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ON THE ENERGY OF SINGULAR GRAPHS∗
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Abstract. The nullity, η(G), of a graph G is the algebraic multiplicity of the eigenvalue zero in

the graph’s spectrum. If η(G) > 0, then the graph G is said to be singular. The energy of a graph,

E(G), was first defined by I. Gutman (1985) as the sum of the absolute values of the eigenvalues of

the graph’s adjacency matrix A(G). This paper considers the energy concept for singular graphs. In

particular, it is proved that the change in energy upon the simple act of deleting a vertex is related

to the type of vertices of the singular graph. Certain upper bounds are improved for the energy of

the induced subgraph, G − u, which is obtained by deleting vertex u, with the aid of a parameter

known as the null spread of u, ηu(G) = η(G) − η(G − u). Also, some new bounds are given for

the energy of the minimal configuration graphs, an important class of singular graphs of nullity one

that are related to the graph’s core. Furthermore, certain graphs that increase their energy when an

edge is deleted are considered, such as the complete multipartite graphs and the hypercubes of even

dimensions.

Key words. Nullity, Singular graphs, Energy of graphs, Null spread, Minimal configuration

graphs, Complete multipartite graphs, Hypercube.
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1. Introduction and preliminaries. Let G = (V,E) be a finite, undirected

graph with nonempty vertex set V and edge set E. The adjacency matrix, A(G), of

a graph G on n vertices is the n × n matrix whose entries aij denote the number

of edges from vertex ui to vertex uj. For a simple, undirected graph the adjacency

matrix is a symmetric (0, 1)-matrix. Thus, A(G) has real eigenvalues and zeros on

the diagonal, meaning that the sum of these eigenvalues equals to zero. A graph,

G, is singular if the adjacency matrix, A(G), is a singular matrix; that is, zero is

an eigenvalue of G. The nullity, η(G), of a singular graph G is the multiplicity of

zero in the graph’s spectrum. It is clear that there exist corresponding vectors x,

such that Ax = 0. These vectors are defined as the kernel eigenvectors of a graph G.

Let us consider a graph G of nullity one, with a kernel eigenvector x = [x1, x2, . . . ,

xm, 0, . . . , 0]T , where xi 6= 0, i = 1, 2, . . . ,m. The subgraph F of G, induced by the

first m vertices corresponding to the first m entries, is called the core of G. The set

of the remaining vertices, corresponding to the zero entries of the kernel eigenvector,

is called the periphery.
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Definition 1.1. [9] Let x be a kernel eigenvector of a singular graph on at least

two vertices. If x has only non-zero entries, then G is referred to as a core graph.

Definition 1.2. [10] A graph G, |G|≥ 3, is a minimal configuration, with core

(F, xF ) of nullity η(F ), if it is a singular graph of nullity one, having |F |+ (η(F )− 1)

vertices, with F as an induced subgraph, satisfying |F | ≥ 2, FxF = 0, and G

[

xF

0

]

=

[

0

0

]

. The vector xF is said to be the non-zero part of the kernel eigenvector of

G.

Example 1.3. A path on 2k − 1 vertices is a minimal configuration graph

(η(P2k−1) = 1) that has as a core the null graph Nk (η(Nk) = k).

Fig. 1.1. The core of P7, N4 colored black.

One of the most important theorems, considering the eigenvalues of a graph, is

perhaps the interlacing theorem.

Theorem 1.4. (Interlacing Theorem, [8]) Let G be a graph with spectrum

λ1 ≥ λ2 ≥ · · · ≥ λn, and let the spectrum of G− u1 be µ1 ≥ µ2 ≥ · · · ≥ µn−1. Then,

the spectrum of G − u1 is “interlaced” with the spectrum of G, and λ1 ≥ µ1 ≥ λ2 ≥
µ2 ≥ · · · ≥ µn−1 ≥ λn.

It is clear from interlacing that the nullity of a graph can change, at most one,

upon deleting (adding) a vertex. We will give next, the following definition:

Definition 1.5. [4] Let G − u be the induced subgraph of graph G obtained

on deleting vertex u. The null spread of vertex u is: nu(G) = η(G) − η(G− u).

Observation 1.6. By interlacing: −1 ≤ nu(G) ≤ 1.

Observation 1.7. Let G be a minimal configuration graph with core F of

nullity η(F ). The η(F ) − 1 vertices of G belong to the periphery of the graph, and

their deletion increases the nullity of the graph, meaning that each vertex in the

periphery has a null spread of −1.

The energy of a graph G was first set by Gutman in 1978 as the sum of the

absolute values of its eigenvalues:

E(G) =
∑n

i=1 |λi|.

The concept of energy of graphs originates from theoretical chemistry and has been

studied rather intensively in the last decade. This paper focuses on the energy of
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singular graphs, a subject first studied in [13]. In Section 2 of this paper, we improve

some upper bounds for the energy of the induced subgraph of G, G−u, by identifying

the vertices of the graph. In Section 3, we study the energy of certain classes of

singular graphs, such as the minimal configurations and the r-partite graphs. We

conclude this paper with some results on the energy change after deleting an edge of

a complete multipartite graph or a hypercube.

2. Energy of subgraphs. Let G be a singular graph and G − u an induced

subgraph of G, obtained from G by deleting vertex u. In this section, we will improve

the bound E(G− u) ≤ E(G), by identifying the vertices in G.

Theorem 2.1. Let G = (V,E) be a graph and u ∈ V . If nu(G) = 1, then

E(G− u) ≤ E(G).

The equality holds if and only if u is an isolated vertex.

Proof. If, upon deleting u, the nullity decreases by one, then the set of the non-

zero eigenvalues in G and G−u have the same cardinality. By the interlacing theorem,

E(G− u) ≤ E(G). We will now prove that the equality holds.

Let u be an isolated vertex. Then, since u is associated with zero entries in the

adjacency matrix and related to a zero eigenvalue in the spectrum of the graph, its

removal has absolutely no effect to the sum of the absolute values of the non-zero

eigenvalues of G. Thus, E(G− u) = E(G).

Let E(G) = E(G − u) and nu(G) = 1, then
∑n

i=1 |λi|=
∑n−1

i=1 |µi|, meaning that

if we rearrange only the non-zero eigenvalues in non increasing order, λi = µi, ∀i and
∑

|λi|2=
∑

|µi|2. It is well known that
∑

|λi|2 = 2m, for a graph G with m edges,

and thus, u is an isolated vertex.

Theorem 2.2. Let G = (V,E) be a graph and u ∈ V . If nu(G) = −1, then

E(G− u) ≤ E(G)− (|λl|+ |λm|),

where λl and λm are the smallest non-negative and the largest non-positive eigenvalue,

respectively.

In the case where G is a connected graph of nullity η(G) = n − 2, the equality

holds if and only if G is a star graph and u is the center vertex of the graph.

Proof. If, upon deleting u, the nullity increases by one, then G − u has two

less non-zero eigenvalues than G. By interlacing, λ1 ≥ µ1 ≥ λ2 ≥ · · · ≥ λl >

0 = · · · = 0 > λm ≥ µm ≥ · · · ≥ λn, and since E(G) =
∑n

i=1 |λi|, we have

E(G− u) ≤ E(G)− (|λl|+ |λm|).
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Now, let G be a star graph on n vertices. Then G has two non-zero eigenvalues,

with multiplicity one, namely −
√
n− 1 and

√
n− 1, and n−2 zero eigenvalues. Upon

deleting the center of the graph, the obtained graph is null and the nullity increases

by one. Thus, E(G− u) = 0 = E(G)− (
∣

∣

√
n− 1

∣

∣+
∣

∣−
√
n− 1

∣

∣).

Let us suppose that G is a graph of nullity η(G) = n − 2. Then, if the nullity

increases upon deleting a vertex, the obtained subgraph has n − 1 vertices and a

nullity of η(G − u) = n− 1. It is well known that the only graph that is of the same

nullity as its order is the null graph. Thus, G is a star graph, with vertex u as its

center, and the equality E(G− u) = E(G)− (|λl|+ |λm|) holds.

Observation 2.3. Another example of a graph on n vertices that achieves the

above equality is the graph that is a union of m complete graphs, K2, and n − 2m

isolated vertices. The energy of G = mK2 ∪ (n − 2m)K1 is E(G) = m(|−1| + |1|).
Upon deleting a vertex u of K2, the nullity increases and the energy of G − u is

E(G− u) = (m− 1)(|−1|+ |1|). Thus, E(G− u) = E(G)− (|λl|+ |λm|).

The interlacing inequalities imply the following.

Theorem 2.4. Let G = (V,E) be a graph and u ∈ V . If nu(G) = 0, then

E(G− u) ≤ E(G)− |λi|,

where λi is either the smallest non-negative or the largest non-positive eigenvalue of

G.

Example 2.5. We give an example of equality for Theorem 2.4. The spectrum

of graph G, in Figure 2.1, is {2, 0,−1,−1}, and its energy is E(G) = 4. When we

delete the white vertex u, the obtained subgraph has {1, 0,−1} as its eigenvalues, and

the energy of G−u is E(G−u) = 2. Thus, nu(G) = 0 and E(G)− E(G− u) = 2 = λl,

where λl is the only non-negative eigenvalue of G.

Fig. 2.1. The graphs G, G− u.

It is clear, from the above theorems, that the type of vertices are important in

determining the energy of a singular graph. Similar results, however, may be obtained

for any λ, nonzero eigenvalue, which could also include non-singular graphs G.

Let G = (V,E) be a graph and u ∈ V . Suppose m(G) is the multiplicity of a

non-negative eigenvalue λ for G, m(G − u) is the multiplicity of λ for G − u, and

mu(G) = m(G)−m(G− u) is the vertex spread of λ.
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Then, in the case of mu(G) = 0, it can be shown by using the interlacing theo-

rem: E(G − u) ≤ max {E(G)− λl, E(G)− |λm|}, where λl (resp. λm ) is the smallest

positive (resp. largest negative) eigenvalue of G.

Observation 2.6. It is obvious that if H is an induced subgraph of a graph G,

then E(H) ≤ E(G).

3. Energy of singular graphs. In this section, we study the energy of singular

graphs. We give some new bounds for the energy of the minimal configuration graphs

and improve some known bounds for energy, in the case that the graph is singular.

Proposition 3.1. Let G be a minimal configuration with core of order at least

three. Then, E(G) > 2
√
5.

Proof. A minimal configuration with core of order at least three has the path

P4 as an induced subgraph [11]. By Observation 2.6, and since P4 is not singular,

E(G) > 2(1+
√
5+

√
5−1

2 ).

Theorem 3.2. Let G be a minimal configuration, with core F of nullity η(F ).

Then,

E(G) ≥ E(F ) + (η(F )− 1)(|λl|+ |λm|),

where λl and λm are the smallest non-negative and the largest non-positive eigenvalue

of G, respectively.

Proof. Let wi, i = 1, . . . , η(F )−1 be the vertices of the periphery P . By Theorem

2.2, since nwi
(G) = −1:

E(G− w1) ≤ E(G)− (|λl|+ |λm|),

where λl and λm are the smallest non-negative and the largest non-positive eigenvalue

of G, respectively. Then, by the same theorem:

E(G− w1 − w2) ≤ E(G− w1)− (|µl−1|+ |µm|),

where µl−1 and µm are the smallest non-negative and the largest non-positive eigen-

values of G − w1, respectively. Since by interlacing, |µl−1| ≥ |λl| and |µm| ≥ |λm|,
E(G − w1 − w2) ≤ E(G − w1) − (|µl−1| + |µm|) ≤ E(G) − 2(|λl| + |λm|). It is then

clear that

E(G− w1 − w2 − · · · − wη(F )−1) ≤ E(G)− (η(F ) − 1)(|λl|+ |λm|).

Lemma 3.3. [2] Let H be an induced subgraph of a graph G, with edge set m.

Then,

E(G)− E(H) ≤ E(G−m) ≤ E(G) + E(H).
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Proposition 3.4. Let G be a minimal configuration graph with core F , periphery

P , and nullity η(F ). If nF is the number of vertices of the core adjacent to some vertex

of the periphery and |λk| is the smallest absolute value of the graph’s eigenvalues, then:

|λk| < 1
2
√
8
(1 + nF

η(F )−1 )(
√

nF + η(F ) − 1 +
√
2).

Proof. Let the edge set of core F be m. Since the core F is an induced subgraph

of the minimal configuration graph G, by Lemma 3.3: E(G) − E(F ) ≤ E(G −m).

When we remove the edges from F , the obtained graph consists only of edges between

the core F and the periphery P . Since those two sets are independent, the G − m

graph is bipartite. Koolen and Moulton [7] proved that for a bipartite graph KF,P :

E(KF,P ) ≤ n√
8
(
√
n +

√
2). The vertices of G −m are the η(F ) − 1 vertices of the

periphery and the vertices of the core, nF , adjacent to those of the periphery. By

Theorem 3.2: E(G)−E(F ) > (η(F )−1)(|λl|+|λm|), where λl and λm are the smallest

non-negative and the largest non-positive eigenvalues of G, respectively. Thus,

|λl|+ |λm| < η(F )−1+nF√
8(η(F )−1)

(
√

η(F ) − 1 + nF +
√
2),

or, if |λk| = min (|λl| , |λl|):

|λk| < 1
2
√
8
(1 + nF

η(F )−1 )(
√

nF + η(F )− 1 +
√
2).

Observation 3.5. Let us try to construct a minimal configuration graph G

from a null graph Np. It has been shown that the minimal configuration graph is a

connected graph [9], which implies that all vertices of the null graph will be adjacent

to some vertex of the periphery. Since the nullity of the null graph is equal to its

order, η(F ) = nF = p. By Proposition 3.4, for the smallest absolute value of the

eigenvalues of G, |λk|:

|λk| < 1
2
√
8
(1 + p

p−1 )(
√
2p− 1 +

√
2).

For example, if we construct a graph from the null graph N4, its smallest, in

absolute value, eigenvalue is not greater than 1.67465. In Figure 3.1, the minimal

configuration graph has 1 as the smallest absolute value of eigenvalues.

Fig. 3.1. A minimal configuration, constructed by the null graph N4.

McClelland’s bounds (1971) for the energy of a G(n,m) graph, containing the

vertices and edges of the graph, are:
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√

2m+ n(n− 1) |detA|2/n ≤ E(G) ≤
√
2mn.

The upper and lower bound of the above inequality can be improved for singular

graphs, as shown in Propositions 3.6 and 3.7, respectively.

Proposition 3.6. [5] Let G be a graph on n vertices, and nullity η(G). Then,

E(G) ≤
√

2(n− η(G))m.

Proposition 3.7. [1] Let G be a graph on n vertices, and nullity η(G). Then,

E(G) ≥ n− η(G).

We conclude this section with an upper bound for the energy of r-partite graphs.

Lemma 3.8. Let G be a complete r-partite graph, on n vertices and m edges.

Then,

E(G) ≤ 2
√

2(r−1)m
r .

Proof. First, we rearrange the n − η(G) = r non-zero eigenvalues of the graph

in non increasing order (λ1 ≥ λ2 ≥ · · · ≥ λn−η(G)), after omitting the η(G) zero

eigenvalues.

We apply the Cauchy-Schwartz inequality to (1, 1, . . . , 1) and (λ2, λ3, . . . ,

λn−η(G)),

(
∑n−η(G)

i=2 λi)
2 ≤ ∑n−η(G)

i=2 λ2
i ·

∑n−η(G)
i=2 12=(n− η(G) − 1)

∑n−η(G)
i=2 λ2

i .

Since, −λ1 =
∑n−η(G)

i=2 λi: λ2
1 ≤ (n − η(G) − 1)

∑n−η(G)
i=2 λ2

i and (n − η(G))λ2
1 ≤

(n− η(G)− 1)
∑n−η(G)

i=1 λ2
i = (n− η(G) − 1)2m.

Since G is a complete r-partite graph, it has only one positive eigenvalue λ1 [12]

and E(G) = 2λ1. Thus,

E(G) ≤ 2
√

2(n−η(G)−1)m
n−η(G) .

It is clear that the equality holds if and only if G is a regular r-partite graph.

4. Deleting an edge. It has been shown that the energy of a graph may in-

crease, decrease, or stay the same after deleting an edge [3]. In this section, we will

study certain graphs that increase their energy when an edge is deleted, such as the

complete multipartite graphs and the hypercube of even order.

Proposition 4.1. Let Kp,q be a complete bipartite graph. Then, if we remove

an edge e:

E(Kp,q − e) = 2
√

pq − 1 + 2
√

(p− 1)(q − 1).
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Proof. Let the matrix of Kp,q − e be:

A =





















0 0 · · · 0 0 1 · · · 1

0 0 · · · 0 1 1 · · · 1

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · 0 1 1 · · · 1

0 1 · · · 1 0 0 · · · 0

1 1 · · · 1 0 0 · · · 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

1 1 · · · 1 0 0 · · · 0





















.

The matrix has four independent rows, and so η(Kp,q− e) = p+ q− 4. Let µ1 ≥ µ2 ≥
µ3 ≥ µ4 be the remaining non-zero eigenvalues. Then, since Kp,q − e is bipartite,

µ1 = −µ3 and µ2 = −µ4. The characteristic polynomial can now be written as:

xp+q−4(x−µ1)(x+µ1)(x−µ2)(x+µ2) = xp+q−4(x4 − (µ2
1 +µ2

2)x
2 +µ2

1µ
2
2). It is well

known that,
∑

µ2
i = 2m, and so µ2

1 + µ2
2 = pq− 1. Also,

∑

µk
i = trAk. The diagonal

entries of A4 are:

A4 =





































(q − 1)2p

(q − 1)2 + q2(p − 1)

.
.
.

(p − 1)2q

(p − 1)2 + p2(q − 1)

.
.
.

(p − 1)2 + p2(q − 1)





































and trA4 = (q2 − 2q + 1)(p2 + 2p − 1) + (p2 − 2p + 1)(q2 + 2q − 1). Since,

µ4
1 + µ4

2 = (µ2
1 + µ2

2)
2 − 2µ2

1µ
2
2, after some easy calculation µ2

1µ
2
2 = (p − 1)(q − 1).

The energy of the graph is:

E(Kp,q − e) = 2(|µ1|+ |µ2|) = 2
√

µ2
1 + µ2

2 + 2 |µ1| |µ2|

and thus,

E(Kp,q − e) = 2
√

pq − 1 + 2
√

(p− 1)(q − 1).

By Lemma 3.8, it is clear that:

E(Kp,q − e)− E(G) ≥ 2(
√

pq − 1 + 2
√

(p− 1)(q − 1)−√
pq).

Proposition 4.2. Let Kt,t,...,t be a complete r-partite graph, with r ≥ 3, t ≥ 2. If

Kt,t,...,t − e is its subgraph after removing edge e, then E(Kt,t,...,t− e) ≥ E(Kt,t,...,t).

Proof. Let Kt,t,...,t − e be the subgraph of a complete r-partite graph, Kt,t,...,t,

after deleting an edge e between the first two sets of vertices. The graph’s matrix will

be of the form:
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A =









































0 0 · · · 0 0 1 · · · 1 · · · 1 1 · · · 1

0 0 · · · 0 1 1 · · · 1 · · · 1 1 · · · 1

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · 0 1 1 · · · 1 · · · 1 1 · · · 1

0 1 · · · 1 0 0 · · · 0 · · · 1 1 · · · 1

1 1 · · · 1 0 0 · · · 0 · · · 1 1 · · · 1

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

1 1 · · · 1 0 0 · · · 0 · · · 1 1 · · · 1

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

1 1 · · · 1 1 1 · · · 1 · · · 0 0 · · · 0

1 1 · · · 1 1 1 · · · 1 · · · 0 0 · · · 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

1 1 · · · 1 1 1 · · · 1 · · · 0 0 · · · 0









































.

It is clear that Kt,t,...,t − e has r + 2 independent rows. Working as in the proof

of Proposition 4.1, we find that −t is an eigenvalue of the graph, with multiplicity

r − 3. Let µ1 ≥ µ2 ≥ µ3 ≥ µ4 ≥ µ5 be the remaining non-zero eigenvalues. Then, we

find that:

µ2 =

√
(t−1)2+4(t−1)−(t−1)

2 , µ4 = −
√

(t−1)2+4(t−1)+(t−1)

2 .

Also |µ2|+ |µ4| ≤ |µ3|+ |µ5|, where µ3, µ5 and µ1 satisfy the polynomial:

µ3 − ((r − 2)t− 1)µ2 − (m− (r−2)(r−1)
2 t2 + (r − 2)t)µ− (r − 1)(t− 1)t = 0,

and m are the edges of Kt,t,...,t − e, (m = r(r−1)
2 t2 − 1).

Since
√

(t− 1)2 + 4(t− 1) ≥ t+ 1
rt and µ1 ≥ 2m

rt = (r − 1)t− 2
rt ,

E(Kt,t,...,t − e) =
5
∑

i=1

|µi|+ (r − 3) |−t|

≥ |µ1|+ 2(|µ2|+ |µ4|) + (r − 3)t

≥ (r − 1)t− 2
rt + 2(t+ 1

rt ) + (r − 3)t

= 2(r − 1)t

= E(Kt,t,...,t).

The hypercube Qn is an undirected regular graph defined recursively, with refe-

rence to the cartesian product of two graphs, by Q1 = K2 and Qn+1 = Qn×K2. The

characteristic polynomial of the hypercube Qn is ϕ(Qn) =
∏n

k=0(x−n+2k)(
n

k) [6]. It

is straightforward that the hypercube Qn is singular if and only if n is even. The adja-

cency matrix of the hypercube can be written as: A(Qn) =

[

A(Qn−1) I2n−1

I2n−1 A(Qn−1)

]

,

where I2n−1 denotes the identity matrix.
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Lemma 4.3. [3] For a partitioned matrix C =

[

A X

Y B

]

, where both A and B

are square matrices, we have:

∑

j sj(A) +
∑

j sj(B) ≤ ∑

j sj(C),

where sj(·) denote the singular values of a matrix.

Theorem 4.4. Let Q2k be a singular hypercube. If Q2k − e is its subgraph after

removing edge e, then:

E(Q2k − e) ≥ E(Q2k).

Proof. Let e be an edge corresponding to the identity matrix I22k−1 . The adja-

cency matrix of Q2k − e after deleting edge e is of the form:

A(Q2k−e) =

[

A(Q2k−1) J22k−1

J22k−1 A(Q2k−1)

]

,

where J22k−1 is formed from the identity matrix by changing one diagonal entry to

zero. By Lemma 4.3, E(Q2k − e) ≥ 2E(Q2k−1).

The energy of Q2k is:

E(Q2k) =
∑2k

i=0

(

2k
i

)

|2k − 2i|
=

∑k
i=0

(

2k
i

)

(2k − 2i)−∑2k
i=k+1

(

2k
i

)

(2k − 2i)

=
∑k

i=0

(

2k
i

)

(2k − 2i)−∑2k
i=0

(

2k
i

)

(2k − 2i) +
∑k

i=0

(

2k
i

)

(2k − 2i)

= 2
∑k

i=0

(

2k
i

)

(2k − 2i)−∑2k
i=0

(

2k
i

)

(2k − 2i)

= 4k
∑k

i=0

(

2k
i

)

− 4
∑k

i=0 i
(

2k
i

)

−∑2k
i=0 2k

(

2k
i

)

+
∑2k

i=0 2i
(

2k
i

)

= 4k(22k−1 +
(2kk )
2 )− 4k22k−1 − 2k22k + 2 · 2k22k−1

= 2k
(

2k
k

)

.

In a similar way, we find that E(Q2k−1) = 2k
(

2k−1
k

)

. Since,

E(Q2k) = 2k
(

2k
k

)

= 2k
(

2k−1
k

)

2k
2k−k

= 4k
(

2k−1
k

)

= 2E(Q2k−1),

the proof is complete.
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