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REFINED INERTIAS OF TREE SIGN PATTERNS∗

COLIN GARNETT† , D.D. OLESKY‡ , AND P. VAN DEN DRIESSCHE†

Abstract. The refined inertia (n+, n−, nz, 2np) of a real matrix is the ordered 4-tuple that

subdivides the number n0 of eigenvalues with zero real part in the inertia (n+, n−, n0) into those

that are exactly zero (nz) and those that are nonzero (2np). For n ≥ 2, the set of refined inertias

Hn = {(0, n, 0, 0), (0, n − 2, 0, 2), (2, n − 2, 0, 0)} is important for the onset of Hopf bifurcation in

dynamical systems. Tree sign patterns of order n that require or allow the refined inertias Hn

are considered. For n = 4, necessary and sufficient conditions are proved for a tree sign pattern

(necessarily a path or a star) to require H4. For n ≥ 3, a family of n × n star sign patterns that

allows Hn is given, and it is proved that if a star sign pattern requires Hn, then it must have exactly

one zero diagonal entry associated with a leaf in its digraph.
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1. Introduction. An n × n sign pattern is an n × n matrix with entries from

{+,−, 0}. The sign, sgn(a), of a real number a is defined by sgn(a) = +,−, or 0 when

a > 0, a < 0, or a = 0, respectively. The sign pattern of a real matrix A = [aij ] is

the sign pattern A = sgn(A) = [sgn(aij)]; matrix A is called a realization of A. The

sign pattern class Q(A) of the sign pattern A is the set Q(A) = {A|sgn(A) = A}.

The digraph D(A) of a sign pattern A = [αij ] has n vertices, an arc from i to j if

αij 6= 0 and a loop at vertex i if αii 6= 0. The signed digraph of sign pattern A is the

digraph of A with αij on the arc from i to j if αij 6= 0 and αii on the loop at vertex

i if αii 6= 0.

As defined in [7], the refined inertia ri(A) of a real n×n matrix A is the ordered

4-tuple (n+, n−, nz, 2np) such that n+ (resp., n−) is the number of eigenvalues (in-

cluding multiplicities) of A with positive (resp., negative) real part, and nz (resp.,

2np) is the number of zero eigenvalues (resp., nonzero pure imaginary eigenvalues)

of A. Here n+ + n− + nz + 2np = n. The inertia of A is (n+, n−, nz + 2np), thus

the refined inertia subdivides those eigenvalues with zero real part and distinguishes

between those that are exactly zero and those that are nonzero.
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A sign pattern A is sign nonsingular if nz = 0 (i.e., det(A) 6= 0) for all A ∈ Q(A);

see [3]. An n × n sign pattern A is potentially stable if there is a matrix A ∈ Q(A)

such that n− = n. An n× n sign pattern A is sign stable if n− = n for all A ∈ Q(A).

Each of these properties is invariant under sign pattern equivalence (i.e., transposition,

permutation similarity and signature similarity). Multiplying a matrix A by a positive

scalar, one nonzero diagonal entry can be set to have magnitude 1 when refined inertia

is considered. Furthermore, for an n × n irreducible matrix A ∈ Q(A), without loss

of generality n − 1 nonzero off-diagonal entries corresponding to a spanning tree of

D(A) can be set to have magnitude 1 by a positive diagonal similarity (see, e.g., [2,

Lemma 2.3]).

The following observation, which is Lemma 3.4 (iii) in [4], is used to prove some

results in Section 2.

Observation 1.1. [4] Suppose A is a sign pattern that has a realization A

with ri(A) = (n+, n−, nz, 2np) that allows a full rank Jacobian matrix. If np ≥ 1,

then there exist A1, A2 ∈ Q(A) such that the refined inertias of A1 and A2 are

(2 + n+, n−, nz, 2(np − 1)) and (n+, 2 + n−, nz, 2(np − 1)), respectively.

Hopf bifurcation is of interest in the study of dynamical systems. To connect

Hopf bifurcation in a dynamical system to refined inertia, for n ≥ 2 let Hn =

{(0, n, 0, 0), (0, n − 2, 0, 2), (2, n − 2, 0, 0)}, as defined in [1]. A sign pattern A re-

quires refined inertia Hn if Hn = {ri(A)|A ∈ Q(A)}. A sign pattern A allows refined

inertia Hn if Hn ⊆ {ri(A)|A ∈ Q(A)}. Consider an n-dimensional dynamical system

linearized about an equilibrium with Jacobian matrix having sign pattern A. Let

a be a parameter of the system and A(ai) be the Jacobian matrix with a = ai. If

a1 < a2 < a3 or a1 > a2 > a3 and ri(A(a1)) = (0, n, 0, 0), ri(A(a2)) = (0, n− 2, 0, 2),

and ri(A(a3)) = (2, n − 2, 0, 0), then A allows Hn and Hopf bifurcation may occur

giving rise to periodic solutions. The same idea applies for dynamical systems with

magnitude restrictions on some entries of A; for examples from different applications,

see [1].

Clearly, if A requires Hn then A is potentially stable and sign nonsingular with

sgn(det(A)) = sgn((−1)n) for all A ∈ Q(A). Furthermore, if A requires Hn then A is

not sign stable and −A is not potentially stable.

Some results for the requires Hn problem can be found in [1]. It is shown in [1,

Theorem 2.1] that a 3 × 3 sign nonsingular sign pattern allows H3 if and only if it

requires H3. Theorem 2.3 in [1] states that if a 4 × 4 sign nonsingular sign pattern

requires a negative trace and allows H4, then it requires H4. It is conjectured in [1]

that no n × n sign pattern requires Hn for n ≥ 8 and an example of a 7 × 7 sign

pattern that requires H7 is given.
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In this paper, we focus on (irreducible) tree sign patterns, i.e., sign patterns A

for which D(A) is a doubly directed tree. In Section 2, we characterize the 4 × 4

tree sign patterns that require H4. Using one of these sign patterns, in Section 3 we

describe a set of n× n star sign patterns that allow Hn for n ≥ 3. With results from

[5], we prove that an n× n star sign pattern that requires Hn must have exactly one

zero diagonal entry associated with a leaf in its digraph. In Section 4, we extend a

result from [1] on reducible sign patterns that require Hn and give a new example of

a surprising reducible pattern that allows H9. Some concluding remarks are given in

Section 5.

2. Tree sign patterns. If D(A) is a doubly directed path, then A is called a

path sign pattern. IfD(A) is a doubly directed star, thenA is called a star sign pattern.

In any realization A = [aij ] of a path sign pattern, without loss of generality assume

that adjacent vertices on the path are numbered 1, 2, . . . , n, and entries ai,i+1 = 1 for

i = 1, . . . , n− 1. In any realization A = [aij ] of a star sign pattern A, without loss of

generality take vertex 1 in D(A) as the center vertex and the n − 1 entries a1,i = 1

for i = 2, . . . , n.

Results from [1] can be used to show the following characterization.

Theorem 2.1. [1] A 3 × 3 tree sign pattern requires H3 if and only if it is

potentially stable and sign nonsingular, but not sign stable.

If the digraph of a 4 × 4 sign pattern D(A) is a doubly directed tree, then A is

either a path sign pattern or a star sign pattern.

Observation 2.2. IfA is a 4×4 sign pattern that requires a positive determinant,

then A ∈ Q(A) can have one of only six possible refined inertias, namely the three

refined inertias in H4, (4, 0, 0, 0), (2, 0, 0, 2) or (0, 0, 0, 4).

The potentially stable 4 × 4 path and star sign patterns are listed in [6] and [8].

Beginning with these sign patterns, we show that up to equivalence there are exactly

5 path sign patterns and 5 star sign patterns that require H4.

2.1. Path sign patterns of order 4. Up to equivalence, the following are the

only 4 × 4 path sign patterns that are potentially stable, sign nonsingular, not sign

stable, and for which its negative is not potentially stable (see [6] and [8]):

P1 =




0 + 0 0

− − + 0

0 + 0 +

0 0 − −


 , P2 =




0 + 0 0

+ − + 0

0 − 0 +

0 0 + −


 , P3 =




0 + 0 0

− − + 0

0 + − +

0 0 − −


 ,
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P4 =




0 + 0 0

− − + 0

0 + − +

0 0 − 0


 , P5 =




− + 0 0

+ + + 0

0 − − +

0 0 + 0


 .

Since P1,P2,P3, and P4 have only nonpositive entries on the diagonal, Theorem 2.3

in [1] applies; i.e., if any one of them allows H4, then it also requires H4. The following

result is immediate from this theorem and the table of realizations below.

Theorem 2.3. The path sign patterns P1, P2, P3, and P4 require H4.

Realization of Sign Pattern ri (0, 4, 0, 0) ri (0, 2, 0, 2) ri (2, 2, 0, 0)








0 1 0 0

−1 −1 1 0

0 a 0 1

0 0 −1 −1









∈ Q(P1) a = 0.76
some

a ∈ (0.76, 0.77)
a = 0.77









0 1 0 0

1 −1 1 0

0 −a 0 1

0 0 1 −1









∈ Q(P2) a = 3.24
some

a ∈ (3.23, 3.24)
a = 3.23









0 1 0 0

−1 −1 1 0

0 a −1 1

0 0 −1 −1









∈ Q(P3) a = 1.65
some

a ∈ (1.65, 1.66)
a = 1.66









0 1 0 0

−1 −1 1 0

0 a −1 1

0 0 −1 0









∈ Q(P4) a = 0.5 a = 1 a = 2

The next result shows that the above is also true for P5, which is a superpattern

of a sign pattern equivalent to P2.

Theorem 2.4. The path sign pattern P5 requires H4.

Proof. To consider refined inertia, any realization of P5 can be normalized to

M =




−a 1 0 0

d b 1 0

0 −e −c 1

0 0 f 0


 ∈ Q(P5),

where a, b, c, d, e, f ∈ R
+. The characteristic polynomial of M is x4 + p1x

3 + p2x
2 +

p3x+ p4 with

p1 = a+ c− b

p2 = ac+ e− ab− bc− d− f

p3 = ae+ bf − abc− cd− af

p4 = abf + fd.
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Define the map χ : R
6 → R

4 by χ(a, b, c, d, e, f) = (p1, p2, p3, p4). The Jacobian

matrix of the map χ, i.e., [∂(p1,...,p4)
∂(a,...,f) ] is

Jacχ =




1 −1 1 0 0 0

c− b −a− c a− b −1 1 −1

e− f − bc f − ac −ab− d −c a b− a

bf af 0 f 0 d+ ab


 .

The 4 × 4 submatrix consisting of columns 1, 2, 4 and 5 has determinant fe, and

hence, Jacχ has rank 4. Since −P5 is not potentially stable [6, 8], P5 does not

allow refined inertia (4, 0, 0, 0), and thus by Observation 1.1 it also does not allow

(2, 0, 0, 2) or (0, 0, 0, 4). Fix a = 1, b = 0.5, c = 2, d = 0.05, and f = 0.1. If

e = 1.24, then ri(M) = (0, 4, 0, 0); if e = 1.23, then ri(M) = (2, 2, 0, 0). Therefore,

by continuity, there is a value of e such that 1.23 < e < 1.24 with ri(M) = (0, 2, 0, 2).

Hence, P5 allows H4 and since it does not allow (4, 0, 0, 0), (2, 0, 0, 2), or (0, 0, 0, 4),

by Observation 2.2 it requires H4.

2.2. Star sign patterns of order 4. Up to equivalence, the following are the

only 4 × 4 star sign patterns that are potentially stable, sign nonsingular, not sign

stable, and for which its negative is not potentially stable (see [6]):

S1 =




− + + +

− − 0 0

+ 0 − 0

− 0 0 0


 , S2 =




− + + +

+ − 0 0

+ 0 − 0

− 0 0 0


 , S3 =




0 + + +

− 0 0 0

+ 0 − 0

− 0 0 −


 ,

S4 =




− + + +

+ − 0 0

− 0 + 0

+ 0 0 0


 , S5 =




+ + + +

− 0 0 0

− 0 − 0

− 0 0 −


 .

Since each of the patterns S1, S2, and S3 requires negative trace, the following

result is immediate from [1, Theorem 2.3] and the table of realizations below.

Theorem 2.5. The star sign patterns S1, S2, and S3 require H4.
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Realization of Sign Pattern ri (0, 4, 0, 0) ri (0, 2, 0, 2) ri (2, 2, 0, 0)








−0.01 1 1 1

−1 −a 0 0

1 0 −1 0

−1 0 0 0









∈ Q(S1) a = 0.9
some

a ∈ (0.8, 0.9)
a = 0.8









−1 1 1 1

1 −a 0 0

1 0 −1 0

−1 0 0 0









∈ Q(S2) a = 2.6
some

a ∈ (2.5, 2.6)
a = 2.5









0 1 1 1

−1 0 0 0

1 0 −1 0

−a 0 0 −1









∈ Q(S3) a = 2 a = 1 a = 0.5

By eliminating the other three refined inertias in Observation 2.2 and finding a

realization for each refined inertia in H4, we now show that sign patterns S4 and S5

require H4.

Theorem 2.6. The star sign pattern S4 requires H4.

Proof. To consider refined inertia, any realization of S4 can be normalized to

M =




−1 1 1 1

c −a 0 0

−d 0 b 0

e 0 0 0


 ,

where a, b, c, d, e ∈ R
+. The characteristic polynomial of M is cM (x) = x4 + p1x

3 +

p2x
2 + p3x+ p4, where

p1 = a− b+ 1

p2 = a− ab− b− c+ d− e

p3 = ad− ab− ae+ bc+ be

p4 = abe.

The normalized form M satisfies the conditions of Observation 1.1 by defining the

map χ : R5 → R
4 as χ(a, b, c, d, e) = (p1, p2, p3, p4). The Jacobian matrix of the map

χ is

Jacχ =




1 −1 0 0 0

1− b −1− a −1 1 −1

d− b− e c− a+ e b a b− a

be ae 0 0 ab


 .

Taking the 4 × 4 submatrix formed by the first, third, fourth and fifth columns of

Jacχ, the determinant is −(a2b + ab2), which is nonzero since a, b > 0. Therefore,
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Jacχ has rank 4. Since −S4 does not appear in [6], it is not potentially stable, and

thus S4 does not allow refined inertia (4, 0, 0, 0). Consequently S4 does not allow

refined inertia (2, 0, 0, 2) or (0, 0, 0, 4) by Observation 1.1. Fix a = c = e = 1 and

b = 0.1. If d = 2, then ri(M) = (0, 4, 0, 0); if d = 1.9, then ri(M) = (2, 2, 0, 0).

By continuity and the sign nonsingularity of S4, there exists a value of d such that

1.9 < d < 2 with ri(M) = (0, 2, 0, 2). Therefore, by Observation 2.2, the star sign

pattern S4 requires H4.

Lemma 2.7. The star sign pattern S5 allows H4.

Proof. Consider the matrix

M =




f 1 1 1

−c 0 0 0

−d 0 −a 0

−e 0 0 −b


 ∈ Q(S5),

where a, b, c, d, e, f ∈ R
+. Fix a = b = c = d = e = 1. If f = 0.5, then ri(M) =

(0, 4, 0, 0); if f = 0.6, then ri(M) = (2, 2, 0, 0). Therefore, by continuity, negativity

of the trace and the sign nonsingularity of S5, there exists a value of f such that

0.5 < f < 0.6 with ri(M) = (0, 2, 0, 2). Thus S5 allows H4.

Theorem 2.8. The star sign pattern S5 requires H4.

Proof. To consider refined inertia, any realization of S5 can be normalized to

M =




1 1 1 1

−c 0 0 0

−d 0 −a 0

−e 0 0 −b




where a, b, c, d, e ∈ R
+. The characteristic polynomial of M is cM (x) = x4 + p1x

3 +

p2x
2 + p3x+ p4, where

p1 = a+ b− 1

p2 = ab− a− b+ c+ d+ e

p3 = ac− ab+ ae+ bc+ bd

p4 = abc.

If S5 allows refined inertia (0, 0, 0, 4), then there exists an M with characteristic

polynomial x4 + p2x
2 + p4, where p2, p4 > 0. If p1 = a + b − 1 = 0 then a = 1 − b.

Thus since a > 0 it follows that b < 1. Now substituting a = 1− b into p3 = 0 gives

c = e(b− 1) + b(1− b− d)

= (e − b)(b− 1)− bd.
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Since c > 0 and b < 1, the first equality gives d < 1− b and the second equality gives

e < b. Now substituting a and c into p2 gives

p2 = 2b− 2b2 + d− 1 + be− bd

= (1− b)(d− 1 + b) + b(e− b).

Then 1 − b > 0, d − 1 + b < 0 and e − b < 0 imply that p2 < 0. Thus S5 does not

allow refined inertia (0, 0, 0, 4). Since −S5 is not potentially stable [6], it follows that

S5 does not allow refined inertia (4, 0, 0, 0).

Finally, suppose that S5 allows refined inertia (2, 0, 0, 2). Then the coefficients of

the characteristic polynomial satisfy

p1 < 0, p2 > 0, p3 < 0, and p4 > 0.

Thus p1 = a+ b− 1 < 0. Now consider the following three cases.

Case 1 a = b. Coefficients p1, p2, and p3 become

p1 = 2b− 1

p2 = b2 − 2b+ c+ d+ e

p3 = b(c− b+ e + c+ d).

First note that 2b− 1 < 0 and so b < 1
2 . Since p3 < 0, it follows that b > c+ d+ e+ c,

and in particular b > c + d + e. But this implies that p2 = b(b − 2) + c + d + e <

−b + c + d + e < 0, which is a contradiction. Thus b 6= a if M has refined inertia

(2, 0, 0, 2).

Case 2 a > b, i.e., a = b+ ǫ for ǫ > 0. As before consider the coefficients

p1 = 2b+ ǫ− 1

p2 = b(b+ ǫ)− b− ǫ− b+ c+ d+ e

p3 = bc+ ǫc− b2 − bǫ+ be+ ǫe+ bc+ bd.

Since p1 < 0, 2b + ǫ − 1 < 0 and so 2b + ǫ < 1. Since p3 < 0, it follows that

−(b+ ǫ)b+(b+ ǫ)c+(b+ ǫ)e+ bc+ bd < 0 and so b+ ǫ > c+ d+ e+ c+ ǫ
b
(c+ e), and

in particular b+ ǫ > c+ d+ e. Finally, this gives p2 = −b(2− ǫ− b)− ǫ+ c+ d+ e <

−b− ǫ+ c+ d+ e < 0, which is a contradiction. Therefore, if a > b, then M does not

have refined inertia (2, 0, 0, 2).

Case 3 a < b. The proof of this case follows from that of Case 2 by interchanging e

and d in the expression for p3, and by replacing b with a throughout.
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Therefore, these three cases imply that S5 does not allow refined inertia (2, 0, 0, 2).

By Observation 2.2 and Lemma 2.7, S5 requires H4.

In order to obtain a characterization of the 4 × 4 tree sign patterns that require

H4, we started with the list of potentially stable path and star sign patterns in [6, 8].

Elimination of those sign patterns that are sign stable or not sign nonsingular resulted

in 21 tree sign patterns P1, P2, P3, P4, P5 and S1, S2, S3, S4, S5 above together with

P6, P7, P8, P9, P10, P11 and S6, S7, S8, S9, S10 in the Appendix. Each of the

patterns in the Appendix is shown to allow refined inertia (4, 0, 0, 0), i.e., its negative

is potentially stable, leading to the following characterization.

Theorem 2.9. A 4×4 tree sign pattern requires H4 if and only if it is potentially

stable, sign nonsingular, not sign stable, and its negative is not potentially stable.

3. Star sign patterns of order n.

3.1. Extending a star sign pattern. Using the star sign patterns S1 and S2,

we construct n × n star sign patterns that allow Hn. Note that these sign patterns

are potentially stable by [5, Theorems 4.3 and 3.5].

Theorem 3.1. With ± taken to be either + or −, the n× n star sign patterns

S =




− + + + + + . . . +

+ − 0 0 0 0 . . . 0

− 0 0 0 0 0 . . . 0

± 0 0 − 0 0 . . . 0

± 0 0 0 − 0 . . . 0
...

. . .
...

± 0 0 0 . . . 0 − 0

± 0 0 0 . . . 0 0 −




require Hn for n = 3 and 4, and allow Hn for n ≥ 5.

Proof. For n = 3, the sign pattern S is equivalent to a pattern in the Appendix

of [1], and thus requires H3. For n = 4, sign pattern S with the (4, 1) entry equal to

− is equivalent to S1 listed above. Taking the (4, 1) entry to be +, sign pattern S is

equivalent to S2 listed above. Thus for n = 4, S requires H4.

For n ≥ 5, we show that sign patterns S allow each refined inertia in Hn. Consider

sign pattern S̃ obtained from S by replacing the (j, 1) and (1, j) entries with zero for

j = 3, 4, . . . , n. The eigenvalues of S̃ are the eigenvalues of the leading principal 2× 2
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submatrix, one 0, and n− 3 negative real numbers. Consider

S̃ =




−1 1 0 0 0 0 . . . 0

a −1 0 0 0 0 . . . 0

0 0 0 0 0 0 . . . 0

0 0 0 −10 0 0 . . . 0

0 0 0 0 −10 0 . . . 0
...

. . .
...

0 0 0 0 . . . 0 −10 0

0 0 0 0 . . . 0 0 −10




∈ Q(S̃)

and

S(a, ǫ) =




−1 1 ǫ
n

ǫ
n

ǫ
n

ǫ
n

. . . ǫ
n

a −1 0 0 0 0 . . . 0

−ǫ 0 0 0 0 0 . . . 0

±ǫ 0 0 −10 0 0 . . . 0

±ǫ 0 0 0 −10 0 . . . 0
...

. . .
...

±ǫ 0 0 0 . . . 0 −10 0

±ǫ 0 0 0 . . . 0 0 −10




∈ Q(S)

with a, ǫ > 0.

If a > 1, then the determinant of the leading 2 × 2 principal submatrix of S̃ is

negative, and thus the eigenvalues of S̃ are one negative real number, one positive

real number, 0, and −10 with multiplicity n − 3. For ǫ > 0 sufficiently small, the

refined inertia of S(a, ǫ) is (2, n− 2, 0, 0), since the sign of the determinant of S(a, ǫ)

is (−1)n and the eigenvalues of S(a, ǫ) are small perturbations of those of S̃.

Now if a < 1, then n − 1 of the eigenvalues of S̃ are negative and one is zero.

From the properties above, for sufficiently small ǫ > 0, the refined inertia of S(a, ǫ) is

(0, n, 0, 0).

Fix a1 such that 1 < a1 < 8 and ǫ1 > 0 sufficiently small so that S(a1, ǫ1) has

refined inertia (2, n− 2, 0, 0), and fix a2 such that 0 < a2 < 1 and ǫ2 > 0 sufficiently

small so that S(a2, ǫ2) has refined inertia (0, n, 0, 0). Let ǫ3 = min{ǫ1, ǫ2,
1
2} and

note that S(a1, ǫ3) has refined inertia (2, n− 2, 0, 0) and S(a2, ǫ3) has refined inertia

(0, n, 0, 0). Now consider the matrices S(a, ǫ3) for a2 < a < a1. By Geršgorin’s disc

theorem [9, p. 14-5], each of these matrices has n − 3 eigenvalues that lie within a

closed disc of radius ǫ3 ≤ 1
2 centered at −10 in the complex plane. Furthermore, using

Geršgorin’s theorem, it follows that the other three eigenvalues lie within a disjoint

closed disc of radius 9 centered at the origin. Since the sign of the determinant of
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S(a, ǫ3) is (−1)n, as a decreases continuously from a1 to a2 there must be a value

â in the interval (a2, a1) for which the refined inertia of S(â, ǫ3) is (0, n − 2, 0, 2).

Therefore, the n×n star sign patterns S allow Hn for n ≥ 5 and require Hn for n = 3

and 4.

The next example gives one instance of the above sign patterns S that does not

require Hn for n ≥ 5.

Example 3.2. The sign pattern

S =




− + + + +

+ − 0 0 0

− 0 0 0 0

− 0 0 − 0

+ 0 0 0 −




allows H5 by Theorem 3.1. Consider the following realization

S =




−0.1 1 1 1 1

1000 −100 0 0 0

−1 0 0 0 0

−100 0 0 −1 0

50 0 0 0 −0.1



∈ Q(S).

Since the eigenvalues of S are approximately −109.1318, 3.3189±4.1492i, 0.0025, and

1.2914, the refined inertia of S is (4, 1, 0, 0). Hence, the sign pattern S does not

require H5.

It follows by continuity that any n × n sign pattern with S as a 5 × 5 principal

subpattern allows at least four eigenvalues with positive real part, and thus does not

require Hn.

3.2. A necessary condition for requiring Hn. If a star sign pattern requires

Hn, then its digraph has some additional structure, namely that exactly one leaf

vertex does not have a loop. The next result follows immediately from [5, Theorems

3.5 and 4.2].

Lemma 3.3. [5] Let S = [σij ] be an n×n potentially stable star sign pattern with

1 as the center vertex in D(S) and without loss of generality σ1i = + for i = 2, . . . , n.

Then

(i) if σ11 ∈ {+, 0} then there exists i such that σi1 = − and σii = −, and

(ii) for i = 2, . . . , n,

|{i|σi1 = + and σii = +}| =

⌊
|{σii = +}|

2

⌋
.(3.1)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 26, pp. 620-635, September 2013



ELA

Refined Inertias of Tree Sign Patterns 631

Theorem 3.4. For n ≥ 3, let S = [σij ] be an n × n star sign pattern with 1 as

the center vertex in D(S). If S is sign nonsingular, potentially stable and not sign

stable, then there exists a unique i such that 2 ≤ i ≤ n and σii = 0.

Proof. Since all S ∈ Q(S) are nonsingular, at most one σii can be zero. We now

show by contradiction that at least one σii must be zero. Recall that without loss of

generality σ1i = + for i = 2, . . . , n. If σii 6= 0 for all i = 2, . . . , n, then one of the

following cases must occur.

Case 1. Let σii = − for i = 2, . . . , n. Then σi1 has the same sign for i = 2, . . . , n;

otherwise if say σi1σk1 = −, then any S = [sij ] ∈ Q(S) has terms in det(S)

−skks1isi1
∏

j 6=1,i,k

sjj and − siis1ksk1
∏

j 6=1,i,k

sjj

of opposite sign, violating the sign nonsingularity of S. If σi1 = + for all i = 2, . . . , n,

then S ∈ Q(S) is symmetrizable by a positive diagonal similarity. Thus since S is

potentially stable, sign nonsingular and symmetrizable, it must also be sign stable

(since for any S ∈ Q(S), all eigenvalues of S are real and thus negative). On the

other hand, if σi1 = − for i = 2, . . . , n, then S is sign stable if σ11 = − or 0 [3,

Corollary 10.2.3], and S is not sign nonsingular if σ11 = +. Thus each case gives a

contradiction.

Case 2. Let σ11 = − and σii = + for some i such that 2 ≤ i ≤ n. Since S is potentially

stable and sign nonsingular with sgn(det(S)) = sgn((−1)n) for all S ∈ Q(S), there

exists k 6= i such that σkk = +. Therefore, by Lemma 3.3 (ii), since the right hand

side of (3.1) is at least one, the equality in (3.1) implies that i and k can be chosen,

without loss of generality, so that σi1 = − and σk1 = +. Therefore, as in Case 1, any

S ∈ Q(S) has two terms in det(S) of opposite sign, violating the sign nonsingularity

of S.

Case 3. Let σ11 ∈ {+, 0} and σii = + for some i such that 2 ≤ i ≤ n. By Lemma 3.3

(ii), i can be chosen such that σi1 = −. By Lemma 3.3 (i), there exists a k such that

σk1 = − and σkk = −. Thus, as in Case 1, the sign nonsingularity of S is violated.

The next result follows immediately from Theorem 3.4, since if S requires Hn

then it is potentially stable, sign nonsingular and not sign stable.

Corollary 3.5. For n ≥ 3, let S = [σij ] be an n × n star sign pattern with 1

as the center vertex in D(S). If S requires Hn, then there exists a unique i such that

2 ≤ i ≤ n and σii = 0.
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4. Reducible sign patterns. Reducible sign patterns that either require or

allow Hn are considered in [1]. The following result is an extension of [1, Observation

1.5] for the requires problem.

Theorem 4.1. Suppose A =

[
A1 ♯

O A2

]
, where A1 is a sign pattern of order

n1, A2 is a sign pattern of order n2 and ♯ denotes an arbitrary n1 × n2 sign pattern.

Then A requires Hn1+n2
if and only if exactly one sign pattern Ai requires Hni

and

the other sign pattern Aj is sign stable.

Proof. Suppose first without loss of generality that A1 requires Hn1
and A2 is

sign stable. Therefore, any realization of A necessarily has refined inertia in Hn1+n2

and A requires Hn1+n2
.

Conversely, if A requires Hn1+n2
, then exactly one sign pattern Ai requires Hni

,

in which case the other sign pattern Aj must be sign stable.

Now consider the allows problem for the reducible sign pattern A in Theorem 4.1.

From [1, Observation 1.5], if Ai allows Hni
and Aj is potentially stable with distinct

i, j ∈ {1, 2}, then A = Ai⊕Aj allows Hni+nj
. However the following proposition and

example show that the converse is false.

Proposition 4.2. Let

P =




0 + 0 0 0

− 0 + 0 0

0 − − + 0

0 0 − 0 +

0 0 0 − 0



.

The path sign pattern P allows only two refined inertias, namely (0, 5, 0, 0) and

(0, 3, 0, 2).

Proof. First notice that P satisfies the hypotheses of [3, Theorem 10.2.1] and so

it is sign semi-stable, i.e., does not allow any eigenvalues with positive real part. Thus

since P is sign nonsingular with negative trace and sign semi-stable, the only possible

refined inertias are (0, 1, 0, 4), (0, 3, 0, 2) and (0, 5, 0, 0). To eliminate refined inertia

(0, 1, 0, 4) consider

P =




0 1 0 0 0

−b 0 1 0 0

0 −c −a 1 0

0 0 −d 0 1

0 0 0 −e 0



∈ Q(P)

where a, b, c, d, e ∈ R
+, which has characteristic polynomial cA(x) = x5 + ax4 +
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(b + c + d + e)x3 + a(b + e)x2 + (bd + be + ce)x + abe. If A has refined inertia

(0, 1, 0, 4), then the characteristic polynomial of A is (x + α)(x2 + β)(x2 + γ) =

x5 + αx4 + (β + γ)x3 + α(β + γ)x2 + βγx+ αβγ with α, β, γ ∈ R
+. Equating these

polynomials gives

a = α

a(b+ e) = α(β + γ) ⇒ b+ e = β + γ

b+ c+ d+ e = β + γ ⇒ c+ d = 0.

This is a contradiction and so P does not allow refined inertia (0, 1, 0, 4). If P is a

realization of P with all nonzero entries having magnitude 1, then ri(P ) = (0, 3, 0, 2).

If P̃ is obtained from P by changing the (2, 1) entry to −2, then ri(P̃ ) = (0, 5, 0, 0).

Therefore, the only refined inertias allowed by P are (0, 3, 0, 2) and (0, 5, 0, 0).

Example 4.3. The path sign patterns

P1 =




0 + 0 0 0

− 0 + 0 0

0 − − + 0

0 0 − 0 +

0 0 0 − 0




and P2 =




− + 0 0

+ − + 0

0 + − +

0 0 + −




do not allow H5 and H4, respectively, however A = P1 ⊕ P2 allows, but does not

require, H9. To see this, first note that P1 is sign semi-stable by Proposition 4.2.

Hence, P1 does not allow refined inertia (2, 3, 0, 0) and consequently does not allow

H5. Next notice that since any realization of P2 is symmetrizable, P2 does not allow

refined inertia (0, 2, 0, 2). Therefore, P2 does not allow H4. However, P2 is potentially

stable and so it allows refined inertia (0, 4, 0, 0). Using a realization of P1 that is

stable and a realization of P2 that is stable, A allows refined inertia (0, 9, 0, 0). By

Observation 4.2 there is a realization P1 ∈ Q(P1) that has refined inertia (0, 3, 0, 2).

Using a realization of P2 that is stable, A allows refined inertia (0, 7, 0, 2). Finally if

P̃2 is obtained from P2 by replacing the diagonal entries with zero, then the refined

inertia of any realization P̃2 ∈ Q(P̃2) is (2, 2, 0, 0), since all eigenvalues of P̃2 are real,

nonzero and (from the characteristic polynomial) −α is an eigenvalue if and only if

α is an eigenvalue. Thus there exists an ǫ > 0 sufficiently small so that P̃2 − ǫI has

refined inertia (2, 2, 0, 0). Using this realization of P2 and a realization of P1 that is

stable gives a realization of A with refined inertia (2, 7, 0, 0). Therefore, A allows H9.

Finally, using the realizations P1 and P̃2 − ǫI above gives a realization of A that has

refined inertia (2, 5, 0, 2) and so A does not require H9.

5. Concluding remarks. Each path sign pattern with n = 3 (listed in [1,

Appendix]) and n = 4 (listed in Section 2.1 above) that requires Hn has a zero in

the (1, 1) entry, the (n, n) entry or both, i.e., at at least one leaf in its digraph. By
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Corollary 3.5, each star sign pattern of order n ≥ 3 that requires Hn has a zero at

a unique leaf vertex in its digraph, but the question of whether or not a path sign

pattern P of order n ≥ 5 that requires Hn must have a zero at a leaf vertex in D(P)

remains open. The question also remains open as to whether or not this is true for

every tree sign pattern A with order n ≥ 5 that is potentially stable, sign nonsingular

and not sign stable.

Necessary and sufficient conditions for a tree sign pattern to require H3 are given

by [1, Theorem 2.1] and to require H4 by Theorem 2.9. The requires problem for Hn

with n ≥ 5 remains open.

6. Appendix. In addition to P1, . . . ,P5 and S1, . . . ,S5, up to equivalence there

are eleven 4×4 tree sign patterns from [6] and [8] that are sign nonsingular, potentially

stable and not sign stable. We now list these sign patterns and show below that they

allow refined inertia (4, 0, 0, 0), and thus do not require H4.

Let

P6 =




0 + 0 0

− + + 0

0 − 0 +

0 0 − −


 , P7 =




0 + 0 0

− + + 0

0 − − +

0 0 − −


 , P8 =




+ + 0 0

− 0 + 0

0 − − +

0 0 − 0


 ,

P9 =




+ + 0 0

− + + 0

0 − − +

0 0 − 0


 , P10 =




0 + 0 0

− + + 0

0 − − +

0 0 − 0


 , P11 =




0 + 0 0

+ − + 0

0 − + +

0 0 + 0


 ,

S6 =




− + + +

− − 0 0

− 0 + 0

+ 0 0 0


 , S7 =




− + + +

+ + 0 0

− 0 + 0

− 0 0 0


 , S8 =




0 + + +

+ 0 0 0

− 0 + 0

− 0 0 −


 ,

S9 =




+ + + +

− 0 0 0

+ 0 − 0

− 0 0 −


 , S10 =




+ + + +

− + 0 0

+ 0 0 0

− 0 0 −


 .

Each of these sign patterns is equivalent to the negative of one of these sign patterns,

as the following table specifies.
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Sign pattern Negative is equivalent to

P6 P8

P7 P9

P10 P10

P11 P11

S6 S10

S7 S9

S8 S8

Considering for example S6 and S10, if all entries in S6 are negated, then a sign

pattern that is equivalent to S10 is obtained and vice versa. Since these two sign

patterns are potentially stable [6], taking a stable realization of S6 and negating it

gives a matrix that has four eigenvalues with positive real part and a sign pattern

equivalent to S10. Therefore, S10 does not require H4. Similarly S6 does not require

H4. By a similar argument, these 11 sign patterns all allow refined inertia (4, 0, 0, 0)

and hence do not require H4. However, it can be shown with numerical examples that

each sign pattern allows H4.
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