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ON THE FEICHTINGER CONJECTURE∗

PASC GĂVRUŢA†

Abstract. The Feichtinger Conjecture is proved for a class of Bessel sequences of unit norm

vectors in a Hilbert space. Also, it is proved that every Bessel sequence of unit vectors in a Hilbert

space can be partitioned into finitely many uniformly separated sequences.
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1. Introduction. There are many variations of the Feichtinger Conjecture, all

equivalent with the following:

Every Bessel sequence of unit vectors in a Hilbert space can be partitioned into

finitely many Riesz sequences.

For details on the Feichtinger Conjecture and the connection with other problems,

see [2], [3], [4], [9] and [10], and references in these papers.

We denote by H a Hilbert space and F = {fn}n∈N ⊂ H. We say that F is a

Bessel sequence if there exists B > 0 so that

∞
∑

n=0

|〈x, fn〉|
2 ≤ B‖x‖2, ∀x ∈ H.

B is called Bessel constant for F .

We say that F is a frame for H if it is a Bessel sequence and there exists A > 0

so that

A‖x‖2 ≤
∞
∑

n=0

|〈x, fn〉|
2, ∀x ∈ H.

For important applications of frames, see the references of the paper [7].
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We say that F is a Riesz sequence (or Riesz basic sequence) if there are A,B > 0

such that

A
∑

|ck|
2 ≤ ‖

∑

ckfk‖ ≤ B
∑

|ck|
2

for any finite sequence (ck). Riesz sequences are particular cases of frames (see [5]).

Let be I ⊂ N. If F is a Bessel sequences in H, then FI = {fn}n∈I is clearly also

a Bessel sequence in H.

In [5], O. Christensen, using Schur’s test, give conditions on a sequence {fn}
∞
n=0

to be a Bessel sequence, that it only involves inner products between the elements

{fn}
∞
n=0

:

Proposition 1.1. [5] Let {fn}
∞
n=0

be a sequence in H and assume that there

exists a constant B > 0 such that
∞
∑

k=0

|〈fj , fk〉| ≤ B, ∀ j ∈ N.

Then {fn}
∞
n=0

is a Bessel sequence with bound B.

We call this sequences Bessel-Schur sequences.

The intrinsically localized sequences, introduced by K. Gröchenig in [8], are partic-

ular cases of Bessel-Schur sequences. In the same paper, he proves that every localized

frame is a finite union of Riesz sequences. Another type of localized sequences was

introduced by R. Balan, P.G. Casazza, C. Heil, and Z. Landau in [1]. They show that

the Feichtinger Conjecture is true for l1-self-localized frames which are norm-bounded

below. l1-self-localized Bessel sequences are also Bessel-Schur sequences.

On the other hand, we recall the following definition:

Definition 1.2. [4] A sequence {fn}n∈I of unit vectors in H is called separated

if there exists a constant γ < 1 such that

|〈fn, fk〉| ≤ γ

for any n, k ∈ N, n 6= k.

In [4], the authors, among others, give the following result:

Theorem 1.3. Let H be a Hilbert space and let {fn}n∈I be a Bessel sequence

of unit vectors in H. Then {fn}n∈I can be partitioned into finitely many separated

Bessel sequences.

In the following, we prove that the Bessel-Schur sequences satisfies the Feichtinger

Conjecture. Also, we prove that every Bessel sequence of unit vectors in a Hilbert

space can be partitioned into finitely many uniformly separated sequences.
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2. The results. First, we give a condition for a Bessel sequence of unit vectors

to be a Riesz sequence.

Theorem 2.1. Let FI = {fn}n∈I be a Bessel sequence of unit vectors. We

suppose that

σ := sup
j∈I

∑

i∈I
i6=j

|〈fi, fj〉| < 1.

Then, FI is a Riesz sequence.

Proof. If FI is a Bessel sequence in H, then the following operators are linear and

bounded:

T : l2(I) → H, T (ci) =
∑

i∈I

cifi (synthesis operator),

Θ : H → l2(I), Θx = {〈x, fi〉}i∈I (analysis operator).

Moreover, Θ is the adjoint of T (see [5]).

For c = (cn)n∈I ∈ l2(I), we have

(ΘT )(c) =

{

〈
∑

k∈I

ckfk, fj〉

}

j∈I

=

{

∑

k∈I

ck〈fk, fj〉

}

j∈I

and hence,

(ΘT )(c)− c =

{

∑

k 6=j

ck〈fk, fj〉

}

j∈I

.

By Cauchy-Schwartz inequality, it follows

‖(ΘT )(c)− c‖2
2
=

∑

j∈I

∣

∣

∣

∣

∑

k 6=j

ck〈fk, fj〉

∣

∣

∣

∣

2

≤
∑

j∈I

(

∑

k∈I
k 6=j

|ck||〈fk, fj〉|
1/2 · |〈fk, fj〉|

1/2

)2

≤
∑

j∈I

(

∑

k∈I
k 6=j

|ck|
2|〈fk, fj〉|

)(

∑

k∈I
k 6=j

|〈fk, fj〉|

)

≤ σ
∑

j∈I

(

∑

k∈I
k 6=j

|ck|
2|〈fk, fj〉|

)

.
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Changing the order of summation, we obtain

‖(ΘT )(c)− c‖2
2
≤ σ

∑

k∈I

|ck|
2
∑

j∈I
j 6=k

|〈fk, fj〉|

≤ σ2‖c‖2
2
,

and so, ‖ΘT − I‖ ≤ σ < 1.

Therefore, ΘT is invertible, thus Θ is surjective. It follows that FI is a Riesz-

Fischer sequence. From Theorem 3 in [13, Ch. 4, Sec. 2], we have that there exists

A > 0 so that

A
∑

|ck|
2 ≤ ‖

∑

ckfk‖
2

for every finite sequence (ck). Since FI is a Bessel sequence, we have

‖
∑

ckfk‖
2 ≤ B

∑

|ck|
2

for (ck) finite sequence (see [5]). So, FI is a Riesz sequence.

Theorem 2.2. Every Bessel-Schur sequence of unit vectors is union of finite

Riesz sequences.

Proof. Let j ∈ N fixed. We have:

∞
∑

i=0

|〈fj , fi〉| ≤ B,

and hence,
∑

i=0
i6=j

|〈fj , fi〉| ≤ B − 1, for any j ∈ N. (2.1)

We denote

aij =

{

|〈fj , fi〉|, j 6= i,

0, j = i.

We have aij = aji ≥ 0 and aii = 0.

The relation (2.1) is equivalent with

sup
j∈N

∑

i∈N

aij ≤ B − 1.

By Mills’ Lemma (see [6, Ch. X] or [12]) there is a partition N = I1 ∪ I2 such that

sup
j∈Ip

∑

i∈Ip

aij ≤
B − 1

2
; p = 1, 2.
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By iteration, for any m ≥ 1, there is a partition N = I1 ∪ I2 ∪ . . . ∪ I2m such that

sup
j∈Ip

∑

i∈Ip

aij ≤
B − 1

2m
, ∀ p = 1, 2, . . . , 2m.

We take m so that
B − 1

2m
< 1, and apply Theorem 2.1.

3. An equivalent form of the Feichtinger conjecture. We consider the

following class of sequences.

Definition 3.1. Let FI = {fn}n∈I be a sequence of unit vectors. We say that

this sequence is uniformly separated if the following condition holds:

η := sup
j∈I

∑

i∈I
i6=j

|〈fi, fj〉|
2 < 1.

The following result is a refinement of a result from [4].

Theorem 3.2. Every Bessel sequence of unit vectors is union of finite uniformly

separated sequences.

Proof. Let F be a Bessel sequence of unit vectors:

∞
∑

i=0

|〈x, fi〉|
2 ≤ B‖x‖2, ∀x ∈ H.

Let j ∈ N fixed. We take x = fj :

∞
∑

i=0

|〈fj , fi〉|
2 ≤ B‖fj‖

2 = B,

and hence,
∑

i=0
i6=j

|〈fj , fi〉|
2 ≤ B − 1, for any j ∈ N. (3.1)

It is clear that B ≥ 1. We denote

bij =

{

|〈fj , fi〉|
2, j 6= i,

0, j = i.

We have bij = bji ≥ 0 and bii = 0.

The relation (3.1) is equivalent with

sup
j∈N

∑

i∈N

bij ≤ B − 1.
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By Mills’ Lemma (see [6, Ch. X] or [12]), there is a partition N = I1 ∪ I2 such that

sup
j∈Ip

∑

i∈Ip

bij ≤
B − 1

2
; p = 1, 2.

By iteration, for any m ≥ 1, there is a partition N = I1 ∪ I2 ∪ . . . ∪ I2m such that

sup
j∈Ip

∑

i∈Ip

bij ≤
B − 1

2m
, ∀ p = 1, 2, . . . 2m.

We take m so that
B − 1

2m
< 1 and apply Definition 3.1.

From the above Theorem, we obtain the following equivalent form of the Fe-

ichtinger Conjecture:

Every uniformly separated Bessel sequence of unit norm vectors can be partitioned

into finitely many Riesz sequences.
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