $\left(T_{i}\right)_{i=1}^{m}$ is maximal robust to erasures (MRE). If we consider frames, i.e., $n=1$, it is well known that some harmonic frames are MRE 9, 18].

In [14], two types of RS's associated with unitary representations of finite groups, called group reconstruction systems (GRS's) are studied. Here we consider the abelian case, i.e., GRS's associated with unitary representations of finite abelian groups. In Section 2, we study the relation between these GRS's and the generalized Fourier matrix. We present some results about diagonalization of group matrices (Theorem 2.7 and Theorem (2.9) with the aim to characterize the Gram matrix of a GRS in terms of the generalized Fourier matrix (Corollary 2.8 and Corollary 2.10). As a consequence, we obtain a characterization of these GRS's (Theorem 2.13 and Theorem 2.14).

Based on the characterization for GRS's obtained in Section 2, we define in Section 3 a special type of Parseval GRS, called harmonic reconstruction system (HRS). We characterize all MRE HRS's obtained by selecting d rows from a generalized Fourier matrix (Theorem 3.3). Then we characterize those with $\left\lceil\frac{d}{m}\right\rceil=1$ (Corollary 3.4), $\left\lceil\frac{d}{m}\right\rceil=2$ (Corollary 3.7) and n prime (Corollary 3.12). We present some examples that illustrate these characterizations.

We finish this Section introducing some notation. $\mathbb{F}^{d \times n}$ denotes the set of matrices of order $d \times n$ with entries in \mathbb{F}. If $M \in \mathbb{F}^{d \times n}$, then M^{*} denotes the conjugate transpose of M. The elements of \mathbb{F}^{n} will be considered as column vectors, i.e., we identify \mathbb{F}^{n} with $\mathbb{F}^{n \times 1}$, and if $f \in \mathbb{F}^{n}$ then $f(i)$ denotes the i th component of f. Given two elements $f, g \in \mathbb{F}^{n}$, we consider the product $\langle f, g\rangle_{\mathbb{F}^{n}}=g^{*} f$. The standard basis of \mathbb{F}^{n}
will be denoted by $\left\{\delta_{j}^{n}\right\}_{j=1}^{n}$. Let $M \in \mathbb{F}^{d \times n}$. We denote the entry i, j, the i th row and the j th column of M with $M(i, j), M(i,:)$ and $M(:, j)$, respectively. We also denote the submatrix of M consisting of the rows (columns) $M(i,:)$ with $i \in I(M(:, j)$ with $j \in J)$ with $M(I,:)(M(:, J))$.

Given $A \in \mathbb{F}^{m \times n}, B \in \mathbb{F}^{p \times q}$ we consider the tensor product

$$
A \otimes B=\left[\begin{array}{ccc}
A(1,1) B & \cdots & A(1, n) B \\
\vdots & \ddots & \vdots \\
A(m, 1) B & \cdots & A(m, n) B
\end{array}\right] \in \mathbb{F}^{m p \times n q}
$$

2. Group reconstruction systems and the generalized Fourier matrix. Let \mathcal{G} be a group of order n. We recall that a (unitary) representation of \mathcal{G} is a group homomorphism $\rho: \mathcal{G} \rightarrow U(\mathcal{H})$.

Definition 2.1. $\left(T_{g}\right)_{g \in \mathcal{G}} \in \mathcal{R} \mathcal{S}(n, m, \mathcal{H})$ is a $(\mathcal{G}, m, \mathcal{H})$-RS if there exists a representation $\rho: \mathcal{G} \rightarrow U(\mathcal{H})$ such that $\rho(g) T_{h}=T_{g h}$, for each $g, h \in \mathcal{G}$.

Definition 2.2. $\quad\left(T_{i}\right)_{i=1}^{m} \in \mathcal{R} \mathcal{S}(m, n, \mathcal{H})$ is an $(m, \mathcal{G}, \mathcal{H})$-RS if there exists a representation $\rho: \mathcal{G} \rightarrow U(\mathcal{H})$ such that $\rho(g) T_{i} \delta_{h}^{n}=T_{i} \delta_{g h}^{n}$, for each $i=1, \ldots, m$ and $g, h \in \mathcal{G}$.

Any of the RS's defined previously is called a group reconstruction system (GRS). The set of $(\mathcal{G}, m, \mathcal{H})$-RS's will be denoted by $\mathcal{R} \mathcal{S}(\mathcal{G}, m, \mathcal{H})$ and the set of $(m, \mathcal{G}, \mathcal{H})$ RS's will be denoted by $\mathcal{R} \mathcal{S}(m, \mathcal{G}, \mathcal{H})$.

For properties of RS's and GRS's and their relation with frames and fusion frames (or frames of subspaces), we refer the reader to [14].

Definition 2.3. $A \in \mathbb{F}^{n \times n}$ is a \mathcal{G}-matrix if there exists a function $\nu: \mathcal{G} \rightarrow \mathbb{F}$ such that $A(g, h)=\nu\left(g^{-1} h\right), g, h \in \mathcal{G}$.

Definition 2.4. By a block matrix of type (n, m) is meant an $n m \times n m$ block matrix A with $n \times n$ blocks in $\mathbb{F}^{m \times m}$.

The sets of block matrices of type (n, m) will be denoted with $\mathcal{B}\left(\mathbb{F}^{n m \times n m}\right)$ and if $A \in \mathcal{B}\left(\mathbb{F}^{n m \times n m}\right)$ we denote the block (k, l) of A with $A_{k, l}$.

Definition 2.5. $A \in \mathcal{B}\left(\mathbb{F}^{n m \times n m}\right)$ is a block \mathcal{G}-matrix of type (n, m) if there exists a function $\nu: \mathcal{G} \rightarrow \mathbb{F}^{m \times m}$ such that $A_{g, h}=\nu\left(g^{-1} h\right), g, h \in \mathcal{G}$.

Definition 2.6. $A \in \mathcal{B}\left(\mathbb{F}^{m n \times m n}\right)$ is a block matrix of type (m, n) with \mathcal{G}-blocks if there exist functions $\nu_{i, j}: \mathcal{G} \rightarrow \mathbb{F}$ such that $A_{i, j}(g, h)=\nu_{i, j}\left(g^{-1} h\right), i, j=1, \ldots, m$, $g, h \in \mathcal{G}$.

The set of block \mathcal{G}-matrices of type (n, m) will be denoted with $\mathcal{B} \mathcal{G}\left(\mathbb{F}^{n m \times n m}\right)$
and the set of block matrices of type (m, n) with \mathcal{G}-blocks will be denoted with $\mathcal{G B}\left(\mathbb{F}^{m n \times m n}\right)$. To express the relation between A and ν or $\left\{\nu_{i, j}\right\}_{i, j=1}^{m}$ described in the above definitions we write $A(\nu)$ or $A\left(\left\{\nu_{i, j}\right\}_{i, j=1}^{m}\right)$, respectively. If \mathcal{G} is a cyclic group then $A \in B \mathcal{G}\left(\mathbb{F}^{n m \times n m}\right)$ is a block circulant matrix of type (n, m) and $A \in$ $\mathcal{G B}\left(\mathbb{F}^{m n \times m n}\right)$ is a block matrix of type (m, n) with circulant blocks (see [7]). The notation $\mathcal{B G}$ and $\mathcal{G B}$ used here is analogous to the notation $\mathcal{B C}$ and $\mathcal{C B}$ used in [7 in the circulant case.

In the sequel, we suppose that \mathcal{G} is abelian.
It is well known that \mathcal{G} is isomorphic to a direct product of cyclic groups $\mathbb{Z}_{n_{1}} \times$ $\cdots \times \mathbb{Z}_{n_{r}}$ where $\mathbb{Z}_{n_{k}}$ denotes as usual the cyclic group of integers modulo n_{k} and $n=\prod_{k=1}^{r} n_{k}$ (see, e.g., [1]). Given $g \in \mathcal{G}$, we denote its image under this isomorphism with $\left(g_{1}, \ldots, g_{r}\right) \in \mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{r}}$. In $\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{r}}$ is defined the componentwise addition modulo $n_{k}, k=1, \ldots, r$. The generalized Fourier matrix of order n over \mathcal{G} will be denoted with $\mathbf{F}_{\mathcal{G}}$ and it is given by $\mathbf{F}_{\mathcal{G}}(g, h)=\frac{1}{\sqrt{n}}\langle g, h\rangle$ where $\langle g, h\rangle=\prod_{k=1}^{r} e^{-2 \pi i \frac{g_{k} h_{k}}{n_{k}}}$ with $g_{k} h_{k}$ taken modulo n_{k}. In particular, if \mathcal{G} is cyclic, we have the usual Fourier matrix of order n denoted with \mathbf{F}_{n} and given by $\mathbf{F}_{n}(k, l)=$ $\frac{1}{\sqrt{n}} e^{-\frac{2 \pi i}{n}(k-1)(l-1)}$. Clearly, $\mathbf{F}_{\mathcal{G}}$ is a unitary \mathcal{G}-matrix and $\mathbf{F}_{\mathcal{G}}=\mathbf{F}_{n_{1}} \otimes \cdots \otimes \mathbf{F}_{n_{r}}$. Recall that the characters of \mathcal{G} are the group homomorphisms $\xi: \mathcal{G} \rightarrow \mathbb{C} \backslash\{0\}$ where $\mathbb{C} \backslash\{0\}$ is a group under multiplication. Denoting with $\left\{\xi_{j}\right\}_{j=1}^{n}$ the set of characters of \mathcal{G}, then $\left(\xi_{j}(g)\right)_{j=1, \ldots, n, g \in \mathcal{G}}=n \mathbf{F}_{\mathcal{G}}$ is called the character table of \mathcal{G}.

Given $g \in \mathcal{G}$, let

$$
\Omega_{\mathcal{G}, g}(f, h)= \begin{cases}\langle g, h\rangle, & f=h \\ 0, & \text { otherwise }\end{cases}
$$

and $\nu_{g}: \mathcal{G} \rightarrow \mathbb{C}$ defined by

$$
\nu_{g}(h)= \begin{cases}1, & h=g \\ 0, & \text { otherwise }\end{cases}
$$

Let $C\left(\nu_{g}\right)$ be the \mathcal{G}-matrix associated with ν_{g} and $A(\nu)$ any \mathcal{G}-matrix, then

$$
\begin{equation*}
A(\nu)=\sum_{g \in \mathcal{G}} \nu(g) C\left(\nu_{g}\right) . \tag{2.1}
\end{equation*}
$$

We have

$$
\begin{equation*}
C\left(\nu_{g}\right)=\mathbf{F}_{\mathcal{G}}^{*} \Omega_{\mathcal{G}, g}^{*} \mathbf{F}_{\mathcal{G}} . \tag{2.2}
\end{equation*}
$$

By (2.1) and (2.2),

$$
\begin{equation*}
A(\nu)=\mathbf{F}_{\mathcal{G}}^{*} \Omega_{\mathcal{G}, \nu}^{*} \mathbf{F}_{\mathcal{G}}, \tag{2.3}
\end{equation*}
$$

ELA

where

$$
\Omega_{\mathcal{G}, \nu}=\sum_{g \in \mathcal{G}} \nu(g) \Omega_{\mathcal{G}, g}= \begin{cases}\sum_{g \in \mathcal{G}} \nu(g)\langle g, h\rangle, & f=h ; \\ 0, & \text { otherwise }\end{cases}
$$

Theorem 2.7 and Theorem 2.9 below give a generalization of (2.3) for the elements in $\mathcal{B G}\left(\mathbb{F}^{n m \times n m}\right)$ and $\mathcal{G B}\left(\mathbb{F}^{m n \times m n}\right)$ respectively.

Theorem 2.7. $A(\nu) \in \mathcal{B G}\left(\mathbb{F}^{n m \times n m}\right)$ if and only if

$$
\begin{equation*}
A(\nu)=\left(\mathbf{F}_{\mathcal{G}} \otimes \mathbf{F}_{m}\right)^{*}\left(I_{\mathcal{G}} \otimes \mathbf{F}_{m}\right) \operatorname{diag}\left(A_{g}\right)_{g \in \mathcal{G}}\left(I_{\mathcal{G}} \otimes \mathbf{F}_{m}\right)^{*}\left(\mathbf{F}_{\mathcal{G}} \otimes \mathbf{F}_{m}\right) \tag{2.4}
\end{equation*}
$$

where $A_{g}=\sum_{h \in \mathcal{G}}\langle-h, g\rangle A_{1, h}$.
Proof. If $A(\nu) \in \mathcal{B G}\left(\mathbb{F}^{n m \times n m}\right)$ then $A(\nu)=\sum_{g \in \mathcal{G}} C\left(\nu_{g}\right) \otimes A_{1, g}$. Therefore, from (2.2),

$$
A(\nu)=\left(\mathbf{F}_{\mathcal{G}}^{*} \otimes \mathbf{F}_{m}^{*}\right)\left(\sum_{g \in \mathcal{G}} \Omega_{\mathcal{G}, g}^{*} \otimes\left(\mathbf{F}_{m} A_{1, g} \mathbf{F}_{m}^{*}\right)\right)\left(\mathbf{F}_{\mathcal{G}} \otimes \mathbf{F}_{m}\right)
$$

We have

$$
\left(\sum_{g \in \mathcal{G}} \Omega_{\mathcal{G}, g}^{*} \otimes\left(\mathbf{F}_{m} A_{1, g} \mathbf{F}_{m}^{*}\right)\right)_{f, h}= \begin{cases}\mathbf{F}_{m}\left(\sum_{g \in \mathcal{G}}\langle-g, h\rangle A_{1, g}\right) \mathbf{F}_{m}^{*}, & f=h ; \\ 0, & \text { otherwise }\end{cases}
$$

Thus, (2.4) holds. Now suppose that (2.4) holds. So,

$$
A=\left(\mathbf{F}_{\mathcal{G}} \otimes \mathbf{F}_{m}\right)^{*} \operatorname{diag}\left(B_{g}\right)_{g \in \mathcal{G}}\left(\mathbf{F}_{\mathcal{G}} \otimes \mathbf{F}_{m}\right)
$$

for certain matrices $B_{g} \in \mathbb{F}^{m \times m}$. Thus,

$$
A_{g, h}=\sum_{f \in \mathcal{G}} \mathbf{F}_{\mathcal{G}}^{*}(g, f) \mathbf{F}_{m} B_{f} \mathbf{F}_{\mathcal{G}}(f, h) \mathbf{F}_{m}
$$

Since $\mathbf{F}_{\mathcal{G}}^{*}\left(g h_{1}, f\right) \mathbf{F}_{\mathcal{G}}\left(f, g h_{2}\right)=\mathbf{F}_{\mathcal{G}}^{*}\left(h_{1}, f\right) \mathbf{F}_{\mathcal{G}}\left(f, h_{2}\right)$, then $A_{g h_{1}, g h_{2}}=A_{h_{1}, h_{2}}$, and by Lemma 4.4 in [14], $A \in \mathcal{B G}\left(\mathbb{F}^{n m \times n m}\right)$. \square

Associated with $\left(T_{i}\right)_{i=1}^{m}$ where $T_{i} \in L\left(\mathbb{F}^{n_{i}}, \mathcal{H}\right)$, is the Gramian operator

$$
G=T^{*} T: \bigoplus_{i=1}^{m} \mathbb{F}^{n_{i}} \rightarrow \bigoplus_{i=1}^{m} \mathbb{F}^{n_{i}}, G\left(\left(x_{i}\right)_{i=1}^{m}\right)=\left(T_{i}^{*}\left(\sum_{j=1}^{m} T_{j} x_{j}\right)\right)_{i=1}^{m}
$$

In matrix form, $G \in \mathbb{F}^{\operatorname{tr}(\mathbf{n}) \times \operatorname{tr}(\mathbf{n})}$ is a block matrix with blocks $T_{i}^{*} T_{j} \in \mathbb{F}^{n_{i} \times n_{j}}$.
Corollary 2.8. $\left(T_{g}\right)_{g \in \mathcal{G}} \in \mathcal{R} \mathcal{S}(\mathcal{G}, m, \mathcal{H})$ if and only if G can be written as in (2.4) and $\operatorname{rank}(G)=d$.

Proof. It follows from Theorem 4.5 in [14] and Theorem[2.7. \quad]
THEOREM 2.9. $A\left(\left\{\nu_{k, l}\right\}_{k, l=1}^{m}\right) \in \mathcal{G B}\left(\mathbb{F}^{m n \times m n}\right)$ if and only if

$$
\begin{equation*}
A=\left(\mathbf{F}_{m} \otimes \mathbf{F}_{\mathcal{G}}\right)^{*}\left(\mathbf{F}_{m} \otimes I_{\mathcal{G}}\right)\left(\Omega_{\mathcal{G}, \nu_{k, l}}^{*}\right)_{k, l=1}^{m}\left(\mathbf{F}_{m} \otimes I_{\mathcal{G}}\right)^{*}\left(\mathbf{F}_{m} \otimes \mathbf{F}_{\mathcal{G}}\right) . \tag{2.5}
\end{equation*}
$$

Proof. By (2.3), if $A\left(\left\{\nu_{k, l}\right\}_{k, l=1}^{m}\right) \in \mathcal{G B}\left(\mathbb{F}^{m n \times m n}\right)$ then $A_{k, l}=\mathbf{F}_{\mathcal{G}}^{*} \Omega_{\mathcal{G}, \nu_{k, l}}^{*} \mathbf{F}_{\mathcal{G}}$. Thus, (2.5) holds. Now suppose that (2.5) holds. Then

$$
A=\left(\mathbf{F}_{m} \otimes \mathbf{F}_{\mathcal{G}}\right)^{*}\left(\Lambda_{k, l}\right)_{k, l=1}^{m}\left(\mathbf{F}_{m} \otimes \mathbf{F}_{\mathcal{G}}\right)
$$

where $\Lambda_{k, l}(f, g)=0$ if $f \neq g$. Thus,

$$
\begin{aligned}
& A_{k, l}=\sum_{r_{1}, r_{2}=1}^{m} \mathbf{F}_{m}^{*}\left(k, r_{1}\right) \mathbf{F}_{\mathcal{G}}^{*} \Lambda_{r_{1}, r_{2}} \mathbf{F}_{m}\left(r_{2}, l\right) \mathbf{F}_{\mathcal{G}} \\
&\left\langle\mathbf{F}_{\mathcal{G}}^{*} \Lambda_{r_{1}, r_{2}} \mathbf{F}_{\mathcal{G}} \delta_{g h_{2}}, \delta_{g h_{1}}\right\rangle_{\mathbb{F}^{n}}=\left\langle\Lambda_{r_{1}, r_{2}} \mathbf{F}_{\mathcal{G}} \delta_{g h_{2}}, \mathbf{F}_{\mathcal{G}} \delta_{g h_{1}}\right\rangle_{\mathbb{F}^{n}} \\
&=\sum_{f \in \mathcal{G}} \Lambda_{r_{1}, r_{2}}(f, f) \mathbf{F}_{\mathcal{G}}\left(f, g h_{2}\right) \overline{\mathbf{F}_{\mathcal{G}}\left(f, g h_{1}\right)} \\
&=\sum_{f \in \mathcal{G}} \Lambda_{r_{1}, r_{2}}(f, f) \mathbf{F}_{\mathcal{G}}\left(f, h_{2}\right) \overline{\mathbf{F}_{\mathcal{G}}\left(f, h_{1}\right)} \\
&=\left\langle\mathbf{F}_{\mathcal{G}}^{*} \Lambda_{r_{1}, r_{2}} \mathbf{F}_{\mathcal{G}} \delta_{h_{2}}, \delta_{h_{1}}\right\rangle_{\mathbb{F}^{n}}
\end{aligned}
$$

Therefore, $A_{k, l}\left(g h_{1}, g h_{2}\right)=A_{k, l}\left(h_{1}, h_{2}\right)$, for each $g, h_{1}, h_{2} \in \mathcal{G}$, and, by Lemma 4.9 in [14], $A \in \mathcal{G B}\left(\mathbb{F}^{m n \times m n}\right)$.

Corollary 2.10. $\left(T_{k}\right)_{k=1}^{m} \in \mathcal{R S}(m, \mathcal{G}, \mathcal{H})$ if and only if G can be written as in (2.5) and $\operatorname{rank}(G)=d$.

Proof. It follows from Theorem 4.10 in [14] and Theorem [2.9] \quad]
Remark 2.11. We can replace \mathbf{F}_{m} in (2.4) and (2.5) by any other unitary matrix in $\mathbb{F}^{m \times m}$.

REmARK 2.12. Theorem 2.7 and Theorem 2.9 are a generalization of Theorem 5.6.4 and Theorem 5.7.3 in [7, respectively.

THEOREM 2.13. Let $\left(T_{g}\right)_{g \in \mathcal{G}} \in \mathcal{R S}(n, m, \mathcal{H}) .\left(T_{g}\right)_{g \in \mathcal{G}} \in \mathcal{R} \mathcal{S}(\mathcal{G}, m, \mathcal{H})$ if and only if there exist $Q: \mathbb{F}^{d} \rightarrow \mathcal{H}$ unitary, $A \in \mathbb{F}^{d \times m}$ and unitary matrices $D_{g} \in \mathbb{F}^{d \times d}$ obtained from $\Omega_{\mathcal{G}, g} \otimes I_{m}$, deleting $n m-d$ rows and columns, such that $T_{g}=Q D_{g} A$ for each $g \in \mathcal{G}$.

Proof. Let $\left(T_{g}\right)_{g \in \mathcal{G}} \in \mathcal{R} \mathcal{S}(n, m, \mathcal{H})$.

Suppose that $T_{g}=Q D_{g} A$, for each $g \in \mathcal{G}$, where Q, D_{g} and A are as in the enunciation. Since

$$
\begin{aligned}
G_{g h_{1}, g h_{2}} & =T_{g h_{1}}^{*} T_{g h_{2}}=A^{*} D_{g h_{1}}^{*} Q^{*} Q D_{g h_{2}} A \\
& =A^{*} D_{g h_{1}}^{*} D_{g h_{2}} A=A^{*} D_{h_{1}}^{*} D_{h_{2}} A=T_{h_{1}}^{*} T_{h_{2}}=G_{h_{1}, h_{2}}
\end{aligned}
$$

by Lemma 4.4 in [14], $G \in \mathcal{B} \mathcal{G}\left(\mathbb{F}^{n m \times n m}\right)$. Thus, by Theorem 4.5 in $14,\left(T_{g}\right)_{g \in \mathcal{G}} \in$ $\mathcal{R S}(\mathcal{G}, m, \mathcal{H})$.

Suppose now that $\left(T_{g}\right)_{g \in \mathcal{G}} \in \mathcal{R} \mathcal{S}(\mathcal{G}, m, \mathcal{H})$. By Corollary 2.8, G can be written as in (2.4). Then

$$
\begin{equation*}
G=\left(\mathbf{F}_{\mathcal{G}} \otimes \mathbf{F}_{m}\right)^{*} \operatorname{diag}\left(B_{g}\right)_{g \in \mathcal{G}}\left(\mathbf{F}_{\mathcal{G}} \otimes \mathbf{F}_{m}\right) \tag{2.6}
\end{equation*}
$$

for certain matrices $B_{g} \in \mathbb{F}^{m \times m}$. Since G is Hermitian and positive semidefinite, each B_{g} is Hermitian and positive semidefinite. Thus, we can write $B_{g}=U_{g}^{*} \Lambda_{g}^{*} \Lambda_{g} U_{g}$ where $U_{g}, \Lambda_{g} \in \mathbb{F}^{m \times m}, U_{g}$ is unitary and Λ_{g} is diagonal. Thus,

$$
G=\left(\mathbf{F}_{\mathcal{G}} \otimes \mathbf{F}_{m}\right)^{*} \operatorname{diag}\left(U_{g}^{*} \Lambda_{g}^{*}\right)_{g \in \mathcal{G}} \operatorname{diag}\left(\Lambda_{g} U_{g}\right)_{g \in \mathcal{G}}\left(\mathbf{F}_{\mathcal{G}} \otimes \mathbf{F}_{m}\right)
$$

We have

$$
\operatorname{diag}\left(\Lambda_{g} U_{g}\right)_{g \in \mathcal{G}}\left(\mathbf{F}_{\mathcal{G}} \otimes \mathbf{F}_{m}\right)=\left(\Omega_{\mathcal{G}, h}(g, g) \mathbf{F}_{\mathcal{G}}(g, 1) \Lambda_{g} U_{g} \mathbf{F}_{m}\right)_{g, h \in \mathcal{G}}
$$

Taking into account that $\operatorname{rank}(G)=d$, let $A \in \mathbb{F}^{d \times m}$ be the matrix obtained from

$$
\left(\mathbf{F}_{\mathcal{G}}(g, 1) \Lambda_{g} U_{g} \mathbf{F}_{m}\right)_{g \in \mathcal{G}} \in \mathbb{F}^{n m \times m}
$$

deleting the $n m-d$ null rows corresponding to the null eigenvalues in $\operatorname{diag}\left(\Lambda_{g}\right)_{g \in \mathcal{G}}$ and let $D_{g} \in \mathbb{F}^{d \times d}$ be the diagonal matrix obtained from

$$
\Omega_{\mathcal{G}, g} \otimes I_{m} \in \mathbb{F}^{n m \times n m}
$$

deleting accordingly $n m-d$ rows and columns. Since $\left\{D_{g} A\right\}_{g \in \mathcal{G}} \in \mathcal{R S}\left(n, m, \mathbb{F}^{d}\right)$ has Gram matrix G, by Lemma 2.5 in [14], there exists $Q: \mathbb{F}^{d} \rightarrow \mathcal{H}$ unitary such that $T_{g}=Q D_{g} A$.

Theorem 2.14. Let $\left(T_{i}\right)_{i=1}^{m} \in \mathcal{R S}(m, n, \mathcal{H}) .\left(T_{i}\right)_{i=1}^{m} \in \mathcal{R S}(m, \mathcal{G}, \mathcal{H})$ if and only if there exist $Q: \mathbb{F}^{d} \rightarrow \mathcal{H}$ unitary, $f_{i} \in \mathbb{F}^{d}, i=1, \ldots, m$, and unitary matrices $D_{g} \in \mathbb{F}^{d \times d}$ obtained from $\Omega_{\mathcal{G}, g} \otimes I_{m} \in \mathbb{F}^{n m \times n m}$ deleting $n m-d$ rows and columns, such that $T_{i} \delta_{g}^{n}=Q D_{g} f_{i}$ for each $i=1, \ldots, m$ and each $g \in \mathcal{G}$.

Proof. Let $\left(T_{i}\right)_{i=1}^{m} \in \mathcal{R} \mathcal{S}(m, n, \mathcal{H})$.
Suppose that $T_{i} \delta_{g}^{n}=Q D_{g} f_{i}$, for each $i=1, \ldots, m$ and each $g \in \mathcal{G}$, where Q, D_{g} and f_{i} are as in the enunciation. Since

$$
G_{i, j}(g, h)=\left\langle T_{i}^{*} T_{j} \delta_{h}^{n}, \delta_{g}^{n}\right\rangle_{\mathbb{F}^{n}}=\left\langle T_{j} \delta_{h}^{n}, T_{i} \delta_{g}^{n}\right\rangle_{\mathcal{H}}=\left\langle Q D_{h} f_{j}, Q D_{g} f_{i}\right\rangle_{\mathcal{H}}
$$

$$
\begin{aligned}
& =\left\langle D_{h} f_{j}, D_{g} f_{i}\right\rangle_{\mathbb{F}^{d}}=\left\langle D_{g}^{*} D_{h} f_{j}, f_{i}\right\rangle_{\mathbb{F}^{d}}=\left\langle D_{g^{-1} h} f_{j}, f_{i}\right\rangle_{\mathbb{F}^{d}} \\
& =\left\langle Q D_{g^{-1} h} f_{j}, Q f_{i}\right\rangle_{\mathcal{H}}=\left\langle T_{j} \delta_{g^{-1} h}, T_{i} \delta_{1}^{n}\right\rangle_{\mathcal{H}}=\left\langle T_{i}^{*} T_{j} \delta_{g^{-1} h}^{n}, \delta_{1}^{n}\right\rangle_{\mathbb{F}^{n}} \\
& =G_{i, j}\left(1, g^{-1} h\right),
\end{aligned}
$$

by Lemma 4.9 in [14], $G \in \mathcal{G B}\left(\mathbb{F}^{m n \times m n}\right)$ and then, by Theorem 4.10 in [14], $\left(T_{i}\right)_{i=1}^{m} \in$ $\mathcal{R S}(m, \mathcal{G}, \mathcal{H})$.

Suppose now that $\left(T_{i}\right)_{i=1}^{m} \in \mathcal{R} \mathcal{S}(m, \mathcal{G}, \mathcal{H})$. By Remark 3.3 in [14], if

$$
T_{g} \delta_{i}^{m}:=T_{i} \delta_{g}^{n}
$$

then $\left(T_{g}\right)_{g \in \mathcal{G}} \in \mathcal{R} \mathcal{S}(\mathcal{G}, m, \mathcal{H})$. By Theorem 2.13, there exist $Q: \mathbb{F}^{d} \rightarrow \mathcal{H}$ unitary, $A \in \mathbb{F}^{d \times m}$ and unitary matrices $D_{g} \in \mathbb{F}^{d \times d}$ obtained from $\Omega_{\mathcal{G}, g} \otimes I_{m} \in \mathbb{F}^{n m \times n m}$ deleting $n m-d$ rows and columns, such that

$$
T_{g}=Q D_{g} A
$$

Therefore,

$$
T_{i} \delta_{g}^{n}=T_{g} \delta_{i}^{m}=Q D_{g} A \delta_{i}^{m}
$$

Remark 2.15. Let $A \in \mathbb{F}^{d \times m}$ and $\left\{D_{g} A\right\}_{g \in \mathcal{G}} \in \mathcal{R} \mathcal{S}\left(\mathcal{G}, m, \mathbb{F}^{d}\right)$ where $\left\{D_{g}\right\}_{g \in \mathcal{G}}$ is obtained as in Theorem [2.13, $\rho: \mathcal{G} \rightarrow \mathcal{U}\left(\mathbb{F}^{d}\right)$ given by $\rho(g)=D_{g}$ is a reducible representation of \mathcal{G} that can be decomposed as a sum of one-dimensional irreducible representations $\rho(g) f=\sum_{i=1}^{d} \rho_{i}(g) f_{i}$, where $\rho_{i}(g)=\langle g, h\rangle$ for some $h \in \mathcal{G}$ and $f=\oplus_{i=1}^{d} f_{i}, f_{i} \in \mathbb{F}$. By the one-dimensionality of the representations, the $\mathbb{F} \mathcal{G}$-modules corresponding to ρ_{i} and ρ_{j} are $\mathbb{F} \mathcal{G}$-isomorphic if and only if $\rho_{i}=\rho_{j}$. If $m=1$, the ρ_{i} are all different, therefore, by Theorem 6.10 in [14], $\left\{D_{g} A\right\}_{g \in \mathcal{G}} \in \mathcal{R S}\left(\mathcal{G}, 1, \mathbb{F}^{d}\right)$ is Parseval if and only if $\|A(i,:)\|=\frac{1}{\sqrt{n}}, i=1, \ldots, d$. If $m>1$, by Theorem 6.10 in [14, $\left\{D_{g} A\right\}_{g \in \mathcal{G}} \in \mathcal{R S}\left(\mathcal{G}, m, \mathbb{F}^{d}\right)$ is Parseval if and only if $\|A(i,:)\|=\frac{1}{\sqrt{n}}, i=1, \ldots, d$ and if $\rho_{i}=\rho_{j}, i \neq j$, then $\langle A(i,:), A(j,:)\rangle=0$. If $m \leq d$, by Proposition 3.8(5) in [14], $\left\{D_{g} A\right\}_{g \in \mathcal{G}} \in \mathcal{R} \mathcal{S}\left(\mathcal{G}, m, \mathbb{F}^{d}\right)$ is projective if A has orthogonal columns of equal norm.
3. Harmonic reconstruction systems. The proof of Theorem 2.13 provides a method for constructing Parseval GRS's by considering in (2.6) diagonal matrices B_{g} with 1's as non-zero elements in the diagonal.

Definition 3.1. $\left(T_{g}\right)_{g \in \mathcal{G}}$, where $T_{g} \in L\left(\mathbb{F}^{m}, \mathcal{H}\right)$, is a harmonic $(\mathcal{G}, m, \mathcal{H})$-RS $((\mathcal{G}, m, \mathcal{H})$-HRS $)$ if there exist $Q: \mathbb{F}^{d} \rightarrow \mathcal{H}$ unitary, $D_{g} \in \mathbb{F}^{d \times d}$ obtained from $\Omega_{\mathcal{G}, g} \otimes I_{m}$ deleting $n m-d$ rows and columns, and A obtained from $e \otimes \frac{1}{\sqrt{n}} F_{m}, e=(1, \ldots, 1)^{t} \in$ $\mathbb{F}^{n \times 1}$, deleting correspondingly $n m-d$ rows, such that $T_{g}=Q D_{g} A$ for each $g \in \mathcal{G}$. In particular, $(\mathcal{G}, m, \mathcal{H})$ - HRS is a $\operatorname{cyclic}(\mathcal{G}, m, \mathcal{H})-\operatorname{RS}((\mathcal{G}, m, \mathcal{H})$-CRS $)$ if \mathcal{G} is cyclic.

The set of $(\mathcal{G}, m, \mathcal{H})$-HRS's will be denoted by $\mathcal{H} \mathcal{R S}(\mathcal{G}, m, \mathcal{H})$, and the set of $(\mathcal{G}, m, \mathcal{H})$-CRS's will be denoted by $\mathcal{C R} \mathcal{S}(\mathcal{G}, m, \mathcal{H})$.

We denote the set of permutations (i.e., bijections) on $\{1, \ldots, m\}$ with \mathcal{S}_{m}.
Definition 3.2. $\left(T_{i}\right)_{i=1}^{m}$, where $T_{i} \in L\left(\mathbb{F}^{n}, \mathcal{H}\right)$, is a harmonic $(m, \mathcal{G}, \mathcal{H})$-RS $((m, \mathcal{G}, \mathcal{H})$-HRS $)$ if there exist $\left(Q D_{g} A\right)_{g \in \mathcal{G}} \in \mathcal{H} \mathcal{R S}(\mathcal{G}, m, \mathcal{H})$, an isomorphism σ : $\mathcal{G} \rightarrow \mathcal{G}$ and $\pi \in \mathcal{S}_{m}$ such that $T_{i} \delta_{g}^{n}=D_{\sigma(g)} A \delta_{\pi(i)}^{m}$. In particular, if \mathcal{G} is cyclic, $\left(T_{i}\right)_{i=1}^{m}$ is a cyclic $(m, \mathcal{G}, \mathcal{H})$ - $\mathrm{RS}((m, \mathcal{G}, \mathcal{H})$-CRS $)$.

As a consequence of Remark 2.15, ($\mathcal{G}, m, \mathcal{H})$-HRS's are Parseval, and then, by Proposition 3.4 in [14], $(m, \mathcal{G}, \mathcal{H})$-HRS's are Parseval too.

The set of ($m, \mathcal{G}, \mathcal{H}$)-HRS's will be denoted by $\mathcal{H} \mathcal{R S}(m, \mathcal{G}, \mathcal{H})$, and the set of $(m, \mathcal{G}, \mathcal{H})$-CRS's will be denoted by $\mathcal{C} \mathcal{R} \mathcal{S}(m, \mathcal{G}, \mathcal{H})$.

We generically refer to any of the RS's defined previously as a harmonic reconstruction system (HRS).

Proposition 3.8(4) in [14] asserts that there exist one erasure robust tight GRS's. In case of HRS's, we can obtain maximal robustness to erasures.

From now on we restrict our attention to HRS's (for \mathbb{F}^{d}) of the form $\left\{D_{g} A\right\}_{g \in \mathcal{G}}$ where D_{g} and A are as in Definition [3.1, Note that each $D_{g} A$ is formed by a set of m columns of a matrix obtained by selecting d rows from $\mathbf{F}_{\mathcal{G}} \otimes \mathbf{F}_{m}$. Therefore, if $m=1$ they coincide, up to a factor of n, with harmonic frames as defined in [17]. By Lemma 2.5 in [14], if such a HRS for \mathbb{F}^{d} is MRE then any other HRS for \mathcal{H} of the form $\left\{Q D_{g} A\right\}_{g \in \mathcal{G}}$, with $Q: \mathbb{F}^{d} \rightarrow \mathcal{H}$ unitary, is MRE too.

We are going to characterize HRS's that are MRE.
Let $\mathbf{F}_{\mathcal{G}}=\mathbf{F}_{n_{1}} \otimes \cdots \otimes \mathbf{F}_{n_{r}}$. If $k, l \in\left\{1, \ldots, n_{1}\right\} \times \cdots \times\left\{1, \ldots, n_{r}\right\}$ and $i, j \in$ $\{1, \ldots, m\}$, then the element in the row (k, i) and column (l, j) of $\mathbf{F}_{\mathcal{G}} \otimes \mathbf{F}_{m}$ is $\mathbf{F}_{\mathcal{G}} \otimes$ $\mathbf{F}_{m}((k, i),(l, j))=\mathbf{F}_{\mathcal{G}}(k, l) \mathbf{F}_{m}(i, j)$. We consider the projections p_{1} and p_{2} given by $p_{1}\left(k_{1}, \ldots, k_{r}, i\right)=\left(k_{1}, \ldots, k_{r}\right)$ and $p_{2}\left(k_{1}, \ldots, k_{r}, i\right)=i$. If $I \subseteq\left\{1, \ldots, n_{1}\right\} \times \cdots \times$ $\left\{1, \ldots, n_{r}\right\} \times\{1, \ldots, m\}$ we denote the partition of I associated to the surjection p_{2} with I / p_{2}. Note that if $d>m(n-1)$ we can not erase blocks. In the sequel, we suppose that $2 \leq d \leq m(n-1)$ and $m \geq 2$. If the column blocks of $\mathbf{F}_{\mathcal{G}} \otimes \mathbf{F}_{m}(I,:) \in \mathbb{F}^{d \times n m}$ form a MRE HRS we say that $\mathbf{F}_{\mathcal{G}} \otimes \mathbf{F}_{m}(I,:)$ is MRE.

The next theorem gives a characterization of all HRS's that are MRE.
THEOREM 3.3. Let $\mathbf{F}_{\mathcal{G}}=\mathbf{F}_{n_{1}} \otimes \cdots \otimes \mathbf{F}_{n_{r}}$. Let $I \subseteq\left\{1, \ldots, n_{1}\right\} \times \cdots \times\left\{1, \ldots, n_{r}\right\} \times$ $\{1, \ldots, m\}$ with $|I|=d$. Then $\mathbf{F}_{\mathcal{G}} \otimes \mathbf{F}_{m}(I,:) \in \mathbb{F}^{d \times n m}$ is MRE if and only if for each $\widetilde{I} \in I / p_{2}$ and $L \subseteq\{1, \ldots, n\}$ with $|L|=\left\lceil\frac{d}{m}\right\rceil$, we have:

1. $|\widetilde{I}| \leq\left\lceil\frac{d}{m}\right\rceil$.
2. $\left(\mathbf{F}_{\mathcal{G}}(k, l)\right)_{k \in p_{1}(\tilde{I}), l \in L}$ has rank $|\tilde{I}|$.

Proof. $\mathbf{F}_{\mathcal{G}} \otimes \mathbf{F}_{m}(I,:)$ is MRE if and only if each submatrix of the form

$$
\left(\mathbf{F}_{\mathcal{G}}(k, l) \mathbf{F}_{m}(i,:)\right)_{(k, i) \in I, l \in J}
$$

with $J \subseteq\left\{1, \ldots, n_{1}\right\} \times \ldots \times\left\{1, \ldots, n_{r}\right\},|J|=\left\lceil\frac{d}{m}\right\rceil$, has rank equal d, i.e., its rows are linearly independent. Let $\lambda_{k, i} \in \mathbb{F},(k, i) \in I$, be such that

$$
\sum_{(k, i) \in I} \lambda_{k, i} \mathbf{F}_{\mathcal{G}}(k, l) \mathbf{F}_{m}(i,:)=0, l \in L
$$

or equivalently, by the linear independence of the rows of \mathbf{F}_{m},

$$
\sum_{(k, i) \in \widetilde{I}} \lambda_{k, i} \mathbf{F}_{\mathcal{G}}(k, l)=0, \widetilde{I} \in I / p_{2}, l \in L
$$

From this equality the result follows.
For certain families of HRS's we now give an explicit description of those $I \subseteq$ $\left\{1, \ldots, n_{1}\right\} \times \cdots \times\left\{1, \ldots, n_{r}\right\} \times\{1, \ldots, m\}$ with $|I|=d$ such that $\mathbf{F}_{\mathcal{G}} \otimes \mathbf{F}_{m}(I,:)$ is MRE.

As an immediate consequence of Theorem 3.3, we obtain the following corollary.
Corollary 3.4. Let $\mathbf{F}_{\mathcal{G}}=\mathbf{F}_{n_{1}} \otimes \cdots \otimes \mathbf{F}_{n_{r}}$. Let $I \subseteq\left\{1, \ldots, n_{1}\right\} \times \cdots \times$ $\left\{1, \ldots, n_{r}\right\} \times\{1, \ldots, m\}$ with $|I|=d$. If $\left\lceil\frac{d}{m}\right\rceil=1$ then $\mathbf{F}_{\mathcal{G}} \otimes \mathbf{F}_{m}(I,:)$ is MRE if and only if I has no two elements with the same second component.

To prove Corollary 3.7 we need the following two lemmas.
Lemma 3.5. Let n_{1}, n_{2} be natural numbers greater than 1 such that $n_{2} \mid n_{1}$ and let k_{1}, k_{2} be natural numbers with $1 \leq k_{1} \leq n_{1}-1$ and $1 \leq k_{2} \leq n_{2}-1$. Then there exist integer numbers l_{1}, l_{2} with $0<l_{1} \leq n_{1}-1,0 \leq l_{2} \leq n_{2}-1$ such that $\frac{k_{1} l_{1}}{n_{1}}+\frac{k_{2} l_{2}}{n_{2}} \in \mathbb{Z}$.

Proof. Take $l_{1}=k_{2} \frac{n_{1}}{n_{2}}$. We consider the following cases:
(a) $k_{1}<n_{2}$. Take $l_{2}=n_{2}-k_{1}$.
(b) $k_{1} \geq n_{2}$ and $k_{1}=q_{1} n_{2}+p_{1}$ with $0 \leq p_{1}<n_{2}$. If $p_{1} \neq 0$ take $l_{2}=n_{2}-p_{1}$, if $p_{1}=0$ take $l_{2}=0$.

Lemma 3.6. Let n_{i} and $k_{i}, i=1, \ldots, s$, be natural numbers such that $n_{i}>1$, $1 \leq k_{i} \leq n_{i}-1$, and $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ for each $i \neq j$. Then for all integer numbers l_{i} with $\left|l_{i}\right| \leq n_{i}-1, i=1, \ldots, s$, and $\left(l_{1}, \ldots, l_{s}\right) \neq(0, \ldots, 0)$, we have $\sum_{i=1}^{s} \frac{k_{i} l_{i}}{n_{i}} \notin \mathbb{Z}$ if and only if $\operatorname{gcd}\left(k_{i}, n_{i}\right)=1$ for some i.

Proof. Suppose that there exist integer numbers l_{i} with $\left|l_{i}\right| \leq n_{i}-1, i=1, \ldots, s$, and $\left(l_{1}, \ldots, l_{s}\right) \neq(0, \ldots, 0)$, such that $\sum_{i=1}^{s} \frac{k_{i} l_{i}}{n_{i}} \in \mathbb{Z}$. Set $m_{i}=\prod_{j \neq i} n_{j}$ and $\sum_{i=1}^{s} \frac{k_{i} l_{i}}{n_{i}}=q$. Then

$$
\sum_{i=1}^{s} k_{i} l_{i} m_{i}=q \prod_{i=1}^{s} n_{i}
$$

Let $c_{i}=\operatorname{gcd}\left(l_{i}, n_{i}\right), n_{i}^{\prime}=\frac{n_{i}}{c_{i}}, l_{i}^{\prime}=\frac{l_{i}}{c_{i}}$ and $m_{i}^{\prime}=\prod_{j \neq i} n_{j}^{\prime}$. Note that since $l_{i}<n_{i}$ then $n_{i}^{\prime}>1$. Dividing both sides of the previous equality by $\prod_{i=1}^{s} c_{i}$ we obtain,

$$
\sum_{i=1}^{s} k_{i} l_{i}^{\prime} m_{i}^{\prime}=q \prod_{i=1}^{s} n_{i}^{\prime} .
$$

Therefore, $n_{i}^{\prime} \mid k_{i} l_{i}^{\prime} m_{i}^{\prime}$. Since $\operatorname{gcd}\left(n_{i}^{\prime}, n_{j}^{\prime}\right)=1$ for $i \neq j$, and $\operatorname{gcd}\left(n_{i}^{\prime}, l_{i}^{\prime}\right)=1$, then $n_{i}^{\prime} \mid k_{i}$. So, k_{i} and n_{i} are not coprimes for each $i=1, \ldots, s$.

Suppose now that k_{i} and n_{i} are not coprimes for each $i=1, \ldots, s$. Thus, $k_{i}=n_{i}^{\prime} q_{i}$ with n_{i}^{\prime} a proper divisor of n_{i}. Let l_{i} be such that $n_{i}=l_{i} n_{i}^{\prime}$. Then $1<l_{i}<n_{i}$ and $\sum_{i=1}^{s} \frac{k_{i} l_{i}}{n_{i}}=\sum_{i=1}^{s} q_{i} \in \mathbb{Z}$.

For $k, k^{\prime} \in\left\{1, \ldots, n_{1}\right\} \times \cdots \times\left\{1, \ldots, n_{r}\right\}$ we consider the support of $k-k^{\prime}$, $\operatorname{supp}\left(k-k^{\prime}\right)=\left\{i \in\{1, \ldots, r\}: k_{i} \neq k_{i}^{\prime}\right\}$.

Corollary 3.7. Let $\left\lceil\frac{d}{m}\right\rceil=2$ and $\mathbf{F}_{\mathcal{G}}=\mathbf{F}_{n_{1}} \otimes \cdots \otimes \mathbf{F}_{n_{r}}$. If $I \subseteq\left\{1, \ldots, n_{1}\right\} \times$ $\cdots \times\left\{1, \ldots, n_{r}\right\} \times\{1, \ldots, m\}$ with $|I|=d$, then $\mathbf{F}_{\mathcal{G}} \otimes \mathbf{F}_{m}(I,:)$ is MRE if and only if for all $\widetilde{I} \in I / p_{2}$:

1. $|\widetilde{I}| \leq 2$.
2. for each $k=\left(k_{1}, \ldots, k_{r}\right), k^{\prime}=\left(k_{1}^{\prime}, \ldots, k_{r}^{\prime}\right) \in p_{1}(\widetilde{I})$ with $\left|\operatorname{supp}\left(k-k^{\prime}\right)\right| \geq 1$, we have $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ for each $i, j \in \operatorname{supp}\left(k-k^{\prime}\right), i \neq j$, and $\operatorname{gcd}\left(k_{i}^{\prime}-\right.$ $\left.k_{i}, n_{i}\right)=1$ for some $i \in \operatorname{supp}\left(k-k^{\prime}\right)$.

Proof. By Theorem 3.3, $\mathbf{F}_{\mathcal{G}} \otimes \mathbf{F}_{m}(I,:)$ is MRE if and only if for each $\widetilde{I} \in I / p_{2}$, $|\widetilde{I}| \leq 2$ and $\left(\mathbf{F}_{\mathcal{G}}(k, l)\right)_{k \in p_{1}(\widetilde{I}), l \in L}$ has rank $|\widetilde{I}|$ for each $L \subseteq\left\{1, \ldots, n_{1}\right\} \times \cdots \times$ $\left\{1, \ldots, n_{r}\right\}$ with $|L|=2$.

Let $\widetilde{I} \in I / p_{2}$. If $|\widetilde{I}|=1$, then clearly $\left(\mathbf{F}_{\mathcal{G}}(k, l)\right)_{k \in p_{1}(\widetilde{I}), l \in L}$ has rank $|\widetilde{I}|$ for each $L \subseteq\left\{1, \ldots, n_{1}\right\} \times \cdots \times\left\{1, \ldots, n_{r}\right\}$ with $|L|=2$.

If $|\widetilde{I}|=2$ set $p_{1}(\widetilde{I})=\left\{\left(k_{1}, \ldots, k_{r}\right),\left(k_{1}^{\prime}, \ldots, k_{r}^{\prime}\right)\right\}$. Let $\left(l_{1}, \ldots, l_{r}\right),\left(l_{1}^{\prime}, \ldots, l_{r}^{\prime}\right) \in$ $\left\{1, \ldots, n_{1}\right\} \times \ldots \times\left\{1, \ldots, n_{r}\right\}$ such that $\left(l_{1}, \ldots, l_{r}\right) \neq\left(l_{1}^{\prime}, \ldots, l_{r}^{\prime}\right)$. Then

$$
\left[\begin{array}{ll}
e^{-2 \pi i \frac{\left(k_{1}-1\right)\left(l_{1}-1\right)}{n_{1}}} \cdots e^{-2 \pi i \frac{\left(k_{r}-1\right)\left(l_{r}-1\right)}{n_{r}}} & e^{-2 \pi i \frac{\left(k_{1}-1\right)\left(l_{1}^{\prime}-1\right)}{n_{1}}} \cdots e^{-2 \pi i \frac{\left(k_{r}-1\right)\left(l_{r}^{\prime}-1\right)}{n_{r}}} \\
e^{-2 \pi i \frac{\left(k_{1}^{\prime}-1\right)\left(l_{1}-1\right)}{n_{1}}} \cdots e^{-2 \pi i \frac{\left(k_{r}^{\prime}-1\right)\left(l_{r}-1\right)}{n_{r}}} & e^{-2 \pi i \frac{\left(k_{1}^{\prime}-1\right)\left(l_{1}^{\prime}-1\right)}{n_{1}}} \cdots e^{-2 \pi i \frac{\left(k_{r}^{\prime}-1\right)\left(l_{r}^{\prime}-1\right)}{n_{r}}}
\end{array}\right]
$$

has rank 1 if and only if $e^{-2 \pi i \frac{\left(k_{1}^{\prime}-k_{1}\right)\left(l_{1}^{\prime}-l_{1}\right)}{n_{1}}} \cdots e^{-2 \pi i \frac{\left(k_{r}^{\prime}-k_{r}\right)\left(l_{r}^{\prime}-l_{r}\right)}{n_{r}}}=1$, i.e.,

$$
\frac{\left(k_{1}^{\prime}-k_{1}\right)\left(l_{1}^{\prime}-l_{1}\right)}{n_{1}}+\cdots+\frac{\left(k_{r}^{\prime}-k_{r}\right)\left(l_{r}^{\prime}-l_{r}\right)}{n_{r}} \in \mathbb{Z}
$$

Therefore, condition (2) follows from Lemma 3.5 and Lemma 3.6,
The next three examples illustrate Corollary 3.4 and Corollary 3.7
Example 3.8. Consider $\mathbf{F}_{\mathcal{G}}=\mathbf{F}_{n}$ and $m=2$. Then $\left(\mathbf{F}_{n}(k,:) \mathbf{F}_{2}(i,:)\right)_{(k, i) \in I}$, $|I|=d$, is MRE if and only if:

- $d=2$ and, by Corollary 3.4 $I=\left\{\left(k_{1}, i_{1}\right),\left(k_{2}, i_{2}\right)\right\}$ where $k_{1}, k_{2} \in\{1, \ldots, n\}$, $i_{1}, i_{2} \in\{1,2\}$ and $i_{1} \neq i_{2}$.
- $d=3$ and, by Corollary 3.7 $I=\left\{\left(k_{1}, i_{1}\right),\left(k_{2}, i_{2}\right),\left(k_{3}, i_{3}\right)\right\}$ where $k_{1}, k_{2}, k_{3} \in$ $\{1, \ldots, n\}, i_{1}, i_{2}, i_{3} \in\{1,2\}, i_{1}=i_{2} \neq i_{3}$ and $\operatorname{gcd}\left(k_{1}-k_{2}, n\right)=1$.
- $d=4$ and, by Corollary 3.7 $I=\left\{\left(k_{1}, i_{1}\right),\left(k_{2}, i_{2}\right),\left(k_{3}, i_{3}\right),\left(k_{4}, i_{4}\right)\right\}$ where $k_{1}, k_{2}, k_{3}, k_{4} \in\{1, \ldots, n\}, i_{1}, i_{2}, i_{3}, i_{4} \in\{1,2\}, i_{1}=i_{2} \neq i_{3}=i_{4}$ and $\operatorname{gcd}\left(k_{1}-k_{2}, n\right)=\operatorname{gcd}\left(k_{3}-k_{4}, n\right)=1$.
Example 3.9. Consider $\mathbf{F}_{\mathcal{G}}=\mathbf{F}_{n}$ and $m=3$. Then $\left(\mathbf{F}_{n}(k,:) \mathbf{F}_{3}(i,:)\right)_{(k, i) \in I}$, $|I|=d$, is MRE if and only if:
- $d=2$ and, by Corollary 3.4 $I=\left\{\left(k_{1}, i_{1}\right),\left(k_{2}, i_{2}\right)\right\}$ where $k_{1}, k_{2} \in\{1, \ldots, n\}$, $i_{1}, i_{2} \in\{1,2,3\}$ and $i_{1} \neq i_{2}$.
- $d=3$ and, by Corollary 3.4 $I=\left\{\left(k_{1}, i_{1}\right),\left(k_{2}, i_{2}\right),\left(k_{3}, i_{3}\right)\right\}$ where $k_{1}, k_{2}, k_{3} \in$ $\{1, \ldots, n\}, i_{1}, i_{2}, i_{3} \in\{1,2,3\}, i_{1} \neq i_{2}, i_{1} \neq i_{3}$ and $i_{2} \neq i_{3}$.
- $d=4$ and, by Corollary 3.7, $I=\left\{\left(k_{1}, i_{1}\right),\left(k_{2}, i_{2}\right),\left(k_{3}, i_{3}\right),\left(k_{4}, i_{4}\right)\right\}$ where $k_{1}, k_{2}, k_{3}, k_{4} \in\{1, \ldots, n\}, i_{1}, i_{2}, i_{3}, i_{4} \in\{1,2,3\}, i_{1}=i_{2} \neq i_{3}=i_{4}$ and $\operatorname{gcd}\left(k_{1}-k_{2}, n\right)=\operatorname{gcd}\left(k_{3}-k_{4}, n\right)=1$, or $i_{3} \neq i_{1}=i_{2} \neq i_{4}, i_{3} \neq i_{4}$ and $\operatorname{gcd}\left(k_{1}-k_{2}, n\right)=1$.
- $d=5$ and, by Corollary 3.7, $I=\left\{\left(k_{1}, i_{1}\right),\left(k_{2}, i_{2}\right),\left(k_{3}, i_{3}\right),\left(k_{4}, i_{4}\right),\left(k_{5}, i_{5}\right)\right\}$, where $k_{1}, k_{2}, k_{3}, k_{4}, k_{5} \in\{1, \ldots, n\}, i_{1}, i_{2}, i_{3}, i_{4}, i_{5} \in\{1,2,3\}, i_{5} \neq i_{1}=i_{2} \neq$ $i_{3}=i_{4} \neq i_{5}$ and $\operatorname{gcd}\left(k_{1}-k_{2}, n\right)=\operatorname{gcd}\left(k_{3}-k_{4}, n\right)=1$.
- $d=6$ and, by Corollary 3.7 $I=\left\{\left(k_{1}, i_{1}\right), \ldots,\left(k_{6}, i_{6}\right)\right\}$, where $k_{1}, \ldots, k_{6} \in$ $\{1, \ldots, n\}, i_{1}, \ldots, i_{6} \in\{1,2,3\}, i_{5}=i_{6} \neq i_{1}=i_{2} \neq i_{3}=i_{4} \neq i_{5}=i_{6}$ and $\operatorname{gcd}\left(k_{1}-k_{2}, n\right)=\operatorname{gcd}\left(k_{3}-k_{4}, n\right)=\operatorname{gcd}\left(k_{5}-k_{6}, n\right)=1$.

Example 3.10. Consider $\mathbf{F}_{\mathcal{G}}=\mathbf{F}_{n_{1}} \otimes \mathbf{F}_{n_{2}}$ and $m=2$. If $|I|=d$, then $\left(\left(\mathbf{F}_{n_{1}} \otimes \mathbf{F}_{n_{2}}\right)(k, l,:) \mathbf{F}_{2}(i,:)\right)_{(k, l, i) \in I}$ is MRE if and only if:

- $d=2$ and, by Corollary 3.4, $I=\left\{\left(k_{1}, l_{1}, i_{1}\right),\left(k_{2}, l_{2}, i_{2}\right)\right\}$ where $k_{1}, k_{2} \in$ $\left\{1, \ldots, n_{1}\right\}, l_{1}, l_{2} \in\left\{1, \ldots, n_{2}\right\}, i_{1}, i_{2} \in\{1,2\}$ and $i_{1} \neq i_{2}$.
- $d=3$ and, by Corollary 3.7 $I=\left\{\left(k_{1}, l_{1}, i_{1}\right),\left(k_{2}, l_{2}, i_{2}\right),\left(k_{3}, l_{3}, i_{3}\right)\right\}$ where
$k_{1}, k_{2}, k_{3} \in\left\{1, \ldots, n_{1}\right\}, l_{1}, l_{2}, l_{3} \in\left\{1, \ldots, n_{2}\right\}, i_{1}, i_{2}, i_{3} \in\{1,2\}, i_{1}=i_{2} \neq i_{3}$ and one of the following statements are true:

1. $k_{1} \neq k_{2}, l_{1}=l_{2}$ and $\operatorname{gcd}\left(k_{1}-k_{2}, n_{1}\right)=1$.
2. $k_{1}=k_{2}, l_{1} \neq l_{2}$ and $\operatorname{gcd}\left(l_{1}-l_{2}, n_{2}\right)=1$.
3. $k_{1} \neq k_{2}, l_{1} \neq l_{2}, \operatorname{gcd}\left(n_{1}, n_{2}\right)=1$ and, $\operatorname{gcd}\left(k_{1}-k_{2}, n_{1}\right)=1$ or $\operatorname{gcd}\left(l_{1}-l_{2}, n_{2}\right)=1$.

- $d=4$ and, by Corollary 3.7 $I=\left\{\left(k_{1}, l_{1}, i_{1}\right), \ldots,\left(k_{4}, l_{4}, i_{4}\right)\right\}, k_{1}, \ldots, k_{4} \in$ $\left\{1, \ldots, n_{1}\right\}, l_{1}, \ldots, l_{4} \in\left\{1, \ldots, n_{2}\right\}, i_{1}, \ldots, i_{4} \in\{1,2\}, i_{1}=i_{2} \neq i_{3}=i_{4}$, one of the following statements are true for $k_{1}, k_{2}, l_{1}, l_{2}$:

1. $k_{1} \neq k_{2}, l_{1}=l_{2}$ and $\operatorname{gcd}\left(k_{1}-k_{2}, n_{1}\right)=1$.
2. $k_{1}=k_{2}, l_{1} \neq l_{2}$ and $\operatorname{gcd}\left(l_{1}-l_{2}, n_{2}\right)=1$.
3. $k_{1} \neq k_{2}, l_{1} \neq l_{2}, \operatorname{gcd}\left(n_{1}, n_{2}\right)=1$ and, $\operatorname{gcd}\left(k_{1}-k_{2}, n_{1}\right)=1$ or $\operatorname{gcd}\left(l_{1}-l_{2}, n_{2}\right)=1$.
and one of the following statements is true for $k_{3}, k_{4}, l_{3}, l_{4}$:
4. $k_{3} \neq k_{4}, l_{3}=l_{4}$ and $\operatorname{gcd}\left(k_{3}-k_{4}, n_{3}\right)=1$.
5. $k_{3}=k_{4}, l_{3} \neq l_{4}$ and $\operatorname{gcd}\left(l_{3}-l_{4}, n_{4}\right)=1$.
6. $k_{3} \neq k_{4}, l_{3} \neq l_{4}, \operatorname{gcd}\left(n_{3}, n_{4}\right)=1$ and, $\operatorname{gcd}\left(k_{3}-k_{4}, n_{3}\right)=1$ or $\operatorname{gcd}\left(l_{3}-l_{4}, n_{4}\right)=1$.

The proof of Corollary 3.12 requires the next lemma proved in, e.g., 8 (see also [11]).

Lemma 3.11. If n is prime then every minor of \mathbf{F}_{n} is nonzero.
Corollary 3.12. Let $\mathbf{F}_{\mathcal{G}}=\mathbf{F}_{n}$ with n prime. Let $I \subseteq\{1, \ldots, n\} \times\{1, \ldots, m\}$ with $|I|=d$. Then $\mathbf{F}_{\mathcal{G}} \otimes \mathbf{F}_{m}(I,:)$ is MRE if and only if for each $\widetilde{I} \in I / p_{2}$ we have $|\widetilde{I}| \leq\left\lceil\frac{d}{m}\right\rceil$.

Proof. If follows from Theorem 3.3 and Lemma 3.11, \square
Example 3.13. By Corollary 3.12, if in Example 3.8 and Example $3.9 n$ is prime and we only consider the restriction onto the component i, we obtain a description of sets $I \subseteq\left\{1, \ldots, n_{1}\right\} \times \cdots \times\left\{1, \ldots, n_{r}\right\} \times\{1, \ldots, m\}$ with $|I|=d$ such that $\mathbf{F}_{n} \otimes \mathbf{F}_{m}(I,:)$, $m=2,3$, is MRE.

We have computationally determined the existence of MRE HRS's for different abelian groups \mathcal{G}, and different values of m and d, apart from those in the classes described in the previous three corollaries. The study of non equivalent MRE HRS's, as was done for harmonic frames in [18], could be an interesting question for future investigations.

REFERENCES

[1] M.A. Armstrong. Groups and Symmetry. Springer-Verlag, New York, 1988.
[2] B.G. Bodmann. Optimal linear transmission by loss-insensitive packet encoding. Appl. Comput. Harmon. Anal., 22:274-285, 2007.
[3] P.G. Casazza. The art of frame theory. Taiwanese J. Math., 4:129-202, 2000.
[4] P.G. Casazza and G. Kutyniok. Frames for subspaces. Contemp. Math., 345:87-113, 2004.
[5] P.G. Casazza, G. Kutyniok, and S. Li. Fusion frames and distributed processing. Appl. Comput. Harmon. Anal., 25:114-132, 2008.
[6] O. Christensen. An Introduction to Frames and Riesz Bases. Birkhäuser Boston Inc., Boston, 2003.
[7] P.J. Davis. Circulant Matrices. AMS Chelsea Publishing, New York, 1994.
[8] R.J. Evans and I.M. Isaacs. Generalized Vandermonde determinants and roots of unity of prime order. Proc. Amer. Math. Soc., 58:51-54, 1976.
[9] V.K. Goyal, J. Kovačević, and J.A. Kelner. Quantized frame expansions with erasures. Appl. Comp. Harmon. Anal., 10:203-233, 2001.
[10] J. Kovačević and A. Chebira. An introduction to frames. Found. Trends Signal Process., 2:1-94, 2008.
[11] J. Lawrence, G.E. Pfander, and D. Walnut. Linear independence of Gabor systems in finite dimensional vector spaces. J. Fourier Anal. Appl., 11:715-726, 2005.
[12] P.G. Massey. Optimal reconstruction systems for erasures and for the q-potencial. Linear Algebra Appl., 431:1302-1316, 2009.
[13] P.G. Massey, M.A. Ruiz, and D. Stojanoff. Duality in reconstruction systems. Linear Algebra Appl., 436:447-464, 2012.
[14] P.M. Morillas. Group reconstruction systems. Electron. J. Linear Algebra, 22:875-911, 2011.
[15] P. Oswald. Frames and space splittings in Hilbert spaces. Lectures Notes, Part I, Bell. Labs., 1997.
[16] W. Sun. G-frames and g-Riesz bases. J. Math. Anal. Appl., 322:437-452, 2006.
[17] R. Vale and S. Waldron. Tight frames and their symmetries. Constr. Approx., 21:83-112, 2005.
[18] S. Waldron and N. Hay. On computing all harmonic frames of n vectors in \mathbb{C}^{d}. Appl. Comp. Harmon. Anal., 21:168-181, 2006.

[^0]: *Received by the editors on March 28, 2012. Accepted for publication on September 8, 2013. Handling Editor: Roderick Gow.
 ${ }^{\dagger}$ Instituto de Matemática Aplicada San Luis, UNSL-CONICET. Ejército de los Andes 950, 5700 San Luis, Argentina (morillas@unsl.edu.ar). Research partially supported by ANPCyT (Grant PICT-2007-00865, Foncyt), Universidad Nacional de San Luis (Grant P-317902), Argentina.

