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ON THE LEAST SIGNLESS LAPLACIAN EIGENVALUE
OF SOME GRAPHS*

GUANGLONG YU', SHUGUANG GUOT, AND MEILING XU#

Abstract. For a graph, the least signless Laplacian eigenvalue is the least eigenvalue of its
signless Laplacian matrix. This paper investigates how the least signless Laplacian eigenvalue of
a graph changes under some perturbations, and minimizes the least signless Laplacian eigenvalue
among all the nonbipartite graphs with given matching number and edge cover number, respectively.
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1. Introduction. All graphs considered in this paper are connected, undirected
and simple, i.e., no loops or multiple edges are allowed. We use standard termi-
nology and notation. We denote by G = [V(G), E(G)] a graph with vertex set
V(G) = {v1,v2,...,v,} and edge set E(G), where |[V(G)| = n is the order and
|E(G)| = m is the size of G. Recall that Q(G) = D(G) + A(G) is called the signless
Laplacian matriz of G, where D(G) = diag(dy,da,...,d,) with d; = dg(v;) being
the degree of vertex v; of G (1 <14 < n), and A(G) is the adjacency matrix of G. The
least eigenvalue of Q(G), denote by ¢min(G), is called the least signless Laplacian
eigenvalue of G. Noting that Q(G) is positive semi-definite, we have gin(G) > 0.

The signless Laplacian matrix has received a lot of attention in recent years,
especially after D. Cvetkovié et al. put forward the study of this matrix in [2-5].
From [5], we know that, for a connected graph G, ¢min(G) = 0 if and only if G is
bipartite. Consequently, in [8], the least signless Laplacian eigenvalue was studied
as a measure of nonbipartiteness of a graph. One can note that there are quite a
few results about the least signless Laplacian eigenvalue. In [I], D.M. Cardoso et al.
determined the graphs with the minimum least signless Laplacian eigenvalue among
all the connected nonbipartite graphs with a prescribed number of vertices. In [7],
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L. de Lima et al. surveyed some known results about ¢, and also proved some
new ones. In [J], S. Fallat and Y. Fan investigated the relations between the least
signless Laplacian eigenvalue and some parameters reflecting the graph bipartiteness.
In [I0], Y. Wang and Y. Fan investigated the least signless Laplacian eigenvalue of a
graph under some perturbations, and minimized the least eigenvalue of the signless
Laplacian among the class of connected graphs with fixed order which contains a
given nonbipartite graph as an induced subgraph.

In this paper, we investigate how the least signless Laplacian eigenvalue of a
graph changes under some perturbations, and consider the relation between it and
the matching number, and the relation between it and the edge cover number. We
recall some notions as follows:

o A matching of a graph G is a set of edges such that any two edges of the set
are not incident. The matching number of G, denoted by a'(G), is the maximum of
the cardinalities of all matchings. A maximal matching of G is a matching of G with
cardinality o (G).

e An edge cover of a graph G is a set of edges such that each vertex of G is
incident with at least one edge of the set. The edge cover number of G, denoted by
g (G), is the minimum of the cardinalities of all edge covers.

It is known that for a connected graph G of order n, o' (G)+ ' (G) = n. With the
results about the least signless Laplacian eigenvalue of a graph under some pertur-
bations shown in this paper, we determine the graphs which have the minimum least
signless Laplacian eigenvalue among the nonbipartite graphs with both given order,
and given matching number or edge cover number, respectively.

2. Perturbation. We first introduce some notation. We denote by C,, and P,
the cycle and the path of order n respectively. In a graph G, we let N¢(u) denote the
neighbor set of a vertex u. The distance between two vertices u and v in a graph G,
denoted by dg(u, v), is the length of one of the shortest paths from u to v. Let G —uv
denote the graph that arises from G by deleting the edge uwv € E(G). Similarly, G+uv
is the graph that arises from G by adding an edge uv between its two nonadjacent
vertices v and v. A pendant vertex is a vertex of degree 1. A vertex is called a
pendant neighbor if it is adjacent to a pendant vertex. A connected graph G of order
n is called a unicyclic graph if |E(G)| = n. The union of two simple graphs H and G
is the simple graph G U H with vertex set V(G) UV (H) and edge set E(G) U E(H).

Let G1 and G5 be two disjoint graphs, and let v1 € V(Gy), va € V(G2). The
coalescence of G1 and Gag, denoted by G1(v1) ¢ G2(vz2), is obtained from G, G2 by
identifying v1 with vy and forming a new vertex u (see [I0] for detail). The graph
G1(v1) © Ga(vg) is also written as G1(u) © Ga(u). If a connected graph G can be
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expressed in the form G = G1(u) ¢ G2(u), where G; and G2 are both nontrivial and
connected, then for i = 1, 2, G; is called a branch of G with root wu.

Let G be a graph of order n, and let X = (z1,22,...,7,)7 € R". Then X can
be considered as a function defined on V(G), that is, each vertex v; is mapped to
x; = z(v;). One can find that

XTQ@)X = Y [a(u) + ().
weEE(G)
In addition, for an arbitrary unit vector X € R”, gnin(G) < XTQ(G)X, with equality
if and only if X is an eigenvector corresponding to g, (G). A branch H of G is called
a zero branch with respect to X if z(v) = 0 for all v € V(H); otherwise, it is called
a nonzero branch with respect to X.

LEMMA 2.1. [I0] Let G be a connected graph which contains a bipartite branch
H with root uw. Let X be an eigenvector of G corresponding to qmin(G).

(i) If z(u) = 0, then H is a zero branch of G with respect to X;

(ii) If x(u) # 0, then x(p) # O for every vertex p € V(H). Furthermore, for every
vertex p € V(H), x(p)x(u) is either positive or negative, depending on whether p is
or is not in the same part of the bipartite graph H as u; consequently, x(p)x(q) <0
for each edge pqg € E(H).

LEMMA 2.2. [10] Let G be a connected nonbipartite graph of order n, and let X
be an eigenvector of G corresponding to qmin(G). Let T be a tree, which is a nonzero
branch of G with respect to X and with root u. Then |x(q)| < |x(p)| whenever p, q
are vertices of T such that q lies on the unique path from u to p.

LEMMA 2.3. [10] Let G = Gi(v2) © G2(u) and G* = G1(v1) o Ga(u) be two
graphs of order n, where Gy is a connected graph containing two distinct vertices v,
ve, and Go is a connected bipartite graph containing a vertexr w. If there exists an
eigenvector X = (z(v1), x(v2), ..., (vk), ...)T of G corresponding to qmin(G) such
that |z(v1)| > |z(v2)|, then ¢min(G*) < @min(G), with equality only if |x(v1)| = |z(ve)|
and dg, (u)x(u) = — ZUeNGQ(u) z(v), where dg,(u) = |Ng, (u)].

LEMMA 2.4. Let G = G1(v2) ¢ T'(u) and G* = G1(v1) ¢ T'(u), where Gy is
a connected nonbipartite graph containing two distinct vertices vi,ve, and T is a
nontrivial tree. If there exists an eigenvector X = (z(v1), z(v2), ..., x(vg), ...)T of
G corresponding t0 Gmin(G) such that |x(v1)| > |z(v2)| or |z(vi)| = |x(v2)| > 0, then
qmm(G*) < qmm(G).

Proof. In G, we denote by vs the new vertex obtained by identifying vy and u.
In G*, we denote by v; the new vertex obtained by identifying v; and w. Suppose
an eigenvector X = (z(v1), z(v2), ..., z(vk), ...)T of G corresponding to gmin(G)
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satisfies that |z(vy)| > |z(v2)| or |z(v1)| = |z(v2)| > 0. Next we prove gmin(G*) <
Qmin(G)-

Note that |z(v1)] > 0. For convenience, we suppose that x(v1) > 0. Let the

vector Z = (z(v1), 2(va), ..., 2(vk), ...)T € R™ defined on V(G*) satisfy that
_ { (1) |z (w)] + z(vr) = Jz(v2)]),  w € V(T —u);
z(w) = .
x(w), otherwise.

If 2(ve) = 0, then in G, T is a zero branch with respect to the eigenvector X.
Noting the supposition that z(vy) > 0, we get that |z(w)| > 0 for each w € V(T — u).
zZT Z
Then Z7Z > XTX now. Note that ZTQ(G*)Z = XTQ(G)X and % >
Gmin(G™) > 0. Then
ZTQ(G*)Z - XTa)x
VAN XTX

qmin(G*) < = Qmin(G)-

If (v2) # 0, by Lemma [ZT] then in G, zpx, < 0 for each edge pg € E(T). Noting
that in G*, for each edge pg € E(T), 2pzq < 0 and (2, + 24)% = (lz(p)| — |2(q)])* =
(x(p) + x(q))?, we get that ZTQ(G*)Z = XTQ(G)X. Note that

[2(w)] = fe(w)],  w e V(T = u);
|z(w)| = |z(w)|,  otherwise.

Then ZTZ > XTX. As a result,
77067 _ XTQG)X
<
AN - XTX
Note that if ¢min(G*) = @min(G), then Z is an eigenvector corresponding to ¢pmin (G™*),

and then z(v1) = z(v1) > 0. By Lemma 22 in G*, for each w € Nr(u), we have
z(v1) 4+ z(w) < 0. Then we have

Gmin(G™)z(v1) = dg(v1)z(v1) + Z 2(w) + dr(u)z(vy) + Z 2(w)

wENG (v1) weNT (u)

dmin (G* ) S

= Qmin(G)-

= gmin(G)2(v1) + D (2(01) + 2(w))
wEN7T(u)
< Gmin(G)z(v1).

This means that ¢min(G*) # Gmin(G). Consequently, ¢min(G*) < ¢min(G). This
completes the proof. O

REMARK 2.5. In [I0], Y. Wang and Y.Z. Fan proved that Lemma [24] holds
for G = G1(v2) ¢ S(u), where S(u) is a nontrivial star with center w, and holds for
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G = G1(v2)o P(u), where P is a nontrivial path with an end vertex u. Hence, Lemma
24l is a generalization of their results.

Vg1 V2

Uk

Uk

Uk—T

U2

Fig. 2.1. G.

LEMMA 2.6. Let G = C(vg) © B(vg) be a graph of order n, where C = vov1vg -+ -
VpULUE—1 * - ULVg 98 a cycle of length 2k+1, and B is a bipartite graph of order n—2k
(see Fig. 2.1). Then there exists an eigenvector X = (z(vo), xz(v1), z(v2), ..., x(vk),
2(uy), z(uz), ..., x(ug), ...)T corresponding to gmin(G) satisfying the following:

(i) [z(vo)| = max{|z(w)| [w € V(C)} > 0;
(ii) z(v;) = x(u;) fori=1,2,...,k;
(iil) x(vi)z(vi—1) <0 and z(u;)x(ui—1) <0 fori=1,2,... k.

Moreover, if 2k + 1 < n, then the multiplicity of Gmin(G) is one, and then any
eigenvector corresponding to qmin(G) satisfies (i), (ii), (iii).

PT’OOf' Suppose Y = (y(UO)a y(vl)a sy y(vk)a y(ul)a SRR} y(uk)v o ')T € R" is an
eigenvector corresponding to Gmqn(G). Then Y is a nonzero vector.

If |V(B)| =1, then 2k + 1 = n. Without loss of generality, we may assume that
ly(vo)| = max{|y(w)||w € V(C)}. Note that if |y(vg)] = 0, then Y is a zero vector,
which contradicts that Y is nonzero. This means that |y(vo)| > 0.

If [V(B)| > 1, then 2k +1 < n. We claim that |y(vo)| = max{|y(w)| |w € V(C)}.
Otherwise, suppose that there exists some ¢ (1 < i < k) such that |y(v;)| > |y(vo)]-
Let

G =G- Z vow + Z ViW.

wENpg(vo) wENpg(vo)

By Lemma 23] then ¢in (Gl) < @min(G), which is a contradiction because G ~G.
Then our claim holds. Note that if y(vo) = 0, then by Lemma 2] B is a zero branch
with respect to Y. Simultaneously, if y(vg) = 0, then y(w) = 0 for every w € V(C).
Therefore, Y = 0, which contradicts that Y is nonzero. This means that |y(vg)| > 0.
Moreover, we conclude that if 2k + 1 < n, any eigenvector corresponding to gmin (G)
satisfies (i).
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Let the vector Y/ = (y (vo), ¥ (v1), -+, ¥ (), ¥ (w1), -y ¥ (ug), ...)T € R™
defined on V(G) satisfy that
, y(ui), w=wv; fori=1,2 ..., k;
y(w)=<¢ yl), w=wu; fori=1,2,...,k
y(w),  otherwise.
Then
Y Q@)Y YTQ@)yY G
Y/Ty/ - YTY - Qmm( )

Hence Y is also an eigenvector of G corresponding to ¢min(G). Let Z = (z(vo), z(v1),
oo 2(vg), 2(ur), .., 2(ug), ... )T =Y +Y’. Then Z # 0, and Z is also an eigenvector
of G corresponding to ¢min(G) which satisfies both (i) and (ii).

Let the vector X = (z(vo), x(v1), ..., x(vk), x(u1), ..., o(ug), ...)T defined on
V(G) satisfy that z(w) = (—1)4¢0®)sign(z(vg))|2(w)|. Note that |z(w)| = |z(w)]| for
any vertex w € V(G). Then XTX = ZTZ. Noting that signr(w) = —signz(vy) for
each edge wy € (E(GQ) \ {urvr}) and (z(ur) + x(vk))? = (2(ug) + 2(vk))?, we have

(2(w) +2(7))* < (2(w) + 2(7))?

for each edge wy € E(G). Consequently, we get that X7 Q(G)X < ZTQ(GQ)Z, and

XTQG)X _ 2"Q(G)z

Qmin(G) S XTX > ZTZ

= Qmin(G)-

As a result, X is also an eigenvector of G corresponding t0 ¢min(G), which satisfies
(1), (ii) and (iii).

Assume that the multiplicity of ¢min(G) is greater than one. Let F' = (f(vo),
f1), ..., f(vg), f(u1), ..., f(ur))? be an eigenvector of G corresponding to gpin (G)
which is orthogonal to X. If 2k +1 < n, then |f(vo)| > 0. Suppose that f(vy) =
ex(vg). Then I' = F — X = (1(vo), T(v1)y «ovy (), T(u1), ..., 7(ug))? is also
an eigenvector of G corresponding t0 ¢min(G), but 7(vg) = 0, which contradicts our
above conclusion that any eigenvector of G corresponding to ¢, (G) satisfies (i) if
2k +1 < n. Now, we conclude that if 2k + 1 < n, then for any eigenvector F' of
G corresponding t0 ¢min(G), there exists a real number k # 0 such that F = kX.
This means that the multiplicity of gmin(G) is one if 2k + 1 < n, and means that any
eigenvector corresponding to ¢min(G) satisfies (i), (ii), (iii). The proof is completed. O

LEMMA 2.7. Suppose that v is a pedant vertex and uv is a pendant edge in a
graph G. Then there must be a mazimal matching of G containing the edge uv.

Proof. Suppose that M; is a maximal matching of G. The lemma is trivial if
wv € My. If wv ¢ My, then in My, there must be an edge incident with u. Otherwise,
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let My = My U {uv}. Then |Ms| = |Mi| + 1 and M, is also a matching of G,
which contradicts that M; is maximal. Suppose uz € M, where uz # uv. Let
M = (Mi\{uz}) U {uv}. Then M is also a maximal matching of G, which contains
the edge uv. The result follows. O

Let k > 3 be odd. Let Cj ; be the graph of order n obtained by attaching a cycle
C} to an end vertex of a path P41 and attaching n — k — [ pendant edges to the other
end vertex of the path P,y (see Fig. 2.2). In particular, [ = 0 means attaching n — k
pendant edges to a vertex of Cy.

UL%J Uk:JrlJrl
v
Urky 2 Vk+414-2
2 v Vk+1  Vk42 Vk41—1 UVk+l
Urg1+1
Vi v
Ur§1+2 "

Fig. 2.2. Cf .

LEMMA 2.8. Let 3 <k <n—2 be odd, and let both C,:J and C;, 11 be of order
n. Then we have

(i) « (Cl:,l) Sa (CI: 141)7
(i1) gmin(Ck, 131) < dmin(Cy, 1)
Proof. Let the vertices of C} | be indexed as in Fig. 2.2. Note that

n

n
Crimi=Chi— Y. vk + Y. Vilkprir
i=k+1+4+2 i=k+1+42

By Lemma 27 we know that there exists a maximal matching M; of Cy,; which
contains vg4ivg+1+1. Note that Mj is also a matching of C’;’ 141 Hence, a (C; D) <
o (C% 141)- Then (i) follows.

Let Y = (y(v1), y(v2), -+ y(vr), y(vr41)s Y(vit2), -, y(vn))" be an eigenvector
corresponding t0 ¢min(Cj; ;). By Lemma 2.6 we know that [y(v1)| > 0. Combining
with Lemma [22] we have 0 < |y(v1)| < |y(ve+1)| < |y(vk+i41)]- By Lemma 24 we
get that qmm(C,jylH) < qmm(C,:yl). Then (ii) follows. O

Let £ > 3 be odd, and let C = vjvs - - - vxv1 be a cycle of length k. For j =1, 2,
..., t, each Tj is a nontrivial tree. Let C,iTl’TQ""’T”;il’iQ"“’i”) denote the graph obtained

by identifying the vertex u; of T; and the vertex v;; of C, where 1 < j < ¢ and
for | # j, iy = i; possibly. Here, in C,iTl’T2"“’Tt;“’12"”’“), for any 1 < j < t, we

denote by v;; the new vertex obtained by identifying v;; and u;. Let C(T,;’TLT)Q"“’T‘

T1,Ts,..., Tti1 02,0 T1,T2,..., Tt5i1,02,...0 T1,T3,...,T¢;1
{C,(c 1Az, deite 02 “)|Cl(€ bez #iiznit) o of order n} and let Cl(c 142 61—
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C(Tl7T2g~th?1’17»~71)
k

@ < @
QANOIIAZERLS

. For understanding easily, we show three examples in Fig. 2.3.

(%) VU3

V2 U3

C(T17T2,T3;1,273) C(T17T2,T3;1,272) C(T17T2,T3;1)
Fig. 2.3 C§T17T2,T3;17213) C§T1,T27T3;11272) and C§T1,T2,T3;1)
. 2.3. C. , , .

LEMMA 2.9. Let 3 < k <n be odd. Then for any U € C(Tl;l’g)z’”"Tt, we have

’

(i) o' (") < o (U);

(i1) Gmin (C,iTl’TQ""’T“l)) < Gmin(U), with equality if and only if C,iTl’T%”"T“l).

Proof. Let U' € C(Tl;l”nT)z"”’Tt, and let the vertices of U’ be indexed by vy, vg, ...,
Vky Vka1ls Vkt2, - - -, Up. Suppose that qmm(Ul) = min{gmin(U)|U € C(TkljnT)?"”’Tt}. Let
Y = (y(v1), y(va), -, y(vr), y(vkt1), Y(Vkr2), - - - y(vn))T be an eigenvector corre-
sponding to ¢min(U'). Then Y is nonzero. Suppose that |y(v1)| = max{|y(w)||w €
V(C)}. Note that if |y(vi)| =0, by Lemma 2] then for j =1, 2, ..., ¢, each T} is a
zero branch, and then Y is a zero vector, which contradicts that Y is nonzero. As a
result, it follows that |y(v1)| > 0.

U 2 C,(CTI’T””’T“I)7 then there exists a nontrivial tree T} attaching to v;; (vi; #
v1). Let

Us=U — Z ujw + Z V9W.

wENT; (u;) wENT; (u;)

By Lemma 24l we have ¢, (U*) < qmm(U/). This contradicts that qmm(Ul) is
minimal. Consequently, if qmm(UI) is minimal, then U’ 2 CI(CTI’TQ"”’T“U. Then (ii)
follows.

Let M be a maximal matching of C,ng’T2""’Tt;1), and let 7 = T1yUT5U- - -UT;} here.

Suppose that there is a vertex vo, € Ny (v1) such that viv, € M. Then v, € V(Tj) for
some j (1 < j <t). For convenience, we assume that j = 1, that is, v, € V(T1). Let
T'=ToU---UT;. Then there is no vertex w € V(T”) such that vyw € M. Note that
for any graph U € Cg,$2""’Tt, U is either isomorphic to CI(QTI’TQ"”’T“U

Ty, To ., Tesin yinyoi Ty, T, Tesit yizyni .
to a graph C,(c LT Thitniaebe) -y the graph Cl(c PR R ’“’), for convenience,

T1,Ta,..., Tti1 02,0 T1,Ta,..., Te;1,i2,...1 :
we let v;; = v;. Then C,(c T Tz, i) C,(c 1oz #iliz0t)  Note that M is

, or isomorphic
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also a matching of the graph C,iTl’T2"”’Tt;1’i2"”’“). Hence, if U is isomorphic to the

graph Clg:Tlszf‘“yTt;17i2 »»»»» it)7 then a/(cl(ch,sz»,Tt;l)) < Oél(U). U =~ Cl(chﬁsz»»»,Tﬁl),
then o (CliTl’T“”’T“l)) < o' (U) naturally.

In the same way, we can prove that if there is no vertex v € Ny (v1) such that
viv € M, then o (C,(ng’T”“’T”;l)) < o' (U). And Then (i) follows. This completes the
proof. O

LEMMA 2.10. Let 3 < k < n be odd, and let Uy = C,iTl;l) be of order n. If there
exist at least 2 pendant neighbors in Uy, then there exists | such that

(i) & (Cf ) < o (Uo);

Proof. By Lemmal[2Z0] we know that there exists an eigenvector X = (z(v1), z(vs2),
ooy x(vg),...)T corresponding to gmin(Up), such that |z(vi)] = max{|z(w)| |w €
V(C)} > 0. Then T; is a nonzero branch by Lemma 21l Let |x(v.)| = max{|z(w)| |w
€ V(T1), w is not a pendant vertex}. By Lemma 22 we know that v, is a pendant
neighbor. We suppose that v is another pendant neighbor different from v., and
are all the pendant vertices adjacent to vp. Let

t t
U, =Uy — E vpv;; + g Ve -
=1 =1

By Lemma 24 we have ¢umin(U1) < ¢min(Up). Note that the number of pendant
neighbors of U; is less than that of Uy. Proceeding like this, from Uy, we can get
a nonbipartite unicyclic graph K which has only one pendant neighbor, such that
Gmin(K) < @min(Up). Here, K is isomorphic to a Cy.; for some [.

suppose that v;,,...,v;,

For convenience, we let K = Cj ; and let the vertices of K be indexed as in Fig.
2.2. From the above proof, we see that in the original graph Uy, vk is not a pendant

vertex, and at least one of vgyi41,Vkti42,--.,Un, say v, for convenience, is adjacent
n—1
to vg4;. Then ¥ = K — Z v; 18 a subgraph of Uy. By Lemma 27, we know that
i=k+14+1

there is a maximal matching M of K containing vjy;v,. In fact, M is also a maximal
matching of .. Consequently, o (K) = o (.). Note that . is a subgraph of Up.
Hence, o (.) < o' (Up), and then o' (K) < o (Up). This completes the proof. O

LEMMA 2.11. Let k > 3 be odd and t = 1+ [£] — 1, and let both Ci and C5
be of order n. Then we have

(i) a'(C5,4) < & (CF s

(i) gmin(C3,+) < @min(Cy,;), with equality if and only if k = 3.
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Proof. The lemma is trivial for £ = 3. Next we suppose k > 5.

Let the vertices of C} ; be indexed as in Fig. 2.2, and welet Y = (y(v1), y(v2), ...,

y(vr), y(vk+1), Y(Vks2), - y(vn))T be an eigenvector corresponding to Qmin(C]:’l)
satisfying Lemma Combining with Lemma 2] we have y(v1) # 0, and for
1< <k, we have [y(ui)] < Jy(n)] < [y(esr)]

vy UL

,
T4 /L Ukl
/
y
B[’;HQ UIS1+4 v v1 vy Vk+1-1 / Vk+1+2

Urk1+3 uk+\:
&1+ v

n

Fig. 2.4. C5 .
Let
(5] L5
C;,=Cr i — Zvivi_l + Zvika T UrE VIR g (see Fig. 2.4),
i=2 i=2

and let Z = (z(v1), 2(v2), ..., 2(vg), ...)7 € R defined on V(Cj ;) satisfy that

2(w) = —sgn(y(vit1)) ([y(ors)| + ly(vi) + y(vi1)|), w=wv; fori=2,3, ..., [£];
y(w), otherwise.
Note that
2(w)] > |y(w)|,  w=wv; fori=2,3, ..., |5
|z(w)| = ly(w)|,  otherwise,
_ T T
and Yoy = Yok then ZTZ > YTY and
ZTQ(C?T,t)Z = YTQ(CI:,I)Y - (vaﬁJ + Yok, )2 + (yv(g + yv(@H)Q = YTQ(CI:J)Y-
2 2 2 2

As a result, we get that

27Q(C5.0Z _ YTQ(CL)Y

(2.1) Gmin(C3,0) £ ——7—— S~y

= Qmin(clz, 1)-

We claim that qmm(C’é"’t) < qmm(C};’l). Otherwise, suppose that qmm(C’;t) =
gmin(C ;). Then Z is an eigenvector corresponding to gmin(C3 ;). By Lemma 232

we have |z(vi1q)| < |2(v;)| for i = 2,3, ..., [£]. By Lemmas and [2X6] we know
that in Y, |y(v;)| < |y(vis)| for i =2, 3, ..., |£]. Note that [y(viii)| = |z(vkri)l.

Consequently, [y(v;)| < |z(v;)| fori=2,3, ..., |£]. Asaresult, we get ZT'Z > YTY.
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Since gmin(C3, ;) # 0, from inequality (1)), we have ¢min(C3 ;) < Gmin (C; ;), which
contradicts that ¢min(C3 ;) = qmm(C,: 1) So our claim holds.

We claim that there is a maximal matching of C3 ; containing both vy;v,, and
VpEqUrE 41 By Lemma [Z7 we know that there is a maximal matching Mc; , of
C§7t containing vgy;v,. Assume that UrE Urkyqg ¢ Mcé« L There must be one of
U(%]”[%HW Uk Urkyy in Moy Suppose that v[ng[g]ﬁ € Mgz ,. We let
Mg, , = (Mc; \{vrsqvrerge}) U{vrgqvre 1} Note that Mg, , is a matching of
C3 ; and |MC§ t| = |Mc; | = a (C3 ;). Then Mg, s also a maximal matching of
C5 4, which contains both vy v, and UrE ULk As a result, our claim holds.

We let Mga . be a maximal matching of C3; containing both wviiv, and

Ure1Vrs141- Note that Mg, s also a matching of C; ;. Hence, a/(Cgf,t) <a'( )
Then the results follows. O

3. Minimizing graph. A graph is called a minimizing graph in a class of
graphs if its least signless Laplacian eigenvalue attains the minimum among all graphs
in the class. In this section, we will apply the results in Section 2 to characterize the
minimizing graphs among all the nonbipartite graphs with given matching number or
edge cover number.

LEMMA 3.1. Among all the nonbipartite unicyclic graphs with both given order n
and given matching number o > 2, the least signless Laplacian eigenvalue of a graph

s minimized uniquely at 03’20/73.

Proof. Let G be a nonbipartite unicyclic graph with both given order n and given
matching number al, and let C = vyvg -+ -vpvy (k is odd) be the unique cycle in G.
Note that if n = 3, then G = K3, and then o (K3) = 1. As a result, we have that
if o/ > 2, then n > 4. Note that a (Cc*

7 - )
3,2a —3
Lemmas 2.8-2.T11 This completes the proof. O

= a'. Then the result follows from

LEMMA 3.2. [6] Let G be a graph with n vertices and m edges, and let e be an
edge of G. Let 1 > q2 > -+ > Qmin 0nd S1 > So > -+ > s, be the QQ-eigenvalues of
G and G — e respectively. Then 0 < s, < @min < -+ <82 < g2 <51 < 1.

LEMMA 3.3. Among all the connected nonbipartite graphs with both given order n
and given matching number o > 2, the least signless Laplacian eigenvalue of a graph

is minimized uniquely at 03, 90/ —3°

Proof. Let G be a connected nonbipartite graph with both given order n and
given matching number . Suppose C° is an odd cycle in G. By deleting edges from
G, we can get a connected unicyclic spanning subgraph of G, denoted by G’, which
contains C° as the unique cycle. Obviously, o () < o (G) = o’. By Lemma[32 we
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know that ¢min(G’) < Gmin(G). By Lemmas [Z8 BI] we have

Qmin(cg’ 2a'73) < Qmin(C:; 2a'(G’)73) < Qmin(Gl) < Qmin(G)-

Now, we begin to prove that qmm(C’; 2a/_3) = @min(G) if and only if G =

C; 2a’ —3°
Assume that ¢ (G) = Qmm(cg’ 9’ 3)-

Claim 1. & (G') = . Otherwise, if & (G') < o, by Lemma [Z8, then
Gmin(Cy 547 _3) < qmin(Cy, 20/(G/)73)’
and by Lemma 3.1l then
4min(C s 1) 5) < Gmin( G,

Noting that ¢min(G') < gmin(G), we have qmm(C’g 2a,_3) < Gmin(G), which contra-

dicts our assumption. Hence, our claim holds.

Claim 2. G' = Cy .5 Otherwise, if G # Cy o g0 DY Lemma [31], then

dmin (C; 20" _3) < szn(Gl)

Noting that gmin(G’) < ¢min(G), we have qmm(Cg 2a,73) < @min(G), which contra-

dicts our assumption. Hence, our claim holds.

V2 Vo' +1
Vo 1 Vaa/ 42
U1 Vg Vs Voo’ —1 Y2a
o o o A
.
U3 \-

Un,
Fig. 3.1. G'.

From Claim 2 and our assumption, we conclude that ¢min(G) = Gmin(G’).

Assume that E(G)\ E(G’) # 0, and assume that the vertices of G’ are indexed as
in Fig. 3.1. Let X = (2(v1),z(v2),...,2(v,))T be a unit eigenvector corresponding
t0 gmin(G). Note that F(G'") C E(G). Then XTQ(G)X > XTQ(G')X, and then

From our above conclusion that gmin(G) = ¢min(G’), we get

XTQ(O)X = XTQ(GX = guin(G").



Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 26, pp. 560-573, August 2013

572 Guanglong Yu, Shuguang Guo, and Meiling Xu

Therefore, X is also an eigenvector of G’ corresponding to ¢min(G’). Moreover, we
conclude that for each edge v;v; € E(G) \ E(G'), z(v;) + z(v;) = 0.

Because X is also an eigenvector of G’ corresponding to ¢pmin(G’), by Lemma [2.0]
we know that |z(v1)| = max{|z(v1)], |z(v2)|, |x(vs)|} > 0. Combining with Lemmas

21 22, we see that
() o(os)| < fo(og)| fori =1,2,3, j > 4
(i) |z(v:)| < |z(v;)] for 4 <i<2a',4 < j<n,i<j;
(iii) (v;)x(v;) > 0 for 20 +1 < i,j < n.

Consequently, we conclude that for each edge vv; € E(G) \ E(G'), z(v;) +
x(vj) # 0, which contradicts our conclusion that for each edge v;v; € E(G) \ E(G'),
x(v;) + x(vj) = 0. This means that the above assumption that E(G) \ E(G’) # 0 can

not hold. This means G =G’. Then G =Cj , , ..

Conversely, if G = C;, , ., then q,m-n(C’éF 20{,73) = @min(G) naturally. This
completes the proof. 0

THEOREM 3.4. Among all the nonbipartite unicyclic graphs with both given order
n and given matching number o/, we have

(i) if o =1, then the graphs are isomorphic to Ks;

(ii) if o > 2, then the least signless Laplacian eigenvalue of a graph is minimized
uniquely at C’;’ 20/ —3"

Proof. Note that a (Py) > 2. As aresult, if a graph G contains Py, then a/(G) >
2. Note that for a nonbipartite unicyclic graph K of order n > 4, it can be checked
that K contains Py. Consequently, for a nonbipartite unicyclic graph K of order n, if
n >4, then o' (K) > 2. Simultaneously, we get that if o =1, then n = 3, and then
(i) follows. (ii) follows from Lemma 3] O

Similar to Theorem [3.4], we get the following theorem.

THEOREM 3.5. Among all the connected nonbipartite graphs with both given order
n and given matching number al, we have

(i) of o =1, then the graphs are isomorphic to Ks;

(ii) if o > 2, then the least signless Laplacian eigenvalue of a graph is minimized

uniquely at C3 , .
COROLLARY 3.6. Among all the connected nonbipartite graphs with both given
order n and given edge cover number ﬁl, we have
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(i) if B =n—1, then the graphs are isomorphic to Ks;

(ii) of B < n—2, then the least signless Laplacian eigenvalue of a graph is

minimized uniquely at 03’27%25,73.

Proof. This corollary follows from the fact that o (G) + 8 (@) = n and Theorem
O
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