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ON EUCLIDEAN DISTANCE MATRICES OF GRAPHS∗
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Abstract. In this paper, a relation between graph distance matrices and Euclidean distance

matrices (EDM) is considered. It is proven that distance matrices of paths and cycles are EDMs.

The proofs are constructive and the generating points of studied EDMs are given in a closed form.

A generalization to weighted graphs (networks) is tackled.
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1. Introduction. A matrix D ∈ R
n×n is a Euclidean distance matrix (EDM),

if there exist points xi ∈ R
r, i = 1, 2, . . . , n, such that dij = ‖xi−xj‖2. The minimal

possible r is called an embedding dimension (see, e.g., [3]). Euclidean distance matri-

ces were introduced by Menger in 1928, later they were studied by Schoenberg [13],

and other authors. They have many interesting properties, and are used in various

applications in linear algebra, graph theory, and bioinformatics. A natural problem is

to study configurations of points xi, where only distances between them are known.

Definition 1.1. A matrix D = (dij) ∈ R
n×n is hollow, if dii = 0 for all

i = 1, 2, . . . , n.

There are various characterizations of EDMs.

Lemma 1.2. [8, Lemma 5.3] Let a symmetric hollow matrix D ∈ R
n×n have only

one positive eigenvalue λ1 and the corresponding eigenvector e := [1, 1, . . . , 1]T ∈ R
n.

Then D is EDM.

We will frequently use the following theorem.

Theorem 1.3. [8, Theorem 2.2] Let D ∈ R
n×n be a nonzero symmetric hollow

matrix. Then D is EDM if and only if it has exactly one positive eigenvalue and there

exists w ∈ R
n such that Dw = e and w

T
e ≥ 0.
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In order to obtain generating points xi for an EDM matrix D, one can take a

look at the singular value decomposition of Gower matrix

(1.1) F = −1

2

(

I − es
T
)

D
(

I − se
T
)

,

where s is a vector such that sT e = 1 (see [1]). Since F is positive semidefinite, it can

be written as F = XTX with X = diag(
√
σi)U

T , where F = UΣUT is the singular

value decomposition of F and Σ = diag(σi). The points xi are obtained as columns

of X .

An EDM matrix D is circum-Euclidean (CEDM) (also spherical) if there exists a

realization of its generating points xi that lie on the surface of some hypersphere [14].

Circum-Euclidean distance matrices are important because every EDM is a limit of

CEDMs. This is analogous to the case of the cone of positive semidefinite matrices,

where the interior of the cone consists of positive definite matrices.

CEDMs can be characterized by the following result.

Theorem 1.4. [14, Theorem 3.4] A Euclidean distance matrix D ∈ R
n×n is

CEDM if and only if there exist s ∈ R
n and β ∈ R, such that Ds = βe and s

T
e = 1.

If we choose s = 1/n e, the generating points of a CEDM lie on a hypersphere

with center 0 and radius R =
√

β/2.

A nonzero EDM has only one positive eigenvalue λ1, and the sum of its eigenvalues

is zero. It is conjectured that any set of numbers that meet these conditions can be

a spectrum of an EDM (see, e.g., [10, 11]).

In this paper we will study distance matrices, where the graph distance is used.

Our goal is to cover basic graphs, paths and cycles, and give constructive proofs that

their distance matrices are EDMs. This will enable study of more complex graphs

and networks. A generalization to weighted graphs is considered. Here, instead of

the graph distance, the minimal sum of edge weights over all possible paths between

two vertices is used. Thus the problem considered becomes much harder.

Similar problems were studied in several papers. Line distance matrices were

considered in [9, 12], cell matrices were introduced in [9], and distance matrices of

weighted trees were studied in [2, 4].

The structure of the paper is as follows. In the next section, line distance matrices

are presented and their relation to paths is analysed. In Section 3, we will apply the

eigendecomposition of circulant matrices to study cycles and prove that their distance

matrices are EDM. In Section 4, distance matrices of weighted cycles are considered.

The paper is concluded by some remarks and ideas for future work.
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2. Paths. A graph distance matrix Dpn for a path Pn is defined by dij = |i −
j|, i, j = 1, 2, . . . , n. Thus it is a symmetric Toeplitz matrix, generated by its first row

0, 1, 2, . . . , n− 1.

A line distance matrix for parameters t1 < t2 < · · · < tn is defined as L = [ℓij ]i,j
with ℓij = |ti − tj | (see [12]). Hence Dpn is a line distance matrix defined by the

sequence ti = i, i = 1, 2, . . . , n. In [9] it was proven that line distance matrices are

CEDMs.

Let L be a line distance matrix, associated with t1 < t2 < · · · < tn. The matrix

X = [x1,x2, . . . ,xn], xi := [xi,1, xi,2, . . . , xi,n]
T
, where

(2.1) xi,j =











1
2

√
tj+1 − tj , j < i,

− 1
2

√
tj+1 − tj , i ≤ j < n,

0, j = n,

is a realization matrix for L, i.e., its columns are generating points for EDM L. Its

generating points xi lie on the hypersphere with center 0 and radius R = 1
2

√
tn − t1.

Since Dpn is a line distance matrix, one can see that Dpn is CEDM with generat-

ing points (2.1), lying on the hypersphere around the origin with radius R = 1
2

√
n− 1

and ti = i.

Now let us consider weighted paths, i.e., paths Pn with edge weights wi > 0, i =

1, 2, . . . , n− 1. Let w := [w1, w2, . . . , wn−1] and let Dwpn denote the weighted path

distance matrix. Here a path between every two vertices vi, vj , i < j, is unique, and

its (generalized) distance is equal to the sum of weights wi + wi+1 + · · · + wj−1. A

weighted path distance matrix Dwpn is a line distance matrix defined by the sequence

ti :=
∑i

k=1 wk−1, i = 1, 2, . . . , n, where w0 := 0. Thus the matrix Dwpn is CEDM.

3. Cycles. A cycle is a graph Cn on n vertices consisting of a single closed

directed walk. Let V (G) denote the set of vertices of a graph G. Let us order vertices

successively, and let us define the distance d(u, v) between vertices u, v ∈ V (Cn) as

their graph distance, i.e., the length of the shortest path between them. Let us define

the distance matrix Dn := [d(u, v)]u,v∈V (Cn). For example, for the cycle C5 we obtain

the distance matrix

D5 =















0 1 2 2 1

1 0 1 2 2

2 1 0 1 2

2 2 1 0 1

1 2 2 1 0















.
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Clearly, the matrix Dn is a circulant matrix (see [5]), generated by its first row

c0, c1, . . . , cn−1, where we need to consider two possibilities for elements ci:

0, 1, . . . ,
n− 1

2
,
n− 1

2
,
n− 1

2
− 1, . . . , 1, n odd,

0, 1, . . . ,
n

2
− 1,

n

2
,
n

2
− 1, . . . , 1, n even.

Theorem 3.1. The distance matrix Dn of a cycle is CEDM.

Proof. Since Dn is a circulant matrix, it is well known (see, e.g., [5]) that it has

eigenvalues

λj+1 =

n−1
∑

ℓ=0

cℓω
ℓ
j , j = 0, 1, . . . , n− 1,

and the corresponding eigenvectors

(3.1) vj+1 := [1, wj , w
2
j , . . . , w

n−1
j ]T ,

where ωj := exp(i 2πj/n). Therefore,

λ1 =

n−1
∑

i=1

ci =
2n2 − (1− (−1)n)

8

and v1 = e = [1, 1, . . . , 1]T . The symmetry in coefficients ci and the facts that

ωn−k
j = ωk

j and

ωk
j + ω−k

j = 2 cos

(

2kjπ

n

)

yield

(3.2) λj+1 =

n−1
2 − 1+(−1)n

4
∑

k=1

2k cos

(

2kjπ

n

)

+ (1 + (−1)n)
n

4
cos jπ =

1

2

(

−1 + (−1)j cos
jπ

n

)

1

sin2 jπ
n

+ (1 + (−1)n)
n

4
cos jπ.

For n odd, we obtain

λj+1 =
1

2

(

−1 + (−1)j cos
jπ

n

)

1

sin2 jπ
n

.

Here the eigenvalues λj , j = 2, 3, . . . , n are obviously negative.
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For n even, the expression (3.2) simplifies to

λj+1 =
1

2

(

−1− 1

tan2 jπ
n

+
cos jπ

sin2 jπ
n

+ n
sin jπ

tan jπ
n

)

=
1

2

(

−1 + (−1)j
) 1

sin2 jπ
n

.

Thus λj = 0 for odd j > 1, and λj < 0 for j even.

Note that

(3.3) λj+1 = λn−j+1, j = 1, 2, . . . , n− 1

for arbitrary n.

Since Dn has only one positive eigenvalue with the corresponding eigenvector e,

by Lemma 1.2 it is EDM. By Theorem 1.4 with s = 1/n e and β = λ1/n, the matrix

Dn is CEDM.

An EDM with Perron eigenpair (λ1, e) is a regular EDM.

Lemma 3.2. A regular EDM with eigenpairs (λi,ui), i = 1, 2, . . . , n, has a

realization matrix X = (xi,j)
n
i,j=1, where

(3.4) xi,j :=

{

0, i = 1,√
−λi√

2 ‖ui‖
uj,i, i > 1.

The columns of X give generating points xj.

Proof. Let D ∈ R
n×n be an EDM with Perron eigenpair (λ1, e) and let (λi,ui),

i = 2, 3, . . . , n, be the rest of the eigenpairs. Its Gower matrix (1.1) for s = 1/n e

simplifies to

(3.5) F = −1

2
D +

λ1

2n
ee

T .

Since u1 = e and uj , j = 2, 3, . . . , n, are pairwise orthogonal,

Fuj = −λj

2
uj +

λ1

2n

(

e
T
uj

)

e =

{

0, j = 1,

−λj

2 uj , j > 1.

Therefore, F has eigenpairs (0, e) and (−λj

2 ,uj), j = 2, 3, . . . , n.

The matrix F is symmetric positive semidefinite, thus its singular value decom-

position is equivalent to its eigenvalue decomposition

F = UΛUT ,
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where

U =

[

e√
n
,

u2

‖u2‖
,

u3

‖u3‖
, . . . ,

un

‖un‖

]

, Λ = diag

(

0,−λ2

2
,−λ3

2
, . . . ,−λn

2

)

.

From the decomposition F = XTX we obtain the realization matrix X =
√
ΛUT ,

which completes the proof.

Note that the Gower matrix of a cycle (3.5) is circulant since it is a sum of a

circulant and a constant matrix. Now we can obtain generating points for the matrix

Dn.

Theorem 3.3. The EDM Dn is generated by points xi = [x1,i, x2,i, . . . , xn,i]
T ∈

R
r, i = 1, 2, . . . , n, where

(3.6) xi,j :=



























0, i = 1,
√

−λi

n cos
(

2π(i−1)(j−1)
n

)

, 1 < i < n+2
2 ,

√

− λi

2n cos
(

2π(i−1)(j−1)
n

)

, i = n+2
2 ,

√

−λi

n sin
(

2π(i−1)(j−1)
n

)

, i > n+2
2 ,

for j = 1, 2, . . . , n, and its embedding dimension is

r =

{

n− 1, n odd,
n
2 , n even.

Proof. Let Dn be a circulant matrix with eigenvalues λj+1 and the corresponding

eigenvectors vj+1, j = 0, 1, . . . , n − 1, defined by (3.2) and (3.1). The eigenvectors

vj , j > 1 are complex. But since the eigenvalues λj are double, we can replace the

eigenvectors by suitable real eigenvectors uj ,

uj =















1
2 (vj + vn−j+2) = 2

[

cos
(

2kπ(j−1)
n

)]T

k=0,1,...,n−1
, 2 ≤ j ≤ n+2

2 ,

1
2 i (vj − vn−j+2) = 2

[

sin
(

2kπ(j−1)
n

)]T

k=0,1,...,n−1
, n+2

2 < j ≤ n.

By Lemma 3.2 the realization matrix for Dn is of the form (3.4). It is easy to see

that for n even,
∥

∥un
2

∥

∥ =
√
n, otherwise ‖uj‖ =

√

n/2. This completes the first part

of the proof.

For n odd, the eigenvalues λj , j = 2, 3, . . . , n, are negative. Since xi,j = 0 for

i = 1 and j = 1, 2, . . . , n, the rank r of the realization matrix X is r = n− 1. When

n is even, λj = 0 for odd j > 0 and λj < 0 for j even. Thus, in this case, r = n/2.
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Let us have a detailed look at generating points (3.6). Since the matrix Dn is

CEDM, its generating points lie on a hypersphere with center 0 and radius R =
√

λ1/2n.

When n is odd, by (3.3) and sin (2kπ) = sin (2(1− k)π), k ∈ Z, we get xi =

[0,yi,1,yi,2]
T , where

yi,1 =



























√

−λ2

n cos
(

2π(i−1)·1
n

)

√

−λ3

n cos
(

2π(i−1)·2
n

)

...
√

−λn−1
2

n cos
(

2π(i−1)· n−3
2

n

)

√

−λn+1
2

n cos
(

2π(i−1)·n−1
2

n

)



























, yi,2 =



























√

−λn+1
2

n sin
(

2π(i−1)·n−1
2

n

)

√

−λn−1
2

n sin
(

2π(i−1)·n−3
2

n

)

...
√

−λ3

n sin
(

2π(i−1)·2
n

)

√

−λ2

n sin
(

2π(i−1)·1
n

)



























.

This interpretation implies a nice symmetry.

For n even, λj = 0 for odd j > 0 and λj < 0 for j even. Thus, every other

component of point xi equals 0. The generating points can therefore be defined by

yi = [0, y2,i, y4,i, . . . , yn,i]
T ∈ R

n/2, where

yℓ,i :=







√

−λℓ

n cos
(

2π(i−1)(ℓ−1)
n

)

, ℓ = 2, 4, . . . , n
2 ,

√

−λℓ

n sin
(

2π(i−1)(ℓ−1)
n

)

, ℓ = n
2 + 2, n

2 + 4, . . . , n,

when n/2 is odd and

yℓ,i :=



















√

−λℓ

n cos
(

2π(i−1)(ℓ−1)
n

)

, ℓ = 2, 4, . . . , n
2 − 1,

(−1)i−1
√

− λℓ

2n , ℓ = n
2 + 1,

√

−λℓ

n sin
(

2π(i−1)(ℓ−1)
n

)

, ℓ = n
2 + 3, n

2 + 5, . . . , n,

for n/2 is even.

For n = 3 and n = 4, the generating points lie on a centered circle in a plane.

Points for n = 3 form a regular triangle and for n = 4 they form a square with vertices

lying on both axes. An example for n = 6 can be seen in Fig. 3.1. The embedding

dimension in this case is r = 3 and the points lie on a sphere around origin with

radius R =
√
3/2.

4. Weighted cycles. A generalization of distance matrices to weighted graphs,

where the minimal sums of weights are used instead of graph distances, have been

used in bioinformatics, for DNA sequence comparison, e.g., [12]. Clearly the analysis
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Fig. 3.1. Spherical generating points of the cycle C6 from two different angles.

of such a matrix becomes a much harder problem, since it depends on the topology

of a graph and on relations between edge weights. In Section 2, it was shown that a

distance matrix of a weighted path is CEDM for every choice of positive weights. In

this section, we will consider weighted cycles.

Let Cn be a cycle with edge weights w1, w2, . . . , wn and let δi,j :=
∑j−1

k=i wk. Its

distance matrix Dw

n := [d(i, j)]i,j is defined by

d(i, j) := min{δi,j , δ1,n+1 − δi,j}, i ≤ j,

i.e., the shortest weighted distance on a cycle. For the distance between two vertices

of the cycle only two possibilities need to be considered, for a general graph it is much

more complicated.

First, let us consider the case where weights are natural numbers. By starting

with a cycle, and using edge subdivisions (let wi = k ∈ N; add k−1 vertices to obtain

a path with unit weights) we can transform the problem into the one, considered in

Section 3.

Theorem 4.1. Let Dw

n be the distance matrix of a cycle Cn with weights wi ∈
N, i = 1, 2, . . . , n. Then the matrix Dw

n is a CEDM.

Now let us consider the general case where weights are positive reals. Here the

problem is much harder. It turns out that we need to study several particular cases

that depend on relations between weights. The number of cases increases exponen-

tially with n. The following theorem covers the cases n = 3, 4, 5.

Theorem 4.2. Let n ∈ {3, 4, 5}. The distance matrix Dw

n of a cycle Cn with

positive real weights is CEDM.

Proof. Let us simplify the proof by using notation a, b, c, . . . instead of w1, w2, . . .

(see Fig. 4.1). Further, let Dn := Dw

n denote a weighted distance matrix.

First, let us consider the case n = 3. From the definition of the distance matrix
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a

bc

1 2

3

a

b

c

d

1 2

34

a

b

cd

e

1 2

3

4

5

Fig. 4.1. Cycles C3, C4 and C5 with edge weights a, b, c, d, e.

of the cycle C3,

D3 =





0 min{a, b+ c} min{c, a+ b}
min{a, b+ c} 0 min{b, a+ c}
min{c, a+ b} min{b, a+ c} 0



 ,

one can see that there are several possibilities based on different positions of weights

and different relations between them. If we start with weights a and b, there are two

options, a ≤ b an a > b. For each of these two options we have to study cases b ≤ c

and b > c, etc. Further analysis is done as the decision tree in Fig. 4.2 implies.

a,b,c>0

a£b a>b

b£c b>c c<b c³b

a+b£ca+b>c b<a+c b³a+c a<b+c a³b+c b+c>a b+c£a

c<a+b c³a+bD3
H1L D3

H2L D3
H1L D3

H3L D3
H1L D3

H4L

D3
H1L D3

H2L

D3
H4L

Fig. 4.2. A decision tree for the case n = 3.

We need to study four possible matrices,

(4.1) D
(1)
3 :=





0 a c

a 0 b

c b 0



 , a < b+ c, c < a+ b, b < a+ c,
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and

D
(2)
3 :=





0 a a+ b

a 0 b

a+ b b 0



 , a+ b ≤ c,

D
(3)
3 :=





0 a c

a 0 a+ c

c a+ c 0



 , a+ c ≤ b,

D
(4)
3 :=





0 b+ c c

b+ c 0 b

c b 0



 , b+ c ≤ a.

But since a particular permutation of weights or vertices of the cycle yields the

same distance matrix, there are only two matrices that need to be analysed, D
(1)
3 and

one of matrices D
(2)
3 , D

(3)
3 or D

(4)
3 . Let us choose matrix D

(2)
3 .

The matrix D
(2)
3 is a distance matrix of a weighted path on three vertices (see

Fig. 4.3), and it is, as we have seen in Section 2, CEDM.

a bv1 v2 v3

Fig. 4.3. Weighted path corresponding to the matrix D
(2)
3 .

A simple computation yields the solution of the equation D
(1)
3 w = e,

w =
1

2abc

[

b(a+ c− b), c(a+ b− c), a(b + c− a)
]T

.

By (4.1) it follows wT
e > 0. The characteristic polynomial of the matrix D

(1)
3 is

p
D

(1)
3

(λ) := −λ3 + (a2 + b2 + c2)λ + 2abc.

By applying Descartes’ rule of signs on p
D

(1)
3

, we can conclude that D
(1)
3 has exactly

one positive eigenvalue. By Theorem 1.3, the matrix D
(1)
3 is EDM. Theorem 1.4 with

β = 1/(wT
e) and s = 1/βw implies that D

(1)
3 is CEDM.

An analogous analysis applies to the case n = 4. Here, there are eight different

matrices that need to be studied. For a part of the analysis, see the decision tree in

Fig. 4.4. Again, by using permutations, it turns out that only two cases need to be

analysed,

D
(1)
4 :=









0 a a+ b a+ b+ c

a 0 b b+ c

a+ b b 0 c

a+ b+ c b+ c c 0









,

0 < a ≤ b ≤ c ≤ d,

b+ c ≤ a+ d,

a+ b+ c ≤ d,
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and

(4.2) D
(2)
4 :=









0 a a+ b d

a 0 b b+ c

a+ b b 0 c

d b+ c c 0









,

0 < a ≤ b ≤ c ≤ d,

b + c ≤ a+ d,

d < a+ b+ c.

a,b,c,d>0

a£b a>b

b£c b>c

...c£d c>d

...

...

b+c£a+d b+c>a+d

a+b+c£d a+b+c>d

D4
H1L D4

H2L

D4
H3L

Fig. 4.4. A decision tree for the case n = 4.

The matrix D
(1)
4 is CEDM, since it is a distance matrix of a weighted path.

The solution of the equation D
(2)
4 w = e is

w =
b

det(D
(2)
4 )









2c(b+ c− a− d)

(a+ b− c− d)(a + b+ c− d)

(a+ b+ c− d)(b + c− a− d)

2a(a+ b − c− d)









,

where

det(D
(2)
4 ) = b (bc(b+ c− a− d) + ab(a+ b− c− d)+

+b(b− d)(a+ b+ c− d) + 4ac(b− d)) .
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Clearly w
T
e ≥ 0 by the conditions on weights (4.2). If det(D

(2)
4 ) = 0, the conditions

(4.2) give b = c = d = a. Then

D
(2)
4 = a









0 1 2 1

1 0 1 2

2 1 0 1

1 2 1 0









,

and w
T
e > 0 holds true, since w = 1

2a

[

1, 0, 1, 0
]T

is a solution of the equation

D
(2)
4 w = e.

The characteristic polynomial of the matrix D
(2)
4 is

p
D

(2)
4

(λ) := λ4 + k2λ
2 + k1λ+ det(D

(2)
4 ),

where

k2 := −(a2 + b2 + c2 + d2)− (a+ b)2 − (b+ c)2,

k1 := −2((ab+ cd)(a+ b) + (ad+ bc)(b+ c)).

The Descartes’ rule of signs implies that D
(2)
4 has exactly one positive eigenvalue.

Thus D
(2)
4 is EDM by Theorem 1.3.

A simple analysis shows that w
T
e = 0 could only hold for b = c = d = a.

But since in this case det(D
(2)
4 ) = 0, we conclude that w

T
e > 0 always holds true.

Theorem 1.4 with β = 1/(wT
e) and s = 1/βw implies that D

(2)
4 is CEDM.

Now let us consider the last case, n = 5. Similarly as in the previous cases, it

turns out that we need to study four particular matrices, together with relations on

weights,

(4.3) D
(1)
5 :=















0 a a+ b d+ e e

a 0 b b+ c a+ e

a+ b b 0 c c+ d

d+ e b+ c c 0 d

e a+ e c+ d d 0















,
0 < d ≤ e ≤ c ≤ a ≤ b,

a+ b ≤ c+ d+ e,

D
(2)
5 :=















0 a c+ d+ e d+ e e

a 0 b b+ c a+ e

c+ d+ e b 0 c c+ d

d+ e b+ c c 0 d

e a+ e c+ d d 0















,

0 < d ≤ e ≤ c ≤ a ≤ b,

c+ d+ e < a+ b,

b ≤ a+ c+ d+ e,

b+ c ≤ a+ d+ e,
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D
(3)
5 :=















0 a c+ d+ e d+ e e

a 0 b a+ d+ e a+ e

c+ d+ e b 0 c c+ d

d+ e a+ d+ e c 0 d

e a+ e c+ d d 0















,

with

0 < d ≤ e ≤ c ≤ a ≤ b, c+ d+ e < a+ b,

b ≤ a+ c+ d+ e, a+ d+ e < b + c,

and

D
(4)
5 :=















0 a c+ d+ e d+ e e

a 0 a+ c+ d+ e a+ d+ e a+ e

c+ d+ e a+ c+ d+ e 0 c c+ d

d+ e a+ d+ e c 0 d

e a+ e c+ d d 0















,

with

0 < d ≤ e ≤ c ≤ a ≤ b, c+ d+ e < a+ b, a+ c+ d+ e < b.

Clearly, the matrix D
(4)
5 is a distance matrix of a weighted path, thus it is CEDM.

The proofs for the matricesD
(2)
5 and D

(3)
5 are similar as in the previous cases, and

will be omitted. It turns out that the proof for the matrix D
(1)
5 is not straightforward.

By solving the equation D
(1)
5 w = e, and a very careful simplification of the

results, it can be seen that wT
e = α/ det(D

(1)
5 ), where

α := c(b + c+ d− a− e)(a+ b+ e− c− d)(a+ d+ e− b− c)+

+ d(c+ d+ e− a− b)(a+ b+ c− d− e)(a+ b+ e− c− d)+

+ e(a+ b+ c− d− e)(b + c+ d− a− e)(a+ d+ e− b− c)+

+ a(c+ d+ e− a− b)(b+ c+ d− a− e)(a+ b+ e− c− d)+

+ b(c+ d+ e− a− b)(a+ b+ c− d− e)(a+ d+ e− b− c),

and

det(D
(1)
5 ) =

1

2

(

(d+ e)(b+ c+ d− e− a)(c+ d+ e− a− b)·(4.4)

·(d+ e+ a− b− c)(e + a+ b− c− d)+

+b(a+ b+ c+ d+ e)(a+ b+ c− d− e)·
·(c+ d+ e− a− b)(d+ e+ a− b− c)+

+(d+ e− b)(a+ b+ c+ d+ e)(a+ b+ c− d− e)·
· (b+ c+ d− e− a)(e + a+ b− c− d)

)

.
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Together with limitations (4.3) and elegant forms of expressions this yields α ≥ 0 and

det(D
(1)
5 ) ≥ 0. Thus wT

e ≥ 0.

We are left with the possibility det(D
(1)
5 ) = 0. Since all the summands in (4.4) are

nonnegative, and are particular products of linear factors obtained from the matrix

and limitations (4.3), a careful analysis of possibilities reveals that det(D
(1)
5 ) = 0 if

and only if a = c and b = d+ e. In this case, w = 1
a+d+e

[

1, 0, 1, 0, 0
]T

is the solution

of the equation D
(1)
5 w = e, and w

T
e > 0 holds true.

The characteristic polynomial of the matrix D
(1)
5 is

p
D

(1)
5

(λ) := −λ5 + k3λ
3 + k2λ

2 + k1λ+ det(D
(1)
5 ),

where

k3 := a(3a+ 2b) + b(3b+ 2c) + c(3c+ 2d) + d(3d+ 2e) + e(3e+ 2a),

k2 := 2 (ab(a+ b+ c+ 3d) + bc(b+ c+ d+ 3e) + cd(3a+ c+ d+ e)+

+ae(a+ b+ 3c+ e) + de(a+ 3b+ d+ e)) ,

k1 :=
1

2
(8(b+ c)(a+ b+ c− d− e)(b+ c+ d− a− e)e+

+4e(c+ d)(b + c+ d− a− e)(a+ d+ e− b − c)+

+(b+ c+ d− a− e)(a+ b+ e − c− d)·
·(a+ b+ c+ e− d)(a+ d+ e− b− c)+

+2(b+ c)(b+ c+ d− a− e)·
·(a+ b+ e− c− d)(c+ d+ e− a− b)+

+(a+ b+ c− d− e)(a+ b+ e − c− d)·
·(a+ b+ c+ e− d)(c+ d+ e− a− b)+

+2(b+ c+ d)(a+ b+ c− d− e)·
·(a+ d+ e− b− c)(c+ d+ e− a− b)+

+4bc(a+ b+ c+ d+ e)(a+ d+ e− b− c)+

+2c(a+ b+ c+ d+ e)(a+ b+ e− c− d)(a + d+ e− b− c)) .

Descartes’ rule of signs reveals that D
(1)
5 has exactly one positive eigenvalue, thus

D
(1)
5 is EDM by Theorem 1.3. A lengthy computation shows that α = 0 if and only

if det(D
(1)
5 ) = 0. Therefore, wT

e > 0 and by taking β = 1/(wT
e) and s = 1/βw,

Theorem 1.4 implies that D
(1)
5 is CEDM.

Remark 4.3. The proof for the matrix D
(1)
5 is much harder than for the rest

of the cases. Note that it is based on the elegant form of the determinant (4.4). In

its basic form, this is a polynomial in 5 variables of the total degree 5. The main
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problem is how to prove that it is nonnegative on the domain, given by limitations

(4.3). The idea on how to get such a nice form was obtained from the theory of

polynomials, positive on compact semialgebraic sets (see, e.g., [6]). Although such a

“Null/-Positivstellensatz” can not be used in our case, we expressed the polynomial as

a linear combination (with unknown coefficients) of products of linear polynomials,

obtained from the boundary of the domain. By a careful choice of linear factors,

we got a solution with nonnegative coefficients. Therefrom the nonnegativity of the

determinant is straightforward.

As can already be seen from the proof for the case n = 5, the analysis for larger

n becomes more complex. But the proven results and numerical experiments suggest

the following conjecture.

Conjecture 4.4. The distance matrix Dw

n of a weighted cycle Cn is CEDM.

5. Remarks. In [2], it was proven that distance matrices of trees are EDMs.

The result holds true also for weighted trees. A proof can be found also in a recent

monograph [4]. A similar result was proven for star-graphs and their generalization

(see [9]). Based on presented results and numerical tests one may state a conjecture

that the all-pairs shortest path matrix of a graph is EDM. But this is not true. For

example, a distance matrix of the Möbius-Kantor graph (generalized Petersen graph

GP(8,3), see Fig. 5.1) is not EDM, since its eigenvalues are
[

−2
(

2 +
√
3
)]4

, [−2]4,
[

−2
(

2−
√
3
)]4

, [2]3, 34.

The notation [·]i indicates eigenvalue multiplicity.

Fig. 5.1. Möbius-Kantor graph and its 3D anisotropic embedding ([7]).

Thus it is interesting to study particular families of graphs and their relations to
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EDMs. The analysis of graphs, derived from the path and cycle graph or star and

k-star graph ([9]) would enable a more thorough study of the problem considered.

A deeper insight into the relation between general graphs (and networks) and EDM

structure could also be obtained by focusing on different products of graphs, e.g.,

Cartesian or Tensor product, and some broader graph classes, e.g., regular, bipartite

or planar graphs.
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