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Abstract. For a graph, the least signless Laplacian eigenvalue is the least eigenvalue of its

signless Laplacian matrix. This paper investigates how the least signless Laplacian eigenvalue of

a graph changes under some perturbations, and minimizes the least signless Laplacian eigenvalue

among all the nonbipartite graphs with given matching number and edge cover number, respectively.
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1. Introduction. All graphs considered in this paper are connected, undirected

and simple, i.e., no loops or multiple edges are allowed. We use standard termi-

nology and notation. We denote by G = [V (G), E(G)] a graph with vertex set

V (G) = {v1, v2, . . . , vn} and edge set E(G), where |V (G)| = n is the order and

|E(G)| = m is the size of G. Recall that Q(G) = D(G) +A(G) is called the signless

Laplacian matrix of G, where D(G) = diag(d1, d2, . . . , dn) with di = dG(vi) being

the degree of vertex vi of G (1 ≤ i ≤ n), and A(G) is the adjacency matrix of G. The

least eigenvalue of Q(G), denote by qmin(G), is called the least signless Laplacian

eigenvalue of G. Noting that Q(G) is positive semi-definite, we have qmin(G) ≥ 0.

The signless Laplacian matrix has received a lot of attention in recent years,

especially after D. Cvetković et al. put forward the study of this matrix in [2–5].

From [5], we know that, for a connected graph G, qmin(G) = 0 if and only if G is

bipartite. Consequently, in [8], the least signless Laplacian eigenvalue was studied

as a measure of nonbipartiteness of a graph. One can note that there are quite a

few results about the least signless Laplacian eigenvalue. In [1], D.M. Cardoso et al.

determined the graphs with the minimum least signless Laplacian eigenvalue among

all the connected nonbipartite graphs with a prescribed number of vertices. In [7],
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L. de Lima et al. surveyed some known results about qmin and also proved some

new ones. In [9], S. Fallat and Y. Fan investigated the relations between the least

signless Laplacian eigenvalue and some parameters reflecting the graph bipartiteness.

In [10], Y. Wang and Y. Fan investigated the least signless Laplacian eigenvalue of a

graph under some perturbations, and minimized the least eigenvalue of the signless

Laplacian among the class of connected graphs with fixed order which contains a

given nonbipartite graph as an induced subgraph.

In this paper, we investigate how the least signless Laplacian eigenvalue of a

graph changes under some perturbations, and consider the relation between it and

the matching number, and the relation between it and the edge cover number. We

recall some notions as follows:

• A matching of a graph G is a set of edges such that any two edges of the set

are not incident. The matching number of G, denoted by α
′

(G), is the maximum of

the cardinalities of all matchings. A maximal matching of G is a matching of G with

cardinality α
′

(G).

• An edge cover of a graph G is a set of edges such that each vertex of G is

incident with at least one edge of the set. The edge cover number of G, denoted by

β
′

(G), is the minimum of the cardinalities of all edge covers.

It is known that for a connected graph G of order n, α
′

(G)+β
′

(G) = n. With the

results about the least signless Laplacian eigenvalue of a graph under some pertur-

bations shown in this paper, we determine the graphs which have the minimum least

signless Laplacian eigenvalue among the nonbipartite graphs with both given order,

and given matching number or edge cover number, respectively.

2. Perturbation. We first introduce some notation. We denote by Cn and Pn

the cycle and the path of order n respectively. In a graph G, we let NG(u) denote the

neighbor set of a vertex u. The distance between two vertices u and v in a graph G,

denoted by dG(u, v), is the length of one of the shortest paths from u to v. Let G−uv

denote the graph that arises from G by deleting the edge uv ∈ E(G). Similarly, G+uv

is the graph that arises from G by adding an edge uv between its two nonadjacent

vertices u and v. A pendant vertex is a vertex of degree 1. A vertex is called a

pendant neighbor if it is adjacent to a pendant vertex. A connected graph G of order

n is called a unicyclic graph if |E(G)| = n. The union of two simple graphs H and G

is the simple graph G ∪H with vertex set V (G) ∪ V (H) and edge set E(G) ∪E(H).

Let G1 and G2 be two disjoint graphs, and let v1 ∈ V (G1), v2 ∈ V (G2). The

coalescence of G1 and G2, denoted by G1(v1) ⋄ G2(v2), is obtained from G1, G2 by

identifying v1 with v2 and forming a new vertex u (see [10] for detail). The graph

G1(v1) ⋄ G2(v2) is also written as G1(u) ⋄ G2(u). If a connected graph G can be
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expressed in the form G = G1(u) ⋄G2(u), where G1 and G2 are both nontrivial and

connected, then for i = 1, 2, Gi is called a branch of G with root u.

Let G be a graph of order n, and let X = (x1, x2, . . . , xn)
T ∈ Rn. Then X can

be considered as a function defined on V (G), that is, each vertex vi is mapped to

xi = x(vi). One can find that

XTQ(G)X =
∑

uv∈E(G)

[x(u) + x(v)]2.

In addition, for an arbitrary unit vectorX ∈ Rn, qmin(G) ≤ XTQ(G)X , with equality

if and only if X is an eigenvector corresponding to qmin(G). A branch H of G is called

a zero branch with respect to X if x(v) = 0 for all v ∈ V (H); otherwise, it is called

a nonzero branch with respect to X .

Lemma 2.1. [10] Let G be a connected graph which contains a bipartite branch

H with root u. Let X be an eigenvector of G corresponding to qmin(G).

(i) If x(u) = 0, then H is a zero branch of G with respect to X ;

(ii) If x(u) 6= 0, then x(p) 6= 0 for every vertex p ∈ V (H). Furthermore, for every

vertex p ∈ V (H), x(p)x(u) is either positive or negative, depending on whether p is

or is not in the same part of the bipartite graph H as u; consequently, x(p)x(q) < 0

for each edge pq ∈ E(H).

Lemma 2.2. [10] Let G be a connected nonbipartite graph of order n, and let X

be an eigenvector of G corresponding to qmin(G). Let T be a tree, which is a nonzero

branch of G with respect to X and with root u. Then |x(q)| < |x(p)| whenever p, q

are vertices of T such that q lies on the unique path from u to p.

Lemma 2.3. [10] Let G = G1(v2) ⋄ G2(u) and G∗ = G1(v1) ⋄ G2(u) be two

graphs of order n, where G1 is a connected graph containing two distinct vertices v1,

v2, and G2 is a connected bipartite graph containing a vertex u. If there exists an

eigenvector X = (x(v1), x(v2), . . ., x(vk), . . .)
T of G corresponding to qmin(G) such

that |x(v1)| ≥ |x(v2)|, then qmin(G
∗) ≤ qmin(G), with equality only if |x(v1)| = |x(v2)|

and dG2
(u)x(u) = −

∑

v∈NG2
(u) x(v), where dG2

(u) = |NG2
(u)|.

Lemma 2.4. Let G = G1(v2) ⋄ T (u) and G∗ = G1(v1) ⋄ T (u), where G1 is

a connected nonbipartite graph containing two distinct vertices v1, v2, and T is a

nontrivial tree. If there exists an eigenvector X = (x(v1), x(v2), . . ., x(vk), . . .)
T of

G corresponding to qmin(G) such that |x(v1)| > |x(v2)| or |x(v1)| = |x(v2)| > 0, then

qmin(G
∗) < qmin(G).

Proof. In G, we denote by v2 the new vertex obtained by identifying v2 and u.

In G∗, we denote by v1 the new vertex obtained by identifying v1 and u. Suppose

an eigenvector X = (x(v1), x(v2), . . ., x(vk), . . .)
T of G corresponding to qmin(G)
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satisfies that |x(v1)| > |x(v2)| or |x(v1)| = |x(v2)| > 0. Next we prove qmin(G
∗) <

qmin(G).

Note that |x(v1)| > 0. For convenience, we suppose that x(v1) > 0. Let the

vector Z = (z(v1), z(v2), . . ., z(vk), . . .)
T ∈ Rn defined on V (G∗) satisfy that

z(w) =

{

(−1)dT (u,w)(|x(w)| + x(v1)− |x(v2)|), w ∈ V (T − u);

x(w), otherwise.

If x(v2) = 0, then in G, T is a zero branch with respect to the eigenvector X .

Noting the supposition that x(v1) > 0, we get that |z(w)| > 0 for each w ∈ V (T − u).

Then ZTZ > XTX now. Note that ZTQ(G∗)Z = XTQ(G)X and
ZTQ(G∗)Z

ZTZ
≥

qmin(G
∗) > 0. Then

qmin(G
∗) ≤

ZTQ(G∗)Z

ZTZ
<

XTQ(G)X

XTX
= qmin(G).

If x(v2) 6= 0, by Lemma 2.1, then in G, xpxq < 0 for each edge pq ∈ E(T ). Noting

that in G∗, for each edge pq ∈ E(T ), zpzq < 0 and (zp + zq)
2 = (|x(p)| − |x(q)|)2 =

(x(p) + x(q))2, we get that ZTQ(G∗)Z = XTQ(G)X . Note that
{

|z(w)| ≥ |x(w)|, w ∈ V (T − u);

|z(w)| = |x(w)|, otherwise.

Then ZTZ ≥ XTX . As a result,

qmin(G
∗) ≤

ZTQ(G∗)Z

ZTZ
≤

XTQ(G)X

XTX
= qmin(G).

Note that if qmin(G
∗) = qmin(G), then Z is an eigenvector corresponding to qmin(G

∗),

and then x(v1) = z(v1) > 0. By Lemma 2.2, in G∗, for each w ∈ NT (u), we have

z(v1) + z(w) < 0. Then we have

qmin(G
∗)z(v1) = dG(v1)z(v1) +

∑

w∈NG(v1)

z(w) + dT (u)z(v1) +
∑

w∈NT (u)

z(w)

= qmin(G)z(v1) +
∑

w∈NT (u)

(z(v1) + z(w))

< qmin(G)z(v1).

This means that qmin(G
∗) 6= qmin(G). Consequently, qmin(G

∗) < qmin(G). This

completes the proof.

Remark 2.5. In [10], Y. Wang and Y.Z. Fan proved that Lemma 2.4 holds

for G = G1(v2) ⋄ S(u), where S(u) is a nontrivial star with center u, and holds for
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G = G1(v2)⋄P (u), where P is a nontrivial path with an end vertex u. Hence, Lemma

2.4 is a generalization of their results.

q

q

q

q

q

q

q

v0

v1
v2

u1
u2

vk

q

q

uk

vk−1

uk−1

Fig. 2.1. G.

C B

Lemma 2.6. Let G = C(v0) ⋄B(v0) be a graph of order n, where C = v0v1v2 · · ·

vkukuk−1 · · · u1v0 is a cycle of length 2k+1, and B is a bipartite graph of order n−2k

(see Fig. 2.1). Then there exists an eigenvector X = (x(v0), x(v1), x(v2), . . ., x(vk),

x(u1), x(u2), . . ., x(uk), . . . )
T corresponding to qmin(G) satisfying the following:

(i) |x(v0)| = max{|x(w)| |w ∈ V (C)} > 0;

(ii) x(vi) = x(ui) for i = 1, 2, . . . , k;

(iii) x(vi)x(vi−1) ≤ 0 and x(ui)x(ui−1) ≤ 0 for i = 1, 2, . . . , k.

Moreover, if 2k + 1 < n, then the multiplicity of qmin(G) is one, and then any

eigenvector corresponding to qmin(G) satisfies (i), (ii), (iii).

Proof. Suppose Y = (y(v0), y(v1), . . ., y(vk), y(u1), . . ., y(uk), . . .)
T ∈ Rn is an

eigenvector corresponding to qmin(G). Then Y is a nonzero vector.

If |V (B)| = 1, then 2k + 1 = n. Without loss of generality, we may assume that

|y(v0)| = max{|y(w)| |w ∈ V (C)}. Note that if |y(v0)| = 0, then Y is a zero vector,

which contradicts that Y is nonzero. This means that |y(v0)| > 0.

If |V (B)| > 1, then 2k+1 < n. We claim that |y(v0)| = max{|y(w)| |w ∈ V (C)}.

Otherwise, suppose that there exists some i (1 ≤ i ≤ k) such that |y(vi)| > |y(v0)|.

Let

G
′

= G−
∑

w∈NB(v0)

v0w +
∑

w∈NB(v0)

viw.

By Lemma 2.3, then qmin(G
′

) < qmin(G), which is a contradiction because G
′ ∼= G.

Then our claim holds. Note that if y(v0) = 0, then by Lemma 2.1, B is a zero branch

with respect to Y . Simultaneously, if y(v0) = 0, then y(w) = 0 for every w ∈ V (C).

Therefore, Y = 0, which contradicts that Y is nonzero. This means that |y(v0)| > 0.

Moreover, we conclude that if 2k + 1 < n, any eigenvector corresponding to qmin(G)

satisfies (i).
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Let the vector Y ′ = (y
′

(v0), y
′

(v1), . . ., y
′

(vk), y
′

(u1), . . ., y
′

(uk), . . .)
T ∈ Rn

defined on V (G) satisfy that

y
′

(w) =







y(ui), w = vi for i = 1, 2, . . . , k;

y(vi), w = ui for i = 1, 2, . . . , k;

y(w), otherwise.

Then

Y
′T

Q(G)Y
′

Y ′T Y ′ =
Y TQ(G)Y

Y TY
= qmin(G).

Hence Y ′ is also an eigenvector of G corresponding to qmin(G). Let Z = (z(v0), z(v1),

. . ., z(vk), z(u1), . . ., z(uk), . . .)
T = Y +Y ′. Then Z 6= 0, and Z is also an eigenvector

of G corresponding to qmin(G) which satisfies both (i) and (ii).

Let the vector X = (x(v0), x(v1), . . ., x(vk), x(u1), . . ., x(uk), . . .)
T defined on

V (G) satisfy that x(w) = (−1)dG(v0,w)sign(z(v0))|z(w)|. Note that |x(w)| = |z(w)| for

any vertex w ∈ V (G). Then XTX = ZTZ. Noting that signx(ω) = −signx(γ) for

each edge ωγ ∈ (E(G) \ {ukvk}) and (x(uk) + x(vk))
2 = (z(uk) + z(vk))

2, we have

(x(ω) + x(γ))2 ≤ (z(ω) + z(γ))2

for each edge ωγ ∈ E(G). Consequently, we get that XTQ(G)X ≤ ZTQ(G)Z, and

qmin(G) ≤
XTQ(G)X

XTX
≤

ZTQ(G)Z

ZTZ
= qmin(G).

As a result, X is also an eigenvector of G corresponding to qmin(G), which satisfies

(i), (ii) and (iii).

Assume that the multiplicity of qmin(G) is greater than one. Let F = (f(v0),

f(v1), . . ., f(vk), f(u1), . . ., f(uk))
T be an eigenvector of G corresponding to qmin(G)

which is orthogonal to X . If 2k + 1 < n, then |f(v0)| > 0. Suppose that f(v0) =

εx(v0). Then Γ = F − εX = (τ(v0), τ(v1), . . ., τ(vk), τ(u1), . . ., τ(uk))
T is also

an eigenvector of G corresponding to qmin(G), but τ(v0) = 0, which contradicts our

above conclusion that any eigenvector of G corresponding to qmin(G) satisfies (i) if

2k + 1 < n. Now, we conclude that if 2k + 1 < n, then for any eigenvector F of

G corresponding to qmin(G), there exists a real number k 6= 0 such that F = kX .

This means that the multiplicity of qmin(G) is one if 2k+1 < n, and means that any

eigenvector corresponding to qmin(G) satisfies (i), (ii), (iii). The proof is completed.

Lemma 2.7. Suppose that v is a pedant vertex and uv is a pendant edge in a

graph G. Then there must be a maximal matching of G containing the edge uv.

Proof. Suppose that M1 is a maximal matching of G. The lemma is trivial if

uv ∈ M1. If uv /∈ M1, then in M1, there must be an edge incident with u. Otherwise,
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let M2 = M1 ∪ {uv}. Then |M2| = |M1| + 1 and M2 is also a matching of G,

which contradicts that M1 is maximal. Suppose uz ∈ M1, where uz 6= uv. Let

M = (M1\{uz}) ∪ {uv}. Then M is also a maximal matching of G, which contains

the edge uv. The result follows.

Let k ≥ 3 be odd. Let C∗
k, l be the graph of order n obtained by attaching a cycle

Ck to an end vertex of a path Pl+1 and attaching n−k− l pendant edges to the other

end vertex of the path Pl+1 (see Fig. 2.2). In particular, l = 0 means attaching n− k

pendant edges to a vertex of Ck.

q q q qq

q

q q q

q

q

q

q

q

q

q

q

q

q

q

v1 vk+1 vk+2 vk+l−1 vk+l

v2

vkv⌈ k
2
⌉+2

v⌈ k
2
⌉+1

v⌈ k
2
⌉

v⌊ k
2
⌋

vn

vk+l+1

vk+l+2

Fig. 2.2. C∗
k, l.

Lemma 2.8. Let 3 ≤ k ≤ n− 2 be odd, and let both C∗
k, l and C∗

k, l+1 be of order

n. Then we have

(i) α
′

(C∗
k, l) ≤ α

′

(C∗
k, l+1);

(ii) qmin(C
∗
k, l+1) < qmin(C

∗
k, l).

Proof. Let the vertices of C∗
k, l be indexed as in Fig. 2.2. Note that

C∗
k, l+1 = C∗

k, l −
n
∑

i=k+l+2

vivk+l +

n
∑

i=k+l+2

vivk+l+1.

By Lemma 2.7, we know that there exists a maximal matching M1 of C∗
k, l which

contains vk+lvk+l+1. Note that M1 is also a matching of C∗
k, l+1. Hence, α

′

(C∗
k, l) ≤

α
′

(C∗
k, l+1). Then (i) follows.

Let Y = (y(v1), y(v2), . . ., y(vk), y(vk+1), y(vk+2), . . ., y(vn))
T be an eigenvector

corresponding to qmin(C
∗
k, l). By Lemma 2.6, we know that |y(v1)| > 0. Combining

with Lemma 2.2, we have 0 < |y(v1)| < |y(vk+l)| < |y(vk+l+1)|. By Lemma 2.4, we

get that qmin(C
∗
k, l+1) < qmin(C

∗
k, l). Then (ii) follows.

Let k ≥ 3 be odd, and let C = v1v2 · · · vkv1 be a cycle of length k. For j = 1, 2,

. . ., t, each Tj is a nontrivial tree. Let C
(T1,T2,...,Tt;i1,i2,...,it)
k denote the graph obtained

by identifying the vertex uj of Tj and the vertex vij of C, where 1 ≤ j ≤ t and

for l 6= j, il = ij possibly. Here, in C
(T1,T2,...,Tt;i1,i2,...,it)
k , for any 1 ≤ j ≤ t, we

denote by vij the new vertex obtained by identifying vij and uj . Let CT1,T2,...,Tt

(k,n) =

{C
(T1,T2,...,Tt;i1,i2,...,it)
k | C

(T1,T2,...,Tt;i1,i2,...,it)
k be of order n} and let C

(T1,T2,...,Tt;1)
k =
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C
(T1,T2,...,Tt;1,1,...,1)
k . For understanding easily, we show three examples in Fig. 2.3.

q

q

q

v1

v2 v3

T1

T2
T3

C
(T1,T2,T3;1,2,3)
3

q

q

q

q

q

v1

v2

T1

T2

T3

v3

C
(T1,T2,T3;1,2,2)
3

q

q

q

q

q

q

v1

T1

T2

T3

v2
v3

C
(T1,T2,T3;1)
3

Fig. 2.3. C
(T1,T2,T3;1,2,3)
3 , C

(T1,T2,T3;1,2,2)
3 , and C

(T1,T2,T3;1)
3 .

Lemma 2.9. Let 3 ≤ k < n be odd. Then for any U ∈ CT1,T2,...,Tt

(k,n) , we have

(i) α
′

(C
(T1,T2,...,Tt;1)
k ) ≤ α

′

(U);

(ii) qmin(C
(T1,T2,...,Tt;1)
k ) ≤ qmin(U), with equality if and only if C

(T1,T2,...,Tt;1)
k .

Proof. Let U
′

∈ CT1,T2,...,Tt

(k,n) , and let the vertices of U
′

be indexed by v1, v2, . . .,

vk, vk+1, vk+2, . . ., vn. Suppose that qmin(U
′

) = min{qmin(U)|U ∈ CT1,T2,...,Tt

(k,n) }. Let

Y = (y(v1), y(v2), . . ., y(vk), y(vk+1), y(vk+2), . . ., y(vn))
T be an eigenvector corre-

sponding to qmin(U
′

). Then Y is nonzero. Suppose that |y(v1)| = max{|y(w)| |w ∈

V (C)}. Note that if |y(v1)| = 0, by Lemma 2.1, then for j = 1, 2, . . ., t, each Tj is a

zero branch, and then Y is a zero vector, which contradicts that Y is nonzero. As a

result, it follows that |y(v1)| > 0.

If U
′

≇ C
(T1,T2,...,Tt;1)
k , then there exists a nontrivial tree Tj attaching to vij (vij 6=

v1). Let

U∗ = U
′

−
∑

w∈NTj
(uj)

ujw +
∑

w∈NTj
(uj)

v1w.

By Lemma 2.4, we have qmin(U
∗) < qmin(U

′

). This contradicts that qmin(U
′

) is

minimal. Consequently, if qmin(U
′

) is minimal, then U
′ ∼= C

(T1,T2,...,Tt;1)
k . Then (ii)

follows.

Let M be a maximal matching of C
(T1,T2,...,Tt;1)
k , and let T = T1∪T2∪· · ·∪Tt here.

Suppose that there is a vertex vα ∈ NT (v1) such that v1vα ∈ M . Then vα ∈ V (Tj) for

some j (1 ≤ j ≤ t). For convenience, we assume that j = 1, that is, vα ∈ V (T1). Let

T ′ = T2 ∪ · · · ∪ Tt. Then there is no vertex w ∈ V (T ′) such that v1w ∈ M . Note that

for any graph U ∈ CT1,T2,...,Tt

(k,n) , U is either isomorphic to C
(T1,T2,...,Tt;1)
k , or isomorphic

to a graph C
(T1,T2,...,Tt;i1,i2,...,it)
k . In the graph C

(T1,T2,...,Tt;i1,i2,...,it)
k , for convenience,

we let vi1 = v1. Then C
(T1,T2,...,Tt;i1,i2,...,it)
k = C

(T1,T2,...,Tt;1,i2,...,it)
k . Note that M is
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also a matching of the graph C
(T1,T2,...,Tt;1,i2,...,it)
k . Hence, if U is isomorphic to the

graph C
(T1,T2,...,Tt;1,i2,...,it)
k , then α

′

(C
(T1,T2,...,Tt;1)
k ) ≤ α

′

(U). If U ∼= C
(T1,T2,...,Tt;1)
k ,

then α
′

(C
(T1,T2,...,Tt;1)
k ) ≤ α

′

(U) naturally.

In the same way, we can prove that if there is no vertex v ∈ NT (v1) such that

v1v ∈ M , then α
′

(C
(T1,T2,...,Tt;1)
k ) ≤ α

′

(U). And Then (i) follows. This completes the

proof.

Lemma 2.10. Let 3 ≤ k < n be odd, and let U0 = C
(T1;1)
k be of order n. If there

exist at least 2 pendant neighbors in U0, then there exists l such that

(i) α
′

(C∗
k, l) ≤ α

′

(U0);

(ii) qmin(C
∗
k, l) < qmin(U0).

Proof. By Lemma 2.6, we know that there exists an eigenvectorX = (x(v1), x(v2),

. . . , x(vk), . . .)
T corresponding to qmin(U0), such that |x(v1)| = max{|x(w)| |w ∈

V (C)} > 0. Then T1 is a nonzero branch by Lemma 2.1. Let |x(vc)| = max{|x(w)| |w

∈ V (T1), w is not a pendant vertex}. By Lemma 2.2, we know that vc is a pendant

neighbor. We suppose that vb is another pendant neighbor different from vc, and

suppose that vi1 , . . . , vit are all the pendant vertices adjacent to vb. Let

U1 = U0 −
t

∑

j=1

vbvij +

t
∑

j=1

vcvij .

By Lemma 2.4, we have qmin(U1) < qmin(U0). Note that the number of pendant

neighbors of U1 is less than that of U0. Proceeding like this, from U0, we can get

a nonbipartite unicyclic graph K which has only one pendant neighbor, such that

qmin(K) < qmin(U0). Here, K is isomorphic to a C∗
k, l for some l.

For convenience, we let K = C∗
k, l and let the vertices of K be indexed as in Fig.

2.2. From the above proof, we see that in the original graph U0, vk+l is not a pendant

vertex, and at least one of vk+l+1, vk+l+2, . . . , vn, say vn for convenience, is adjacent

to vk+l. Then S = K−
n−1
∑

i=k+l+1

vi is a subgraph of U0. By Lemma 2.7, we know that

there is a maximal matching M of K containing vk+lvn. In fact, M is also a maximal

matching of S . Consequently, α
′

(K) = α
′

(S ). Note that S is a subgraph of U0.

Hence, α
′

(S ) ≤ α
′

(U0), and then α
′

(K) ≤ α
′

(U0). This completes the proof.

Lemma 2.11. Let k ≥ 3 be odd and t = l + ⌊k
2 ⌋ − 1, and let both C∗

k, l and C∗
3, t

be of order n. Then we have

(i) α
′

(C∗
3, t) ≤ α

′

(C∗
k, l);

(ii) qmin(C
∗
3, t) ≤ qmin(C

∗
k, l), with equality if and only if k = 3.
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Proof. The lemma is trivial for k = 3. Next we suppose k ≥ 5.

Let the vertices of C∗
k, l be indexed as in Fig. 2.2, and we let Y = (y(v1), y(v2), . . .,

y(vk), y(vk+1), y(vk+2), . . ., y(vn))
T be an eigenvector corresponding to qmin(C

∗
k, l)

satisfying Lemma 2.6. Combining with Lemma 2.2, we have y(v1) 6= 0, and for

1 ≤ i ≤ k, we have |y(vi)| ≤ |y(v1)| ≤ |y(vk+l)|.

q

q

q

q q q q qq q q

q

q

q

q

q

q

v⌈ k
2
⌉+2

v⌈ k
2
⌉

v⌈ k
2
⌉+1

v⌈ k
2
⌉+3

v⌈ k
2
⌉+4

vk+l

vk+l−1

vk+l+1

vk+l+2

vn

Fig. 2.4. C∗
3, t.

qqqq q q

vk v1 vk+1

q qq qq

v2 v⌊ k
2
⌋

Let

C∗
3, t = C∗

k, l −

⌈ k
2
⌉

∑

i=2

vivi−1 +

⌊ k
2
⌋

∑

i=2

vivk+l + v⌈ k
2
⌉v⌈ k

2
⌉+2 (see Fig. 2.4),

and let Z = (z(v1), z(v2), . . ., z(vk), . . .)
T ∈ Rn defined on V (C∗

3, t) satisfy that

z(w) =

{

−sgn(y(vk+l))(|y(vk+l)|+ |y(vi) + y(vi−1)|), w = vi for i = 2, 3, . . . , ⌊ k

2
⌋;

y(w), otherwise.

Note that
{

|z(w)| ≥ |y(w)|, w = vi for i = 2, 3, . . . , ⌊k
2 ⌋;

|z(w)| = |y(w)|, otherwise,

and yv
⌊ k
2
⌋
= yv

⌈k
2
⌉+2

, then ZTZ ≥ Y TY and

ZTQ(C∗
3, t)Z = Y TQ(C∗

k, l)Y − (yv
⌊ k
2
⌋
+ yv

⌈ k
2
⌉
)2 + (yv

⌈ k
2
⌉
+ yv

⌈ k
2
⌉+2

)2 = Y TQ(C∗
k, l)Y.

As a result, we get that

qmin(C
∗
3, t) ≤

ZTQ(C∗
3, t)Z

ZTZ
≤

Y TQ(C∗
k, l)Y

Y TY
= qmin(C

∗
k, l).(2.1)

We claim that qmin(C
∗
3, t) < qmin(C

∗
k, l). Otherwise, suppose that qmin(C

∗
3, t) =

qmin(C
∗
k, l). Then Z is an eigenvector corresponding to qmin(C

∗
3, t). By Lemma 2.2,

we have |z(vk+l)| < |z(vi)| for i = 2, 3, . . ., ⌊k
2 ⌋. By Lemmas 2.2 and 2.6, we know

that in Y , |y(vi)| ≤ |y(vk+l)| for i = 2, 3, . . ., ⌊k
2 ⌋. Note that |y(vk+l)| = |z(vk+l)|.

Consequently, |y(vi)| < |z(vi)| for i = 2, 3, . . ., ⌊k
2⌋. As a result, we get ZTZ > Y TY .
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Since qmin(C
∗
3, t) 6= 0, from inequality (2.1), we have qmin(C

∗
3, t) < qmin(C

∗
k, l), which

contradicts that qmin(C
∗
3, t) = qmin(C

∗
k, l). So our claim holds.

We claim that there is a maximal matching of C∗
3, t containing both vk+lvn and

v⌈ k
2
⌉v⌈ k

2
⌉+1. By Lemma 2.7, we know that there is a maximal matching MC∗

3, t
of

C∗
3, t containing vk+lvn. Assume that v⌈ k

2
⌉v⌈ k

2
⌉+1 /∈ MC∗

3, t
. There must be one of

v⌈ k
2
⌉v⌈ k

2
⌉+2, v⌈ k

2
⌉+1v⌈ k

2
⌉+2 in MC∗

3, t
. Suppose that v⌈ k

2
⌉v⌈ k

2
⌉+2 ∈ MC∗

3, t
. We let

M
′

C∗
3, t

= (MC∗
3, t

\{v⌈ k
2
⌉v⌈ k

2
⌉+2}) ∪ {v⌈ k

2
⌉v⌈ k

2
⌉+1}. Note that M

′

C∗
3, t

is a matching of

C∗
3, t and |M

′

C∗
3, t

| = |MC∗
3, t

| = α
′

(C∗
3, t). Then M

′

C∗
3, t

is also a maximal matching of

C∗
3, t, which contains both vk+lvn and v⌈ k

2
⌉v⌈ k

2
⌉+1. As a result, our claim holds.

We let M◦
C∗

3, t
be a maximal matching of C∗

3, t containing both vk+lvn and

v⌈ k
2
⌉v⌈ k

2
⌉+1. Note that M◦

C∗
3, t

is also a matching of C∗
k, l. Hence, α

′

(C∗
3, t) ≤ α

′

(C∗
k, l).

Then the results follows.

3. Minimizing graph. A graph is called a minimizing graph in a class of

graphs if its least signless Laplacian eigenvalue attains the minimum among all graphs

in the class. In this section, we will apply the results in Section 2 to characterize the

minimizing graphs among all the nonbipartite graphs with given matching number or

edge cover number.

Lemma 3.1. Among all the nonbipartite unicyclic graphs with both given order n

and given matching number α
′

≥ 2, the least signless Laplacian eigenvalue of a graph

is minimized uniquely at C∗
3, 2α′−3

.

Proof. Let G be a nonbipartite unicyclic graph with both given order n and given

matching number α
′

, and let C = v1v2 · · · vkv1 (k is odd) be the unique cycle in G.

Note that if n = 3, then G ∼= K3, and then α
′

(K3) = 1. As a result, we have that

if α
′

≥ 2, then n ≥ 4. Note that α
′

(C∗
3, 2α′−3

) = α
′

. Then the result follows from

Lemmas 2.8 – 2.11. This completes the proof.

Lemma 3.2. [6] Let G be a graph with n vertices and m edges, and let e be an

edge of G. Let q1 ≥ q2 ≥ · · · ≥ qmin and s1 ≥ s2 ≥ · · · ≥ sn be the Q-eigenvalues of

G and G− e respectively. Then 0 ≤ sn ≤ qmin ≤ · · · ≤ s2 ≤ q2 ≤ s1 ≤ q1.

Lemma 3.3. Among all the connected nonbipartite graphs with both given order n

and given matching number α
′

≥ 2, the least signless Laplacian eigenvalue of a graph

is minimized uniquely at C∗
3, 2α′−3

.

Proof. Let G be a connected nonbipartite graph with both given order n and

given matching number α
′

. Suppose Co is an odd cycle in G. By deleting edges from

G, we can get a connected unicyclic spanning subgraph of G, denoted by G′, which

contains Co as the unique cycle. Obviously, α
′

(G′) ≤ α
′

(G) = α
′

. By Lemma 3.2, we
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know that qmin(G
′) ≤ qmin(G). By Lemmas 2.8, 3.1, we have

qmin(C
∗
3, 2α′−3

) ≤ qmin(C
∗
3, 2α′ (G′)−3

) ≤ qmin(G
′) ≤ qmin(G).

Now, we begin to prove that qmin(C
∗
3, 2α′−3

) = qmin(G) if and only if G ∼=
C∗

3, 2α′−3
.

Assume that qmin(G) = qmin(C
∗
3, 2α′−3

).

Claim 1. α
′

(G′) = α
′

. Otherwise, if α
′

(G′) < α
′

, by Lemma 2.8, then

qmin(C
∗
3, 2α′−3

) < qmin(C
∗
3, 2α′ (G′)−3

),

and by Lemma 3.1, then

qmin(C
∗
3, 2α′ (G′)−3

) ≤ qmin(G
′).

Noting that qmin(G
′) ≤ qmin(G), we have qmin(C

∗
3, 2α′−3

) < qmin(G), which contra-

dicts our assumption. Hence, our claim holds.

Claim 2. G′ ∼= C∗
3, 2α′−3

. Otherwise, if G′ ≇ C∗
3, 2α′−3

, by Lemma 3.1, then

qmin(C
∗
3, 2α′−3

) < qmin(G
′).

Noting that qmin(G
′) ≤ qmin(G), we have qmin(C

∗
3, 2α′−3

) < qmin(G), which contra-

dicts our assumption. Hence, our claim holds.

q

q

q

q q q q qq q q

q

q

q

q

q

q

v1

v2

v3

v4 v5 v2α′v2α′−1

v2α′+1

v2α′+2

vn

Fig. 3.1. G′.

From Claim 2 and our assumption, we conclude that qmin(G) = qmin(G
′).

Assume that E(G)\E(G′) 6= ∅, and assume that the vertices of G′ are indexed as

in Fig. 3.1. Let X = (x(v1), x(v2), . . . , x(vn))
T be a unit eigenvector corresponding

to qmin(G). Note that E(G′) ⊆ E(G). Then XTQ(G)X ≥ XTQ(G′)X , and then

qmin(G) = XTQ(G)X ≥ XTQ(G′)X ≥ qmin(G
′).

From our above conclusion that qmin(G) = qmin(G
′), we get

XTQ(G)X = XTQ(G′)X = qmin(G
′).
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Therefore, X is also an eigenvector of G′ corresponding to qmin(G
′). Moreover, we

conclude that for each edge vivj ∈ E(G) \ E(G′), x(vi) + x(vj) = 0.

Because X is also an eigenvector of G′ corresponding to qmin(G
′), by Lemma 2.6,

we know that |x(v1)| = max{|x(v1)|, |x(v2)|, |x(v3)|} > 0. Combining with Lemmas

2.1, 2.2, we see that

(i) |x(vi)| < |x(vj)| for i = 1, 2, 3, j ≥ 4;

(ii) |x(vi)| < |x(vj)| for 4 ≤ i ≤ 2α
′

, 4 < j ≤ n, i < j;

(iii) x(vi)x(vj) > 0 for 2α
′

+ 1 ≤ i, j ≤ n.

Consequently, we conclude that for each edge vivj ∈ E(G) \ E(G′), x(vi) +

x(vj) 6= 0, which contradicts our conclusion that for each edge vivj ∈ E(G) \ E(G′),

x(vi) + x(vj) = 0. This means that the above assumption that E(G) \E(G′) 6= ∅ can

not hold. This means G = G′. Then G ∼= C∗
3, 2α′−3

.

Conversely, if G ∼= C∗
3, 2α′−3

, then qmin(C
∗
3, 2α′−3

) = qmin(G) naturally. This

completes the proof.

Theorem 3.4. Among all the nonbipartite unicyclic graphs with both given order

n and given matching number α
′

, we have

(i) if α
′

= 1, then the graphs are isomorphic to K3;

(ii) if α
′

≥ 2, then the least signless Laplacian eigenvalue of a graph is minimized

uniquely at C∗
3, 2α′−3

.

Proof. Note that α
′

(P4) ≥ 2. As a result, if a graph G contains P4, then α
′

(G) ≥

2. Note that for a nonbipartite unicyclic graph K of order n ≥ 4, it can be checked

that K contains P4. Consequently, for a nonbipartite unicyclic graph K of order n, if

n ≥ 4, then α
′

(K) ≥ 2. Simultaneously, we get that if α
′

= 1, then n = 3, and then

(i) follows. (ii) follows from Lemma 3.1.

Similar to Theorem 3.4, we get the following theorem.

Theorem 3.5. Among all the connected nonbipartite graphs with both given order

n and given matching number α
′

, we have

(i) if α
′

= 1, then the graphs are isomorphic to K3;

(ii) if α
′

≥ 2, then the least signless Laplacian eigenvalue of a graph is minimized

uniquely at C∗
3, 2α′−3

.

Corollary 3.6. Among all the connected nonbipartite graphs with both given

order n and given edge cover number β
′

, we have
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(i) if β
′

= n− 1, then the graphs are isomorphic to K3;

(ii) if β
′

≤ n − 2, then the least signless Laplacian eigenvalue of a graph is

minimized uniquely at C∗
3, 2n−2β′−3

.

Proof. This corollary follows from the fact that α
′

(G) + β
′

(G) = n and Theorem

3.5.
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