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ELA

A NOTE ON THE CONVEXITY OF THE REALIZABLE SET OF
EIGENVALUES FOR NONNEGATIVE SYMMETRIC MATRICES∗

C. KNUDSEN† AND J.J. MCDONALD†

Abstract. Geometric properties of the set Rn of n–tuples of realizable spectra of nonnegative
symmetric matrices, and the Soules set Sn introduced by McDonald and Neumann, are examined.
It is established that S5 is properly contained in R5. Two interesting examples are presented which
show that neither Rn nor Sn need be convex. It is proved that Rn and Sn are star convex and
centered at (1, 1, . . . , 1).
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1. Introduction, Definitions. The inverse eigenvalue problem for n× n sym-
metric nonnegative matrices can be stated as follows:
Find necessary and sufficient conditions for a set of real numbers λ1, . . . , λn to be the
eigenvalues of an n× n symmetric nonnegative matrix.
If there is a symmetric nonnegative matrix A with eigenvalues λ1, . . . , λn, then we
shall say that the set of numbers λ1, . . . , λn is realizable.

Many necessary conditions for an n–tuple of numbers to be realizable are known,
and there are also several known sufficient conditions. Nevertheless, for n > 4, the
realizable n–tuples have not yet been fully characterized. Sources of information on
the inverse eigenvalue problem for symmetric nonnegative matrices include [7], [4],
[2], [1, Ch. 4 and Supplement Sec. 2], and [5].

Without loss of generality we can assume throughout that 1 = λ1 ≥ λ2 ≥ . . . ≥
λn ≥ −1. As in [6], we discuss three important sets in connection with the inverse
eigenvalue problem for symmetric matrices. The set of all points which satisfy λ2 +
. . .+λn ≥ −1 is referred to as the trace nonnegative polytope and denoted by Tn. The
set of all points in Tn which are realizable is referred to as the realizable set and denoted
by Rn. In [8], Soules provides an algorithm for constructing orthogonal matrices. This
method is generalized by Elsner, Nabben, and Neumann [3] and they call the resulting
matrices Soules matrices. In [6], the topological closure of the Soules set of matrices
is used to construct nonnegative symmetric matrices. We explain how to construct a
Soules matrix below. If R is an orthogonal matrix, we say that (1, λ2, . . . , λn) is in the
feasible region for R if RΛRT ≥ 0, where Λ is the matrix whose diagonal entries are
1, λ2, . . . , λn. The set of all n–tuples which are in the feasible region for some Soules
matrix is referred to as the Soules set and denoted by Sn.

In [6] it is shown that for n ≤ 4, Sn = Rn = Tn, and for n ≥ 5, that Rn is a
proper subset of Tn. The question as to whether or not S5 is equal to R5 is posed.
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Our examples in the present note show that S5 is properly contained in R5. This
proves that for n = 5 there are nonnegative symmetric matrices which are not similar
to nonnegative matrices constructed from Soules matrices.

The set Tn is always convex. For n ≤ 4, the set Rn is also convex, but as we
show, R5 and R6 are not convex. It is shown in [6] that for n ≤ 5, the set Sn is
convex. We show here that S6 is not convex.

A set is star convex centered at p if the line from any point in the set to p is also
contained in the set. We conclude our paper by showing that Sn and Rn are star
convex centered at (1, 1, . . . , 1).

2. Examples, Results, and Convexity Arguments. Following Elsner,
Nabben, and Neumann [3], we can describe the construction of a Soules matrix as

follows. Start with a positive vector n × 1 unit vector w. Partition w into
[
u
v

]
.

Then it is straightforward to see that the vector

w̃ =
[

(‖v‖2 / ‖u‖2)u
−(‖u‖2 / ‖v‖2)v

]

satisfies that ‖w̃‖2 = 1, and w̃Tw = 0. We can then create additional orthogonal
vectors by further re–partitioning the vectors (‖v‖2 / ‖u‖2)u and (‖u‖2 / ‖v‖2)v to
obtain a set w1, w2, . . . , wk, k ≤ n, of n × 1 vectors which are mutually orthogonal.
After n− 1 steps we can construct an orthogonal matrix R with columns w1, . . . , wn.
The matrices which can be constructed in this way are referred to as Soules matri-
ces. By letting a subvector of w approach zero and taking the limit of the matrices
constructed, we generate additional matrices in the topological closure of the original
Soules set which we also consider to be Soules matrices.

It is observed in [6] that T5 is the convex hull of the following points:

a = (1, 1, 1, 1, 1),
b = (1, 1, 1, 1,−1),
c = (1, 1, 1,−1,−1),
d = (1, 1, 0,−1,−1),
e = (1, 0, 0, 0,−1),

f = (1, 1,−1
2
,−1

2
,−1),

g = (1,−1
4
,−1

4
,−1

4
,−1

4
),

h = (1, 1,−2
3
,−2

3
,−2

3
),

i = (1,
1
2
,

1
2
,−1,−1),

and that the Soules set S5 is the convex hull of a, b, c, d, e, f, g, j, k, l where

j = (1, 1,−1
2
,−1

2
,−1

2
),
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k = (1,
1
2
,−1

2
,−1

2
,−1

2
),

l = (1, 0, 0,−1
2
,−1

2
).

We introduce one additional point:

m = (1,
−1 +

√
5

4
,
−1 +

√
5

4
,
−1 −

√
5

4
,
−1 −

√
5

4
).

This point is interesting for a variety of reasons. Foremost, we will show that it is a
realizable point on the line from l to i. In [6] it was shown that l is the only point on
this line which is contained in S5. Secondly, the level curves 1 +λ2 +λ3 +λ4 +λ5 = 0
and 1 + λ3

2 + λ3
3 + λ3

4 + λ3
5 = 0 intersect at m. In fact, m is the last point on the

line from l to i which can be realizable since the remaining points on the line fail the
necessary condition that 1+λq

2+λq
3+λq

4+λq
5 ≥ 0 for all integers q ≥ 1. Quantitatively,

m consists of 1, a multiple of the golden mean, and a multiple of its reciprocal.
Observation 2.1. The line from l to m is contained in R5, and this is the only

portion of the line from l to i which is realizable.
Proof. Consider the matrix

R =




1/
√

5 (−3 +
√

5)/2α (−1 −
√

5)/2β (−3 −
√

5)/2γ (−1 +
√

5)/2δ
1/

√
5 (1 −

√
5)/α 0 (1 +

√
5)/γ 0

1/
√

5 (−3 +
√

5)/2α (1 +
√

5)/2β (−3 −
√

5)/2γ (+1 −
√

5)/2δ
1/

√
5 1/α 1/β 1/γ 1/δ

1/
√

5 1/α −1/β 1/γ −1/δ


 ,

where α =
√

5(3 −
√

5), β =
√

5 +
√

5, γ =
√

5(3 +
√

5) and δ =
√

5 −
√

5. Let
S = diag(l) and Q = diag(m), the 5 × 5 diagonal matrices formed from the entries of
l and m respectively. Then

RSRT =


0 (5 + 2
√

5)/γ2 β2/2γ2 β2/2γ2 (5 + 2
√

5)/γ2

(5 + 2
√

5)/γ2 0 (5 + 2
√

5)/γ2 β2/2γ2 β2/2γ2

β2/2γ2 (5 + 2
√

5)/γ2 0 (5 + 2
√

5)/γ2 β2/2γ2

β2/2γ2 β2/2γ2 (5 + 2
√

5)/γ2 0 (5 + 2
√

5)/γ2

5 + 2
√

5γ2 β2

2γ2 β2/2γ2 (5 + 2
√

5)/γ2 0




and

RQRT =




0 1/2 0 0 1/2
1/2 0 1/2 0 0
0 1/2 0 1/2 0
0 0 1/2 0 1/2

1/2 0 0 1/2 0


 .

Let p = tm + (1 − t)l, for 0 ≤ t ≤ 1, and P = diag(p). Then the set of inequalities
formed by RPRT ≥ 0 are linear in t and satisfied at t = 0 and t = 1, thus they are
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satisfied for any 0 ≤ t ≤ 1. Hence the line from l to m is realizable. It is easy to
check that the remaining points on the line from l to i fail the necessary condition
that 1 + λq

2 + λq
3 + λq

4 + λq
5 ≥ 0 for all integers q ≥ 1.

Corollary 2.2. The set S5 is properly contained in R5.
Proof. In Observation 2.1 we see that m ∈ R5. By [6, Lemma 4.3], m �∈ S5.
Observation 2.3. The set R5 is not convex.
Proof. The point

p = (1,
1 + 3

√
5

16
,

1 + 3
√

5
16

,
−7 − 3

√
5

16
,
−7 − 3

√
5

16
)

is on the line from m to the realizable point c, but

1 + 2(
1 + 3

√
5

16
)3 + 2(

−7 − 3
√

5
16

)3 < 0,

thus p fails a necessary condition for realizability and hence is not in R5.
We now turn our attention to S6 and R6.
Observation 2.4. The sets S6 and R6 are not convex.
Proof. Let

R1 =




1/
√

6 1/
√

12 1/2 1/
√

2 0 0
1/

√
6 1/

√
12 1/2 −1/

√
2 0 0

1/
√

6 1/
√

12 −1/2 0 1/
√

2 0
1/

√
6 1/

√
12 −1/2 0 −1/

√
2 0

1/
√

6 −1/
√

3 0 0 0 1/
√

2
1/

√
6 −1/

√
3 0 0 0 −1/

√
2




and

R2 =




1/
√

6 1/
√

6 2/
√

6 0 0 0
1/

√
6 1/

√
6 −1/

√
6 1/

√
2 0 0

1/
√

6 1/
√

6 −1/
√

6 −1/
√

2 0 0
1/

√
6 −1/

√
6 0 0 2/

√
6 0

1/
√

6 −1/
√

6 0 0 −1/
√

6 1/
√

2
1/

√
6 −1/

√
6 0 0 −1/

√
6 −1/

√
2



.

Then R1 and R2 are Soules matrices. The point

r = (1, 1, 1,−1,−1,−1)

is feasible for R1 and the point

s = (1, 1,−1/2,−1/2,−1/2,−1/2)

is feasible for the matrix R2. The points tr + (1 − t)s are not realizable for any
0 < t < 1, since by the Perron-Frobenius Theorem the realizing matrix would have to
be reducible, however there is no way to split these points into two or more sets such
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that the sum of the numbers in each set is nonnegative. Thus S6 and R6 cannot be
convex.

We conclude with the following result.
Theorem 2.5. The sets Sn and Rn are star convex centered at the point

(1, 1, . . . , 1).
Proof. Let p be a point in Sn or Rn. Let P = diag(p), the n × n diagonal

matrix formed from the elements of p. If we are working with the set Sn, then there
is a Soules matrix R such that RPRT ≥ 0. If we are working with Rn, then we can
choose a nonnegative symmetric matrix A whose eigenvalues are listed in p. Since
A can be diagonalized using an orthogonal similarity, there is an orthogonal matrix
R such that A = RPRT ≥ 0. Let Λ = diag(1, λ2, . . . , λn). Then RΛRT ≥ 0 is
a set of linear inequalities in λ2, λ3, . . . , λn, which combined with the inequalities
1 ≥ λ2 ≥ . . . ≥ λn ≥ −1, generate a polytope. Since RIRT = I ≥ 0 we know that
(1, 1, . . . , 1) is in the polytope, as is the line from p to (1, 1, . . . , 1).
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