# REFINED INERTIAS OF TREE SIGN PATTERNS* 

COLIN GARNETT ${ }^{\dagger}$, D.D. OLESKY ${ }^{\ddagger}$, AND P. VAN DEN DRIESSCHE ${ }^{\dagger}$


#### Abstract

The refined inertia $\left(n_{+}, n_{-}, n_{z}, 2 n_{p}\right)$ of a real matrix is the ordered 4 -tuple that subdivides the number $n_{0}$ of eigenvalues with zero real part in the inertia ( $n_{+}, n_{-}, n_{0}$ ) into those that are exactly zero $\left(n_{z}\right)$ and those that are nonzero $\left(2 n_{p}\right)$. For $n \geq 2$, the set of refined inertias $\mathbb{H}_{n}=\{(0, n, 0,0),(0, n-2,0,2),(2, n-2,0,0)\}$ is important for the onset of Hopf bifurcation in dynamical systems. Tree sign patterns of order $n$ that require or allow the refined inertias $\mathbb{H}_{n}$ are considered. For $n=4$, necessary and sufficient conditions are proved for a tree sign pattern (necessarily a path or a star) to require $\mathbb{H}_{4}$. For $n \geq 3$, a family of $n \times n$ star sign patterns that allows $\mathbb{H}_{n}$ is given, and it is proved that if a star sign pattern requires $\mathbb{H}_{n}$, then it must have exactly one zero diagonal entry associated with a leaf in its digraph.


Key words. Eigenvalues, Tree sign pattern, Refined inertia, Hopf bifurcation.

AMS subject classifications. 15B35, 15A18, 05C50.

1. Introduction. An $n \times n$ sign pattern is an $n \times n$ matrix with entries from $\{+,-, 0\}$. The $\operatorname{sign}, \operatorname{sgn}(a)$, of a real number $a$ is defined by $\operatorname{sgn}(a)=+,-$, or 0 when $a>0, a<0$, or $a=0$, respectively. The sign pattern of a real matrix $A=\left[a_{i j}\right]$ is the sign pattern $\mathcal{A}=\operatorname{sgn}(A)=\left[\operatorname{sgn}\left(a_{i j}\right)\right]$; matrix $A$ is called a realization of $\mathcal{A}$. The sign pattern class $Q(\mathcal{A})$ of the $\operatorname{sign}$ pattern $\mathcal{A}$ is the set $Q(\mathcal{A})=\{A \mid \operatorname{sgn}(A)=\mathcal{A}\}$. The digraph $D(\mathcal{A})$ of a sign pattern $\mathcal{A}=\left[\alpha_{i j}\right]$ has $n$ vertices, an arc from $i$ to $j$ if $\alpha_{i j} \neq 0$ and a loop at vertex $i$ if $\alpha_{i i} \neq 0$. The signed digraph of sign pattern $\mathcal{A}$ is the digraph of $\mathcal{A}$ with $\alpha_{i j}$ on the arc from $i$ to $j$ if $\alpha_{i j} \neq 0$ and $\alpha_{i i}$ on the loop at vertex $i$ if $\alpha_{i i} \neq 0$.

As defined in [7, the refined inertia $\operatorname{ri}(A)$ of a real $n \times n$ matrix $A$ is the ordered 4 -tuple ( $n_{+}, n_{-}, n_{z}, 2 n_{p}$ ) such that $n_{+}$(resp., $n_{-}$) is the number of eigenvalues (including multiplicities) of $A$ with positive (resp., negative) real part, and $n_{z}$ (resp., $2 n_{p}$ ) is the number of zero eigenvalues (resp., nonzero pure imaginary eigenvalues) of $A$. Here $n_{+}+n_{-}+n_{z}+2 n_{p}=n$. The inertia of $A$ is $\left(n_{+}, n_{-}, n_{z}+2 n_{p}\right)$, thus the refined inertia subdivides those eigenvalues with zero real part and distinguishes between those that are exactly zero and those that are nonzero.

[^0]A sign pattern $\mathcal{A}$ is sign nonsingular if $n_{z}=0$ (i.e., $\left.\operatorname{det}(A) \neq 0\right)$ for all $A \in Q(\mathcal{A})$; see [3]. An $n \times n \operatorname{sign}$ pattern $\mathcal{A}$ is potentially stable if there is a matrix $A \in Q(\mathcal{A})$ such that $n_{-}=n$. An $n \times n$ sign pattern $\mathcal{A}$ is sign stable if $n_{-}=n$ for all $A \in Q(\mathcal{A})$. Each of these properties is invariant under sign pattern equivalence (i.e., transposition, permutation similarity and signature similarity). Multiplying a matrix $A$ by a positive scalar, one nonzero diagonal entry can be set to have magnitude 1 when refined inertia is considered. Furthermore, for an $n \times n$ irreducible matrix $A \in Q(\mathcal{A})$, without loss of generality $n-1$ nonzero off-diagonal entries corresponding to a spanning tree of $D(\mathcal{A})$ can be set to have magnitude 1 by a positive diagonal similarity (see, e.g., [2, Lemma 2.3]).

The following observation, which is Lemma 3.4 (iii) in [4], is used to prove some results in Section 2

Observation 1.1. [4] Suppose $\mathcal{A}$ is a sign pattern that has a realization $A$ with $\operatorname{ri}(A)=\left(n_{+}, n_{-}, n_{z}, 2 n_{p}\right)$ that allows a full rank Jacobian matrix. If $n_{p} \geq 1$, then there exist $A_{1}, A_{2} \in Q(\mathcal{A})$ such that the refined inertias of $A_{1}$ and $A_{2}$ are $\left(2+n_{+}, n_{-}, n_{z}, 2\left(n_{p}-1\right)\right)$ and $\left(n_{+}, 2+n_{-}, n_{z}, 2\left(n_{p}-1\right)\right)$, respectively.

Hopf bifurcation is of interest in the study of dynamical systems. To connect Hopf bifurcation in a dynamical system to refined inertia, for $n \geq 2$ let $\mathbb{H}_{n}=$ $\{(0, n, 0,0),(0, n-2,0,2),(2, n-2,0,0)\}$, as defined in [1]. A sign pattern $\mathcal{A}$ requires refined inertia $\mathbb{H}_{n}$ if $\mathbb{H}_{n}=\{\operatorname{ri}(A) \mid A \in Q(\mathcal{A})\}$. A sign pattern $\mathcal{A}$ allows refined inertia $\mathbb{H}_{n}$ if $\mathbb{H}_{n} \subseteq\{\operatorname{ri}(A) \mid A \in Q(\mathcal{A})\}$. Consider an $n$-dimensional dynamical system linearized about an equilibrium with Jacobian matrix having sign pattern $\mathcal{A}$. Let $a$ be a parameter of the system and $A\left(a_{i}\right)$ be the Jacobian matrix with $a=a_{i}$. If $a_{1}<a_{2}<a_{3}$ or $a_{1}>a_{2}>a_{3}$ and $\operatorname{ri}\left(A\left(a_{1}\right)\right)=(0, n, 0,0), \operatorname{ri}\left(A\left(a_{2}\right)\right)=(0, n-2,0,2)$, and $\operatorname{ri}\left(A\left(a_{3}\right)\right)=(2, n-2,0,0)$, then $\mathcal{A}$ allows $\mathbb{H}_{n}$ and Hopf bifurcation may occur giving rise to periodic solutions. The same idea applies for dynamical systems with magnitude restrictions on some entries of $\mathcal{A}$; for examples from different applications, see 1].

Clearly, if $\mathcal{A}$ requires $\mathbb{H}_{n}$ then $\mathcal{A}$ is potentially stable and sign nonsingular with $\operatorname{sgn}(\operatorname{det}(A))=\operatorname{sgn}\left((-1)^{n}\right)$ for all $A \in Q(\mathcal{A})$. Furthermore, if $\mathcal{A}$ requires $\mathbb{H}_{n}$ then $\mathcal{A}$ is not sign stable and $-\mathcal{A}$ is not potentially stable.

Some results for the requires $\mathbb{H}_{n}$ problem can be found in [1]. It is shown in [1, Theorem 2.1] that a $3 \times 3$ sign nonsingular sign pattern allows $\mathbb{H}_{3}$ if and only if it requires $\mathbb{H}_{3}$. Theorem 2.3 in [1] states that if a $4 \times 4$ sign nonsingular sign pattern requires a negative trace and allows $\mathbb{H}_{4}$, then it requires $\mathbb{H}_{4}$. It is conjectured in [1] that no $n \times n$ sign pattern requires $\mathbb{H}_{n}$ for $n \geq 8$ and an example of a $7 \times 7$ sign pattern that requires $\mathbb{H}_{7}$ is given.

In this paper, we focus on (irreducible) tree sign patterns, i.e., sign patterns $\mathcal{A}$ for which $D(\mathcal{A})$ is a doubly directed tree. In Section 2, we characterize the $4 \times 4$ tree sign patterns that require $\mathbb{H}_{4}$. Using one of these sign patterns, in Section 3 we describe a set of $n \times n$ star sign patterns that allow $\mathbb{H}_{n}$ for $n \geq 3$. With results from [5], we prove that an $n \times n$ star sign pattern that requires $\mathbb{H}_{n}$ must have exactly one zero diagonal entry associated with a leaf in its digraph. In Section 4 we extend a result from [1] on reducible sign patterns that require $\mathbb{H}_{n}$ and give a new example of a surprising reducible pattern that allows $\mathbb{H}_{9}$. Some concluding remarks are given in Section 5
2. Tree sign patterns. If $D(\mathcal{A})$ is a doubly directed path, then $\mathcal{A}$ is called a path sign pattern. If $D(\mathcal{A})$ is a doubly directed star, then $\mathcal{A}$ is called a star sign pattern. In any realization $A=\left[a_{i j}\right]$ of a path sign pattern, without loss of generality assume that adjacent vertices on the path are numbered $1,2, \ldots, n$, and entries $a_{i, i+1}=1$ for $i=1, \ldots, n-1$. In any realization $A=\left[a_{i j}\right]$ of a star sign pattern $\mathcal{A}$, without loss of generality take vertex 1 in $D(\mathcal{A})$ as the center vertex and the $n-1$ entries $a_{1, i}=1$ for $i=2, \ldots, n$.

Results from [1] can be used to show the following characterization.
TheOrem 2.1. [1] A $3 \times 3$ tree sign pattern requires $\mathbb{H}_{3}$ if and only if it is potentially stable and sign nonsingular, but not sign stable.

If the digraph of a $4 \times 4 \operatorname{sign}$ pattern $D(\mathcal{A})$ is a doubly directed tree, then $\mathcal{A}$ is either a path sign pattern or a star sign pattern.

ObSERVATION 2.2. If $\mathcal{A}$ is a $4 \times 4 \operatorname{sign}$ pattern that requires a positive determinant, then $A \in Q(\mathcal{A})$ can have one of only six possible refined inertias, namely the three refined inertias in $\mathbb{H}_{4},(4,0,0,0),(2,0,0,2)$ or $(0,0,0,4)$.

The potentially stable $4 \times 4$ path and star sign patterns are listed in [6] and [8]. Beginning with these sign patterns, we show that up to equivalence there are exactly 5 path sign patterns and 5 star sign patterns that require $\mathbb{H}_{4}$.
2.1. Path sign patterns of order 4 . Up to equivalence, the following are the only $4 \times 4$ path sign patterns that are potentially stable, sign nonsingular, not sign stable, and for which its negative is not potentially stable (see [6] and [8]):

$$
\mathcal{P}_{1}=\left[\begin{array}{cccc}
0 & + & 0 & 0 \\
- & - & + & 0 \\
0 & + & 0 & + \\
0 & 0 & - & -
\end{array}\right], \mathcal{P}_{2}=\left[\begin{array}{cccc}
0 & + & 0 & 0 \\
+ & - & + & 0 \\
0 & - & 0 & + \\
0 & 0 & + & -
\end{array}\right], \mathcal{P}_{3}=\left[\begin{array}{cccc}
0 & + & 0 & 0 \\
- & - & + & 0 \\
0 & + & - & + \\
0 & 0 & - & -
\end{array}\right]
$$

$$
\mathcal{P}_{4}=\left[\begin{array}{cccc}
0 & + & 0 & 0 \\
- & - & + & 0 \\
0 & + & - & + \\
0 & 0 & - & 0
\end{array}\right], \mathcal{P}_{5}=\left[\begin{array}{cccc}
- & + & 0 & 0 \\
+ & + & + & 0 \\
0 & - & - & + \\
0 & 0 & + & 0
\end{array}\right]
$$

Since $\mathcal{P}_{1}, \mathcal{P}_{2}, \mathcal{P}_{3}$, and $\mathcal{P}_{4}$ have only nonpositive entries on the diagonal, Theorem 2.3 in [1] applies; i.e., if any one of them allows $\mathbb{H}_{4}$, then it also requires $\mathbb{H}_{4}$. The following result is immediate from this theorem and the table of realizations below.

THEOREM 2.3. The path sign patterns $\mathcal{P}_{1}, \mathcal{P}_{2}, \mathcal{P}_{3}$, and $\mathcal{P}_{4}$ require $\mathbb{H}_{4}$.

| Realization of Sign Pattern | ri $(0,4,0,0)$ | ri $(0,2,0,2)$ | ri $(2,2,0,0)$ |
| :---: | :---: | :---: | :---: |
| $\left[\begin{array}{rrrr}0 & 1 & 0 & 0 \\ -1 & -1 & 1 & 0 \\ 0 & a & 0 & 1 \\ 0 & 0 & -1 & -1\end{array}\right] \in Q\left(\mathcal{P}_{1}\right)$ | $a=0.76$ | $\stackrel{\text { some }}{a \in(0.76,0.77)}$ | $a=0.77$ |
| $\left[\begin{array}{rrrr}0 & 1 & 0 & 0 \\ 1 & -1 & 1 & 0 \\ 0 & -a & 0 & 1 \\ 0 & 0 & 1 & -1\end{array}\right] \in Q\left(\mathcal{P}_{2}\right)$ | $a=3.24$ | $\begin{gathered} \text { some } \\ a \in(3.23,3.24) \end{gathered}$ | $a=3.23$ |
| $\left[\begin{array}{rrrr}0 & 1 & 0 & 0 \\ -1 & -1 & 1 & 0 \\ 0 & a & -1 & 1 \\ 0 & 0 & -1 & -1\end{array}\right] \in Q\left(\mathcal{P}_{3}\right)$ | $a=1.65$ | $\stackrel{\text { some }}{a \in(1.65,1.66)}$ | $a=1.66$ |
| $\left[\begin{array}{rrrr}0 & 1 & 0 & 0 \\ -1 & -1 & 1 & 0 \\ 0 & a & -1 & 1 \\ 0 & 0 & -1 & 0\end{array}\right] \in Q\left(\mathcal{P}_{4}\right)$ | $a=0.5$ | $a=1$ | $a=2$ |

The next result shows that the above is also true for $\mathcal{P}_{5}$, which is a superpattern of a sign pattern equivalent to $\mathcal{P}_{2}$.

Theorem 2.4. The path sign pattern $\mathcal{P}_{5}$ requires $\mathbb{H}_{4}$.
Proof. To consider refined inertia, any realization of $\mathcal{P}_{5}$ can be normalized to

$$
M=\left[\begin{array}{rrrr}
-a & 1 & 0 & 0 \\
d & b & 1 & 0 \\
0 & -e & -c & 1 \\
0 & 0 & f & 0
\end{array}\right] \in Q\left(\mathcal{P}_{5}\right)
$$

where $a, b, c, d, e, f \in \mathbb{R}^{+}$. The characteristic polynomial of $M$ is $x^{4}+p_{1} x^{3}+p_{2} x^{2}+$ $p_{3} x+p_{4}$ with

$$
\begin{aligned}
& p_{1}=a+c-b \\
& p_{2}=a c+e-a b-b c-d-f \\
& p_{3}=a e+b f-a b c-c d-a f \\
& p_{4}=a b f+f d
\end{aligned}
$$

Define the map $\chi: \mathbb{R}^{6} \rightarrow \mathbb{R}^{4}$ by $\chi(a, b, c, d, e, f)=\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$. The Jacobian matrix of the map $\chi$, i.e., $\left[\frac{\partial\left(p_{1}, \ldots, p_{4}\right)}{\partial(a, \ldots, f)}\right]$ is

$$
J a c_{\chi}=\left[\begin{array}{rrrrrr}
1 & -1 & 1 & 0 & 0 & 0 \\
c-b & -a-c & a-b & -1 & 1 & -1 \\
e-f-b c & f-a c & -a b-d & -c & a & b-a \\
b f & a f & 0 & f & 0 & d+a b
\end{array}\right]
$$

The $4 \times 4$ submatrix consisting of columns $1,2,4$ and 5 has determinant $f e$, and hence, $J a c_{\chi}$ has rank 4 . Since $-\mathcal{P}_{5}$ is not potentially stable [6, 8], $\mathcal{P}_{5}$ does not allow refined inertia $(4,0,0,0)$, and thus by Observation 1.1 it also does not allow $(2,0,0,2)$ or $(0,0,0,4)$. Fix $a=1, b=0.5, c=2, d=0.05$, and $f=0.1$. If $e=1.24$, then $\operatorname{ri}(M)=(0,4,0,0)$; if $e=1.23$, then $\operatorname{ri}(M)=(2,2,0,0)$. Therefore, by continuity, there is a value of $e$ such that $1.23<e<1.24$ with $\operatorname{ri}(M)=(0,2,0,2)$. Hence, $\mathcal{P}_{5}$ allows $\mathbb{H}_{4}$ and since it does not allow $(4,0,0,0)$, $(2,0,0,2)$, or $(0,0,0,4)$, by Observation 2.2 it requires $\mathbb{H}_{4}$. Z
2.2. Star sign patterns of order 4 . Up to equivalence, the following are the only $4 \times 4$ star sign patterns that are potentially stable, sign nonsingular, not sign stable, and for which its negative is not potentially stable (see [6]):

$$
\begin{gathered}
\mathcal{S}_{1}=\left[\begin{array}{cccc}
- & + & + & + \\
- & - & 0 & 0 \\
+ & 0 & - & 0 \\
- & 0 & 0 & 0
\end{array}\right], \mathcal{S}_{2}=\left[\begin{array}{cccc}
- & + & + & + \\
+ & - & 0 & 0 \\
+ & 0 & - & 0 \\
- & 0 & 0 & 0
\end{array}\right], \mathcal{S}_{3}=\left[\begin{array}{cccc}
0 & + & + & + \\
- & 0 & 0 & 0 \\
+ & 0 & - & 0 \\
- & 0 & 0 & -
\end{array}\right] \\
\mathcal{S}_{4}=\left[\begin{array}{cccc}
- & + & + & + \\
+ & - & 0 & 0 \\
- & 0 & + & 0 \\
+ & 0 & 0 & 0
\end{array}\right], \mathcal{S}_{5}=\left[\begin{array}{cccc}
+ & + & + & + \\
- & 0 & 0 & 0 \\
- & 0 & - & 0 \\
- & 0 & 0 & -
\end{array}\right]
\end{gathered}
$$

Since each of the patterns $\mathcal{S}_{1}, \mathcal{S}_{2}$, and $\mathcal{S}_{3}$ requires negative trace, the following result is immediate from [1, Theorem 2.3] and the table of realizations below.

TheOrem 2.5. The star sign patterns $\mathcal{S}_{1}, \mathcal{S}_{2}$, and $\mathcal{S}_{3}$ require $\mathbb{H}_{4}$.

| Realization of Sign Pattern ri $(0,4,0,0)$ ri $(0,2,0,2)$ ri $(2,2,0,0)$ <br> $\left[\begin{array}{rrrr}-0.01 & 1 & 1 & 1 \\ -1 & -a & 0 & 0 \\ 1 & 0 & -1 & 0 \\ -1 & 0 & 0 & 0\end{array}\right] \in Q\left(\mathcal{S}_{1}\right)$ $a=0.9$ some <br> $a \in(0.8,0.9)$ $a=0.8$ <br> $\left.\begin{array}{\|crrr}-1 & 1 & 1 & 1 \\ 1 & -a & 0 & 0 \\ 1 & 0 & -1 & 0 \\ -1 & 0 & 0 & 0\end{array}\right] \in Q\left(\mathcal{S}_{2}\right)$ $a=2.6$ $a \in(2.5,2.6)$ $a=2.5$ <br> $\left[\begin{array}{rrrr}0 & 1 & 1 & 1 \\ -1 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ -a & 0 & 0 & -1\end{array}\right] \in Q\left(\mathcal{S}_{3}\right)$ $a=2$ $a=1$ $a=0.5$ |
| :---: |

By eliminating the other three refined inertias in Observation 2.2 and finding a realization for each refined inertia in $\mathbb{H}_{4}$, we now show that sign patterns $\mathcal{S}_{4}$ and $\mathcal{S}_{5}$ require $\mathbb{H}_{4}$.

Theorem 2.6. The star sign pattern $\mathcal{S}_{4}$ requires $\mathbb{H}_{4}$.
Proof. To consider refined inertia, any realization of $\mathcal{S}_{4}$ can be normalized to

$$
M=\left[\begin{array}{rrrr}
-1 & 1 & 1 & 1 \\
c & -a & 0 & 0 \\
-d & 0 & b & 0 \\
e & 0 & 0 & 0
\end{array}\right],
$$

where $a, b, c, d, e \in \mathbb{R}^{+}$. The characteristic polynomial of $M$ is $c_{M}(x)=x^{4}+p_{1} x^{3}+$ $p_{2} x^{2}+p_{3} x+p_{4}$, where

$$
\begin{aligned}
& p_{1}=a-b+1 \\
& p_{2}=a-a b-b-c+d-e \\
& p_{3}=a d-a b-a e+b c+b e \\
& p_{4}=a b e
\end{aligned}
$$

The normalized form $M$ satisfies the conditions of Observation 1.1 by defining the map $\chi: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4}$ as $\chi(a, b, c, d, e)=\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$. The Jacobian matrix of the map $\chi$ is

$$
J a c_{\chi}=\left[\begin{array}{rrrrr}
1 & -1 & 0 & 0 & 0 \\
1-b & -1-a & -1 & 1 & -1 \\
d-b-e & c-a+e & b & a & b-a \\
b e & a e & 0 & 0 & a b
\end{array}\right]
$$

Taking the $4 \times 4$ submatrix formed by the first, third, fourth and fifth columns of $J a c_{\chi}$, the determinant is $-\left(a^{2} b+a b^{2}\right)$, which is nonzero since $a, b>0$. Therefore,
$J a c_{\chi}$ has rank 4. Since $-\mathcal{S}_{4}$ does not appear in [6], it is not potentially stable, and thus $\mathcal{S}_{4}$ does not allow refined inertia $(4,0,0,0)$. Consequently $\mathcal{S}_{4}$ does not allow refined inertia $(2,0,0,2)$ or $(0,0,0,4)$ by Observation 1.1 Fix $a=c=e=1$ and $b=0.1$. If $d=2$, then $\operatorname{ri}(M)=(0,4,0,0)$; if $d=1.9$, then $\operatorname{ri}(M)=(2,2,0,0)$. By continuity and the sign nonsingularity of $\mathcal{S}_{4}$, there exists a value of $d$ such that $1.9<d<2$ with $\operatorname{ri}(M)=(0,2,0,2)$. Therefore, by Observation 2.2, the star sign pattern $\mathcal{S}_{4}$ requires $\mathbb{H}_{4}$.

Lemma 2.7. The star sign pattern $\mathcal{S}_{5}$ allows $\mathbb{H}_{4}$.
Proof. Consider the matrix

$$
M=\left[\begin{array}{rrrr}
f & 1 & 1 & 1 \\
-c & 0 & 0 & 0 \\
-d & 0 & -a & 0 \\
-e & 0 & 0 & -b
\end{array}\right] \in Q\left(\mathcal{S}_{5}\right)
$$

where $a, b, c, d, e, f \in \mathbb{R}^{+}$. Fix $a=b=c=d=e=1$. If $f=0.5$, then $\operatorname{ri}(M)=$ $(0,4,0,0)$; if $f=0.6$, then $r i(M)=(2,2,0,0)$. Therefore, by continuity, negativity of the trace and the sign nonsingularity of $\mathcal{S}_{5}$, there exists a value of $f$ such that $0.5<f<0.6$ with $\operatorname{ri}(M)=(0,2,0,2)$. Thus $\mathcal{S}_{5}$ allows $\mathbb{H}_{4}$.

Theorem 2.8. The star sign pattern $\mathcal{S}_{5}$ requires $\mathbb{H}_{4}$.
Proof. To consider refined inertia, any realization of $\mathcal{S}_{5}$ can be normalized to

$$
M=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
-c & 0 & 0 & 0 \\
-d & 0 & -a & 0 \\
-e & 0 & 0 & -b
\end{array}\right]
$$

where $a, b, c, d, e \in \mathbb{R}^{+}$. The characteristic polynomial of $M$ is $c_{M}(x)=x^{4}+p_{1} x^{3}+$ $p_{2} x^{2}+p_{3} x+p_{4}$, where

$$
\begin{aligned}
& p_{1}=a+b-1 \\
& p_{2}=a b-a-b+c+d+e \\
& p_{3}=a c-a b+a e+b c+b d \\
& p_{4}=a b c
\end{aligned}
$$

If $\mathcal{S}_{5}$ allows refined inertia $(0,0,0,4)$, then there exists an $M$ with characteristic polynomial $x^{4}+p_{2} x^{2}+p_{4}$, where $p_{2}, p_{4}>0$. If $p_{1}=a+b-1=0$ then $a=1-b$. Thus since $a>0$ it follows that $b<1$. Now substituting $a=1-b$ into $p_{3}=0$ gives

$$
\begin{aligned}
c & =e(b-1)+b(1-b-d) \\
& =(e-b)(b-1)-b d .
\end{aligned}
$$

Since $c>0$ and $b<1$, the first equality gives $d<1-b$ and the second equality gives $e<b$. Now substituting $a$ and $c$ into $p_{2}$ gives

$$
\begin{aligned}
p_{2} & =2 b-2 b^{2}+d-1+b e-b d \\
& =(1-b)(d-1+b)+b(e-b)
\end{aligned}
$$

Then $1-b>0, d-1+b<0$ and $e-b<0$ imply that $p_{2}<0$. Thus $\mathcal{S}_{5}$ does not allow refined inertia $(0,0,0,4)$. Since $-\mathcal{S}_{5}$ is not potentially stable [6], it follows that $\mathcal{S}_{5}$ does not allow refined inertia ( $4,0,0,0$ ).

Finally, suppose that $\mathcal{S}_{5}$ allows refined inertia ( $2,0,0,2$ ). Then the coefficients of the characteristic polynomial satisfy

$$
p_{1}<0, p_{2}>0, p_{3}<0, \text { and } p_{4}>0
$$

Thus $p_{1}=a+b-1<0$. Now consider the following three cases.

Case $1 a=b$. Coefficients $p_{1}, p_{2}$, and $p_{3}$ become

$$
\begin{aligned}
& p_{1}=2 b-1 \\
& p_{2}=b^{2}-2 b+c+d+e \\
& p_{3}=b(c-b+e+c+d)
\end{aligned}
$$

First note that $2 b-1<0$ and so $b<\frac{1}{2}$. Since $p_{3}<0$, it follows that $b>c+d+e+c$, and in particular $b>c+d+e$. But this implies that $p_{2}=b(b-2)+c+d+e<$ $-b+c+d+e<0$, which is a contradiction. Thus $b \neq a$ if $M$ has refined inertia (2, 0, 0, 2).

Case 2 $a>b$, i.e., $a=b+\epsilon$ for $\epsilon>0$. As before consider the coefficients

$$
\begin{aligned}
& p_{1}=2 b+\epsilon-1 \\
& p_{2}=b(b+\epsilon)-b-\epsilon-b+c+d+e \\
& p_{3}=b c+\epsilon c-b^{2}-b \epsilon+b e+\epsilon e+b c+b d .
\end{aligned}
$$

Since $p_{1}<0,2 b+\epsilon-1<0$ and so $2 b+\epsilon<1$. Since $p_{3}<0$, it follows that $-(b+\epsilon) b+(b+\epsilon) c+(b+\epsilon) e+b c+b d<0$ and so $b+\epsilon>c+d+e+c+\frac{\epsilon}{b}(c+e)$, and in particular $b+\epsilon>c+d+e$. Finally, this gives $p_{2}=-b(2-\epsilon-b)-\epsilon+c+d+e<$ $-b-\epsilon+c+d+e<0$, which is a contradiction. Therefore, if $a>b$, then $M$ does not have refined inertia $(2,0,0,2)$.

Case $3 a<b$. The proof of this case follows from that of Case 2 by interchanging $e$ and $d$ in the expression for $p_{3}$, and by replacing $b$ with $a$ throughout.

Therefore, these three cases imply that $\mathcal{S}_{5}$ does not allow refined inertia $(2,0,0,2)$. By Observation 2.2 and Lemma 2.7 $\mathcal{S}_{5}$ requires $\mathbb{H}_{4}$.

In order to obtain a characterization of the $4 \times 4$ tree sign patterns that require $\mathbb{H}_{4}$, we started with the list of potentially stable path and star sign patterns in [6] 8. Elimination of those sign patterns that are sign stable or not sign nonsingular resulted in 21 tree sign patterns $\mathcal{P}_{1}, \mathcal{P}_{2}, \mathcal{P}_{3}, \mathcal{P}_{4}, \mathcal{P}_{5}$ and $\mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{3}, \mathcal{S}_{4}, \mathcal{S}_{5}$ above together with $\mathcal{P}_{6}, \mathcal{P}_{7}, \mathcal{P}_{8}, \mathcal{P}_{9}, \mathcal{P}_{10}, \mathcal{P}_{11}$ and $\mathcal{S}_{6}, \mathcal{S}_{7}, \mathcal{S}_{8}, \mathcal{S}_{9}, \mathcal{S}_{10}$ in the Appendix. Each of the patterns in the Appendix is shown to allow refined inertia ( $4,0,0,0$ ), i.e., its negative is potentially stable, leading to the following characterization.

Theorem 2.9. A $4 \times 4$ tree sign pattern requires $\mathbb{H}_{4}$ if and only if it potentially stable, sign nonsingular, not sign stable, and its negative is not potentially stable.

## 3. Star sign patterns of order $n$.

3.1. Extending a star sign pattern. Using the star sign patterns $\mathcal{S}_{1}$ and $\mathcal{S}_{2}$, we construct $n \times n$ star sign patterns that allow $\mathbb{H}_{n}$. Note that these sign patterns are potentially stable by [5, Theorems 4.3 and 3.5].

Theorem 3.1. With $\pm$ taken to be either + or - , the $n \times n$ star sign patterns

$$
\mathcal{S}=\left[\begin{array}{cccccccc}
- & + & + & + & + & + & \ldots & + \\
+ & - & 0 & 0 & 0 & 0 & \ldots & 0 \\
- & 0 & 0 & 0 & 0 & 0 & \ldots & 0 \\
\pm & 0 & 0 & - & 0 & 0 & \ldots & 0 \\
\pm & 0 & 0 & 0 & - & 0 & \ldots & 0 \\
\vdots & & & & & \ddots & & \vdots \\
\pm & 0 & 0 & 0 & \ldots & 0 & - & 0 \\
\pm & 0 & 0 & 0 & \ldots & 0 & 0 & -
\end{array}\right]
$$

require $\mathbb{H}_{n}$ for $n=3$ and 4 , and allow $\mathbb{H}_{n}$ for $n \geq 5$.
Proof. For $n=3$, the sign pattern $\mathcal{S}$ is equivalent to a pattern in the Appendix of [1] and thus requires $\mathbb{H}_{3}$. For $n=4$, $\operatorname{sign}$ pattern $\mathcal{S}$ with the $(4,1)$ entry equal to - is equivalent to $\mathcal{S}_{1}$ listed above. Taking the $(4,1)$ entry to be + , sign pattern $\mathcal{S}$ is equivalent to $\mathcal{S}_{2}$ listed above. Thus for $n=4, \mathcal{S}$ requires $\mathbb{H}_{4}$.

For $n \geq 5$, we show that sign patterns $\mathcal{S}$ allow each refined inertia in $\mathbb{H}_{n}$. Consider sign pattern $\widetilde{\mathcal{S}}$ obtained from $\mathcal{S}$ by replacing the $(j, 1)$ and $(1, j)$ entries with zero for $j=3,4, \ldots, n$. The eigenvalues of $\widetilde{\mathcal{S}}$ are the eigenvalues of the leading principal $2 \times 2$
submatrix, one 0 , and $n-3$ negative real numbers. Consider

$$
\widetilde{S}=\left[\begin{array}{rrrrrrrr}
-1 & 1 & 0 & 0 & 0 & 0 & \cdots & 0 \\
a & -1 & 0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & -10 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & -10 & 0 & \cdots & 0 \\
\vdots & & & & & \ddots & & \vdots \\
0 & 0 & 0 & 0 & \ldots & 0 & -10 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & -10
\end{array}\right] \in Q(\widetilde{\mathcal{S}})
$$

and

$$
S(a, \epsilon)=\left[\begin{array}{rrrrrrrr}
-1 & 1 & \frac{\epsilon}{n} & \frac{\epsilon}{n} & \frac{\epsilon}{n} & \frac{\epsilon}{n} & \ldots & \frac{\epsilon}{n} \\
a & -1 & 0 & 0 & 0 & 0 & \ldots & 0 \\
-\epsilon & 0 & 0 & 0 & 0 & 0 & \ldots & 0 \\
\pm \epsilon & 0 & 0 & -10 & 0 & 0 & \ldots & 0 \\
\pm \epsilon & 0 & 0 & 0 & -10 & 0 & \ldots & 0 \\
\vdots & & & & & \ddots & & \vdots \\
\pm \epsilon & 0 & 0 & 0 & \ldots & 0 & -10 & 0 \\
\pm \epsilon & 0 & 0 & 0 & \ldots & 0 & 0 & -10
\end{array}\right] \in Q(\mathcal{S})
$$

with $a, \epsilon>0$.
If $a>1$, then the determinant of the leading $2 \times 2$ principal submatrix of $\widetilde{S}$ is negative, and thus the eigenvalues of $\widetilde{S}$ are one negative real number, one positive real number, 0 , and -10 with multiplicity $n-3$. For $\epsilon>0$ sufficiently small, the refined inertia of $S(a, \epsilon)$ is $(2, n-2,0,0)$, since the sign of the determinant of $S(a, \epsilon)$ is $(-1)^{n}$ and the eigenvalues of $S(a, \epsilon)$ are small perturbations of those of $\widetilde{S}$.

Now if $a<1$, then $n-1$ of the eigenvalues of $\widetilde{S}$ are negative and one is zero. From the properties above, for sufficiently small $\epsilon>0$, the refined inertia of $S(a, \epsilon)$ is ( $0, n, 0,0$ ).

Fix $a_{1}$ such that $1<a_{1}<8$ and $\epsilon_{1}>0$ sufficiently small so that $S\left(a_{1}, \epsilon_{1}\right)$ has refined inertia ( $2, n-2,0,0$ ), and fix $a_{2}$ such that $0<a_{2}<1$ and $\epsilon_{2}>0$ sufficiently small so that $S\left(a_{2}, \epsilon_{2}\right)$ has refined inertia $(0, n, 0,0)$. Let $\epsilon_{3}=\min \left\{\epsilon_{1}, \epsilon_{2}, \frac{1}{2}\right\}$ and note that $S\left(a_{1}, \epsilon_{3}\right)$ has refined inertia $(2, n-2,0,0)$ and $S\left(a_{2}, \epsilon_{3}\right)$ has refined inertia $(0, n, 0,0)$. Now consider the matrices $S\left(a, \epsilon_{3}\right)$ for $a_{2}<a<a_{1}$. By Geršgorin's disc theorem [9, p. 14-5], each of these matrices has $n-3$ eigenvalues that lie within a closed disc of radius $\epsilon_{3} \leq \frac{1}{2}$ centered at -10 in the complex plane. Furthermore, using Geršgorin's theorem, it follows that the other three eigenvalues lie within a disjoint closed disc of radius 9 centered at the origin. Since the sign of the determinant of
$S\left(a, \epsilon_{3}\right)$ is $(-1)^{n}$, as $a$ decreases continuously from $a_{1}$ to $a_{2}$ there must be a value $\hat{a}$ in the interval $\left(a_{2}, a_{1}\right)$ for which the refined inertia of $S\left(\hat{a}, \epsilon_{3}\right)$ is $(0, n-2,0,2)$. Therefore, the $n \times n$ star sign patterns $\mathcal{S}$ allow $\mathbb{H}_{n}$ for $n \geq 5$ and require $\mathbb{H}_{n}$ for $n=3$ and 4 .

The next example gives one instance of the above sign patterns $\mathcal{S}$ that does not require $\mathbb{H}_{n}$ for $n \geq 5$.

Example 3.2. The sign pattern

$$
\mathcal{S}=\left[\begin{array}{ccccc}
- & + & + & + & + \\
+ & - & 0 & 0 & 0 \\
- & 0 & 0 & 0 & 0 \\
- & 0 & 0 & - & 0 \\
+ & 0 & 0 & 0 & -
\end{array}\right]
$$

allows $\mathbb{H}_{5}$ by Theorem 3.1 Consider the following realization

$$
S=\left[\begin{array}{rrrrr}
-0.1 & 1 & 1 & 1 & 1 \\
1000 & -100 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 \\
-100 & 0 & 0 & -1 & 0 \\
50 & 0 & 0 & 0 & -0.1
\end{array}\right] \in Q(\mathcal{S})
$$

Since the eigenvalues of $S$ are approximately $-109.1318,3.3189 \pm 4.1492 i, 0.0025$, and 1.2914, the refined inertia of $S$ is $(4,1,0,0)$. Hence, the sign pattern $\mathcal{S}$ does not require $\mathbb{H}_{5}$.

It follows by continuity that any $n \times n$ sign pattern with $\mathcal{S}$ as a $5 \times 5$ principal subpattern allows at least four eigenvalues with positive real part, and thus does not require $\mathbb{H}_{n}$.
3.2. A necessary condition for requiring $\mathbb{H}_{n}$. If a star sign pattern requires $\mathbb{H}_{n}$, then its digraph has some additional structure, namely that exactly one leaf vertex does not have a loop. The next result follows immediately from [5, Theorems 3.5 and 4.2].

Lemma 3.3. 5 Let $\mathcal{S}=\left[\sigma_{i j}\right]$ be an $n \times n$ potentially stable star sign pattern with 1 as the center vertex in $D(\mathcal{S})$ and without loss of generality $\sigma_{1 i}=+$ for $i=2, \ldots, n$. Then
(i) if $\sigma_{11} \in\{+, 0\}$ then there exists $i$ such that $\sigma_{i 1}=-$ and $\sigma_{i i}=-$, and
(ii) for $i=2, \ldots, n$,

$$
\begin{equation*}
\mid\left\{i \mid \sigma_{i 1}=+ \text { and } \sigma_{i i}=+\right\} \left\lvert\,=\left\lfloor\frac{\left|\left\{\sigma_{i i}=+\right\}\right|}{2}\right\rfloor\right. \tag{3.1}
\end{equation*}
$$

Theorem 3.4. For $n \geq 3$, let $\mathcal{S}=\left[\sigma_{i j}\right]$ be an $n \times n$ star sign pattern with 1 as the center vertex in $D(\mathcal{S})$. If $\mathcal{S}$ is sign nonsingular, potentially stable and not sign stable, then there exists a unique $i$ such that $2 \leq i \leq n$ and $\sigma_{i i}=0$.

Proof. Since all $S \in Q(\mathcal{S})$ are nonsingular, at most one $\sigma_{i i}$ can be zero. We now show by contradiction that at least one $\sigma_{i i}$ must be zero. Recall that without loss of generality $\sigma_{1 i}=+$ for $i=2, \ldots, n$. If $\sigma_{i i} \neq 0$ for all $i=2, \ldots, n$, then one of the following cases must occur.

Case 1. Let $\sigma_{i i}=-$ for $i=2, \ldots, n$. Then $\sigma_{i 1}$ has the same sign for $i=2, \ldots, n$; otherwise if say $\sigma_{i 1} \sigma_{k 1}=-$, then any $S=\left[s_{i j}\right] \in Q(\mathcal{S})$ has terms in $\operatorname{det}(S)$

$$
-s_{k k} s_{1 i} s_{i 1} \prod_{j \neq 1, i, k} s_{j j} \quad \text { and } \quad-s_{i i} s_{1 k} s_{k 1} \prod_{j \neq 1, i, k} s_{j j}
$$

of opposite sign, violating the sign nonsingularity of $\mathcal{S}$. If $\sigma_{i 1}=+$ for all $i=2, \ldots, n$, then $S \in Q(\mathcal{S})$ is symmetrizable by a positive diagonal similarity. Thus since $\mathcal{S}$ is potentially stable, sign nonsingular and symmetrizable, it must also be sign stable (since for any $S \in Q(\mathcal{S})$, all eigenvalues of $S$ are real and thus negative). On the other hand, if $\sigma_{i 1}=-$ for $i=2, \ldots, n$, then $\mathcal{S}$ is sign stable if $\sigma_{11}=-$ or 0 [3, Corollary 10.2.3], and $\mathcal{S}$ is not sign nonsingular if $\sigma_{11}=+$. Thus each case gives a contradiction.

Case 2. Let $\sigma_{11}=-$ and $\sigma_{i i}=+$ for some $i$ such that $2 \leq i \leq n$. Since $\mathcal{S}$ is potentially stable and sign nonsingular with $\operatorname{sgn}(\operatorname{det}(S))=\operatorname{sgn}\left((-1)^{n}\right)$ for all $S \in Q(\mathcal{S})$, there exists $k \neq i$ such that $\sigma_{k k}=+$. Therefore, by Lemma 3.3 (ii), since the right hand side of (3.1) is at least one, the equality in (3.1) implies that $i$ and $k$ can be chosen, without loss of generality, so that $\sigma_{i 1}=-$ and $\sigma_{k 1}=+$. Therefore, as in Case 1 , any $S \in Q(\mathcal{S})$ has two terms in $\operatorname{det}(S)$ of opposite sign, violating the sign nonsingularity of $\mathcal{S}$.

Case 3. Let $\sigma_{11} \in\{+, 0\}$ and $\sigma_{i i}=+$ for some $i$ such that $2 \leq i \leq n$. By Lemma 3.3 (ii), $i$ can be chosen such that $\sigma_{i 1}=-$. By Lemma $3.3(i)$, there exists a $k$ such that $\sigma_{k 1}=-$ and $\sigma_{k k}=-$. Thus, as in Case 1 , the sign nonsingularity of $\mathcal{S}$ is violated.

The next result follows immediately from Theorem 3.4, since if $\mathcal{S}$ requires $\mathbb{H}_{n}$ then it is potentially stable, sign nonsingular and not sign stable.

Corollary 3.5. For $n \geq 3$, let $\mathcal{S}=\left[\sigma_{i j}\right]$ be an $n \times n$ star sign pattern with 1 as the center vertex in $D(\mathcal{S})$. If $\mathcal{S}$ requires $\mathbb{H}_{n}$, then there exists a unique $i$ such that $2 \leq i \leq n$ and $\sigma_{i i}=0$.
4. Reducible sign patterns. Reducible sign patterns that either require or allow $\mathbb{H}_{n}$ are considered in [1]. The following result is an extension of [1] Observation 1.5] for the requires problem.

Theorem 4.1. Suppose $\mathcal{A}=\left[\begin{array}{c|c}\mathcal{A}_{1} & \sharp \\ \hline O & \mathcal{A}_{2}\end{array}\right]$, where $\mathcal{A}_{1}$ is a sign pattern of order $n_{1}, \mathcal{A}_{2}$ is a sign pattern of order $n_{2}$ and $\sharp$ denotes an arbitrary $n_{1} \times n_{2}$ sign pattern. Then $\mathcal{A}$ requires $\mathbb{H}_{n_{1}+n_{2}}$ if and only if exactly one sign pattern $\mathcal{A}_{i}$ requires $\mathbb{H}_{n_{i}}$ and the other sign pattern $\mathcal{A}_{j}$ is sign stable.

Proof. Suppose first without loss of generality that $\mathcal{A}_{1}$ requires $\mathbb{H}_{n_{1}}$ and $\mathcal{A}_{2}$ is sign stable. Therefore, any realization of $\mathcal{A}$ necessarily has refined inertia in $\mathbb{H}_{n_{1}+n_{2}}$ and $\mathcal{A}$ requires $\mathbb{H}_{n_{1}+n_{2}}$.

Conversely, if $\mathcal{A}$ requires $\mathbb{H}_{n_{1}+n_{2}}$, then exactly one sign pattern $\mathcal{A}_{i}$ requires $\mathbb{H}_{n_{i}}$, in which case the other sign pattern $\mathcal{A}_{j}$ must be sign stable.

Now consider the allows problem for the reducible sign pattern $\mathcal{A}$ in Theorem4.1. From [1, Observation 1.5], if $\mathcal{A}_{i}$ allows $\mathbb{H}_{n_{i}}$ and $\mathcal{A}_{j}$ is potentially stable with distinct $i, j \in\{1,2\}$, then $\mathcal{A}=\mathcal{A}_{i} \oplus \mathcal{A}_{j}$ allows $\mathbb{H}_{n_{i}+n_{j}}$. However the following proposition and example show that the converse is false.

Proposition 4.2. Let

$$
\mathcal{P}=\left[\begin{array}{ccccc}
0 & + & 0 & 0 & 0 \\
- & 0 & + & 0 & 0 \\
0 & - & - & + & 0 \\
0 & 0 & - & 0 & + \\
0 & 0 & 0 & - & 0
\end{array}\right]
$$

The path sign pattern $\mathcal{P}$ allows only two refined inertias, namely ( $0,5,0,0$ ) and ( $0,3,0,2$ ).

Proof. First notice that $\mathcal{P}$ satisfies the hypotheses of [3, Theorem 10.2.1] and so it is sign semi-stable, i.e., does not allow any eigenvalues with positive real part. Thus since $\mathcal{P}$ is sign nonsingular with negative trace and sign semi-stable, the only possible refined inertias are $(0,1,0,4),(0,3,0,2)$ and $(0,5,0,0)$. To eliminate refined inertia ( $0,1,0,4$ ) consider

$$
P=\left[\begin{array}{rrrrr}
0 & 1 & 0 & 0 & 0 \\
-b & 0 & 1 & 0 & 0 \\
0 & -c & -a & 1 & 0 \\
0 & 0 & -d & 0 & 1 \\
0 & 0 & 0 & -e & 0
\end{array}\right] \in Q(\mathcal{P})
$$

where $a, b, c, d, e \in \mathbb{R}^{+}$, which has characteristic polynomial $c_{A}(x)=x^{5}+a x^{4}+$
$(b+c+d+e) x^{3}+a(b+e) x^{2}+(b d+b e+c e) x+a b e$. If $A$ has refined inertia $(0,1,0,4)$, then the characteristic polynomial of $A$ is $(x+\alpha)\left(x^{2}+\beta\right)\left(x^{2}+\gamma\right)=$ $x^{5}+\alpha x^{4}+(\beta+\gamma) x^{3}+\alpha(\beta+\gamma) x^{2}+\beta \gamma x+\alpha \beta \gamma$ with $\alpha, \beta, \gamma \in \mathbb{R}^{+}$. Equating these polynomials gives

$$
\begin{aligned}
a & =\alpha \\
a(b+e) & =\alpha(\beta+\gamma) \Rightarrow b+e=\beta+\gamma \\
b+c+d+e & =\beta+\gamma \Rightarrow c+d=0 .
\end{aligned}
$$

This is a contradiction and so $\mathcal{P}$ does not allow refined inertia ( $0,1,0,4$ ). If $P$ is a realization of $\mathcal{P}$ with all nonzero entries having magnitude 1 , then $\operatorname{ri}(\underset{\sim}{P})=(0,3,0,2)$. If $\widetilde{P}$ is obtained from $P$ by changing the $(2,1)$ entry to -2 , then $\operatorname{ri}(\widetilde{P})=(0,5,0,0)$. Therefore, the only refined inertias allowed by $\mathcal{P}$ are $(0,3,0,2)$ and $(0,5,0,0)$.

Example 4.3. The path sign patterns

$$
\mathcal{P}_{1}=\left[\begin{array}{ccccc}
0 & + & 0 & 0 & 0 \\
- & 0 & + & 0 & 0 \\
0 & - & - & + & 0 \\
0 & 0 & - & 0 & + \\
0 & 0 & 0 & - & 0
\end{array}\right] \quad \text { and } \quad \mathcal{P}_{2}=\left[\begin{array}{cccc}
- & + & 0 & 0 \\
+ & - & + & 0 \\
0 & + & - & + \\
0 & 0 & + & -
\end{array}\right]
$$

do not allow $\mathbb{H}_{5}$ and $\mathbb{H}_{4}$, respectively, however $\mathcal{A}=\mathcal{P}_{1} \oplus \mathcal{P}_{2}$ allows, but does not require, $\mathbb{H}_{9}$. To see this, first note that $\mathcal{P}_{1}$ is sign semi-stable by Proposition 4.2, Hence, $\mathcal{P}_{1}$ does not allow refined inertia $(2,3,0,0)$ and consequently does not allow $\mathbb{H}_{5}$. Next notice that since any realization of $\mathcal{P}_{2}$ is symmetrizable, $\mathcal{P}_{2}$ does not allow refined inertia $(0,2,0,2)$. Therefore, $\mathcal{P}_{2}$ does not allow $\mathbb{H}_{4}$. However, $\mathcal{P}_{2}$ is potentially stable and so it allows refined inertia $(0,4,0,0)$. Using a realization of $\mathcal{P}_{1}$ that is stable and a realization of $\mathcal{P}_{2}$ that is stable, $\mathcal{A}$ allows refined inertia $(0,9,0,0)$. By Observation 4.2 there is a realization $P_{1} \in Q\left(\mathcal{P}_{1}\right)$ that has refined inertia ( $0,3,0,2$ ). Using a realization of $\mathcal{P}_{2}$ that is stable, $\mathcal{A}$ allows refined inertia ( $0,7,0,2$ ). Finally if $\widetilde{\mathcal{P}}_{2}$ is obtained from $\mathcal{P}_{2}$ by replacing the diagonal entries with zero, then the refined inertia of any realization $\widetilde{P}_{2} \in Q\left(\widetilde{\mathcal{P}}_{2}\right)$ is $(2,2,0,0)$, since all eigenvalues of $\widetilde{P}_{2}$ are real, nonzero and (from the characteristic polynomial) $-\alpha$ is an eigenvalue if and only if $\alpha$ is an eigenvalue. Thus there exists an $\epsilon>0$ sufficiently small so that $\widetilde{P}_{2}-\epsilon I$ has refined inertia $(2,2,0,0)$. Using this realization of $\mathcal{P}_{2}$ and a realization of $\mathcal{P}_{1}$ that is stable gives a realization of $\mathcal{A}$ with refined inertia $(2,7,0,0)$. Therefore, $\mathcal{A}$ allows $\mathbb{H}_{9}$. Finally, using the realizations $P_{1}$ and $\widetilde{P}_{2}-\epsilon I$ above gives a realization of $\mathcal{A}$ that has refined inertia $(2,5,0,2)$ and so $\mathcal{A}$ does not require $\mathbb{H}_{9}$.
5. Concluding remarks. Each path sign pattern with $n=3$ (listed in 1, Appendix]) and $n=4$ (listed in Section 2.1 above) that requires $\mathbb{H}_{n}$ has a zero in the $(1,1)$ entry, the $(n, n)$ entry or both, i.e., at at least one leaf in its digraph. By

Corollary 3.5 , each star sign pattern of order $n \geq 3$ that requires $\mathbb{H}_{n}$ has a zero at a unique leaf vertex in its digraph, but the question of whether or not a path sign pattern $\mathcal{P}$ of order $n \geq 5$ that requires $\mathbb{H}_{n}$ must have a zero at a leaf vertex in $D(\mathcal{P})$ remains open. The question also remains open as to whether or not this is true for every tree sign pattern $\mathcal{A}$ with order $n \geq 5$ that is potentially stable, sign nonsingular and not sign stable.

Necessary and sufficient conditions for a tree sign pattern to require $\mathbb{H}_{3}$ are given by [1, Theorem 2.1] and to require $\mathbb{H}_{4}$ by Theorem [2.9. The requires problem for $\mathbb{H}_{n}$ with $n \geq 5$ remains open.
6. Appendix. In addition to $\mathcal{P}_{1}, \ldots, \mathcal{P}_{5}$ and $\mathcal{S}_{1}, \ldots, \mathcal{S}_{5}$, up to equivalence there are eleven $4 \times 4$ tree sign patterns from [6] and [8] that are sign nonsingular, potentially stable and not sign stable. We now list these sign patterns and show below that they allow refined inertia ( $4,0,0,0$ ), and thus do not require $\mathbb{H}_{4}$.

Let

$$
\begin{aligned}
& \mathcal{P}_{6}=\left[\begin{array}{cccc}
0 & + & 0 & 0 \\
- & + & + & 0 \\
0 & - & 0 & + \\
0 & 0 & - & -
\end{array}\right], \mathcal{P}_{7}=\left[\begin{array}{cccc}
0 & + & 0 & 0 \\
- & + & + & 0 \\
0 & - & - & + \\
0 & 0 & - & -
\end{array}\right], \mathcal{P}_{8}=\left[\begin{array}{cccc}
+ & + & 0 & 0 \\
- & 0 & + & 0 \\
0 & - & - & + \\
0 & 0 & - & 0
\end{array}\right], \\
& \mathcal{P}_{9}=\left[\begin{array}{cccc}
+ & + & 0 & 0 \\
- & + & + & 0 \\
0 & - & - & + \\
0 & 0 & - & 0
\end{array}\right], \mathcal{P}_{10}=\left[\begin{array}{cccc}
0 & + & 0 & 0 \\
- & + & + & 0 \\
0 & - & - & + \\
0 & 0 & - & 0
\end{array}\right], \mathcal{P}_{11}=\left[\begin{array}{cccc}
0 & + & 0 & 0 \\
+ & - & + & 0 \\
0 & - & + & + \\
0 & 0 & + & 0
\end{array}\right], \\
& \mathcal{S}_{6}=\left[\begin{array}{cccc}
- & + & + & + \\
- & - & 0 & 0 \\
- & 0 & + & 0 \\
+ & 0 & 0 & 0
\end{array}\right], \mathcal{S}_{7}=\left[\begin{array}{cccc}
- & + & + & + \\
+ & + & 0 & 0 \\
- & 0 & + & 0 \\
- & 0 & 0 & 0
\end{array}\right], \mathcal{S}_{8}=\left[\begin{array}{cccc}
0 & + & + & + \\
+ & 0 & 0 & 0 \\
- & 0 & + & 0 \\
- & 0 & 0 & -
\end{array}\right], \\
& \mathcal{S}_{9}=\left[\begin{array}{cccc}
+ & + & + & + \\
- & 0 & 0 & 0 \\
+ & 0 & - & 0 \\
- & 0 & 0 & -
\end{array}\right], \mathcal{S}_{10}=\left[\begin{array}{cccc}
+ & + & + & + \\
- & + & 0 & 0 \\
+ & 0 & 0 & 0 \\
- & 0 & 0 & -
\end{array}\right] .
\end{aligned}
$$

Each of these sign patterns is equivalent to the negative of one of these sign patterns, as the following table specifies.

| Sign pattern | Negative is equivalent to |
| :---: | :---: |
| $\mathcal{P}_{6}$ | $\mathcal{P}_{8}$ |
| $\mathcal{P}_{7}$ | $\mathcal{P}_{9}$ |
| $\mathcal{P}_{10}$ | $\mathcal{P}_{10}$ |
| $\mathcal{P}_{11}$ | $\mathcal{P}_{11}$ |
| $\mathcal{S}_{6}$ | $\mathcal{S}_{10}$ |
| $\mathcal{S}_{7}$ | $\mathcal{S}_{9}$ |
| $\mathcal{S}_{8}$ | $\mathcal{S}_{8}$ |

Considering for example $\mathcal{S}_{6}$ and $\mathcal{S}_{10}$, if all entries in $\mathcal{S}_{6}$ are negated, then a sign pattern that is equivalent to $\mathcal{S}_{10}$ is obtained and vice versa. Since these two sign patterns are potentially stable [6], taking a stable realization of $\mathcal{S}_{6}$ and negating it gives a matrix that has four eigenvalues with positive real part and a sign pattern equivalent to $\mathcal{S}_{10}$. Therefore, $\mathcal{S}_{10}$ does not require $\mathbb{H}_{4}$. Similarly $\mathcal{S}_{6}$ does not require $\mathbb{H}_{4}$. By a similar argument, these 11 sign patterns all allow refined inertia ( $4,0,0,0$ ) and hence do not require $\mathbb{H}_{4}$. However, it can be shown with numerical examples that each sign pattern allows $\mathbb{H}_{4}$.

Acknowledgments. The research of DDO and PvdD is partially funded by NSERC Discovery grants. We thank an anonymous referee for numerous comments that improved the exposition.

## REFERENCES

[1] E. Bodine, L. Deaett, J.J. McDonald, D.D. Olesky, and P. van den Driessche. Sign patterns that require or allow particular refined inertias. Linear Algebra Appl., 437:2228-2242, 2012.
[2] T. Britz, J.J. McDonald, D.D. Olesky, and P. van den Driessche. Minimal spectrally arbitrary sign-patterns. SIAM J. Matrix Anal. Appl., 26:257-271, 2004.
[3] R.A. Brualdi and B.L. Shader. Matrices of Sign Solvable Linear Systems. Cambridge University Press, Cambridge, 1995.
[4] M.S. Cavers, C. Garnett, I.-J. Kim, D.D. Olesky, P. van den Driessche, and K.N. Vander Meulen. Techniques for identifying inertially arbitrary patterns. Electron. J. Linear Algebra, 26:7189, 2013.
[5] Y. Gao and J. Li. On the potential stability of star sign pattern matrices. Linear Algebra Appl., 327:61-68, 2001.
[6] C.R. Johnson and T.A. Summers. The potentially stable tree sign patterns for dimensions less than five. Linear Algebra Appl., 126:1-13, 1989.
[7] I.-J. Kim, D.D. Olesky, B.L. Shader, P. van den Driessche, H. van der Holst, and K.N. Vander Meulen. Generating potentially nilpotent full sign patterns. Electron. J. Linear Algebra, 18:162-175, 2009.
[8] Q. Lin, D.D. Olesky, and P. van den Driessche. The distance of potentially stable sign patterns to the unstable matrices. SIAM J. Matrix Anal. Appl., 24:356-367, 2002.
[9] M. Tsatsomeros. Matrix Equalities and Inequalities. In: L. Hogben (editor), Handbook of Linear Algebra, Chapman \& Hall/CRC, New York, 2007.


[^0]:    *Received by the editors on November 1, 2012. Accepted for publication on July 26, 2013. Handling Editor: Bryan L. Shader.
    ${ }^{\dagger}$ Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada (colin.garnett@bhsu.edu, pvdd@math.uvic.ca).
    $\ddagger$ Department of Computer Science, University of Victoria, Victoria, BC V8W 3P6, Canada (dolesky@cs.uvic.ca).

