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EIGENVALUE PLACEMENT IN COMPLETIONS OF DAES∗
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Abstract. Differential algebraic equations (DAEs) are used to describe many physical processes.

A completion of a DAE is an ordinary differential equation whose solutions include those of the DAE.

Algorithms exists for designing stabilized completions of differential algebraic equations. Recent work

on observers for DAEs has shown the need for more information on, and control of the placement

of, the additional eigenvalues of the completion. This paper investigates this eigenvalue placement

problem. Results are given relating the additional eigenvalues of the completion and the choice of

stabilization matrix for certain important classes of linear DAEs.
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1. Introduction. Differential algebraic equations (DAEs) are mixed systems

of differential and algebraic equations F (x′, x, t) = 0 for which the Jacobian Fx′ is

identically singular. They have been extensively studied over the past 20 years because

many problems in science and engineering are most naturally first formulated as DAEs

[9, 21]. From the beginning of the consideration of DAEs, one natural approach was

to imbed the solutions of the DAE into the solutions of an ODE which is called a

completion of the DAE. The derivation of a completion always involves, in some way,

the differentiation of some or all of the equations defining the DAE.

The first completions were found assuming explicit constraints and the primary

use was in simulation of the DAE using ODE integrators. The completion always

has additional dynamics (solutions) besides those of the DAE and it was observed

that these additional dynamics could cause trouble for numerical simulations if their

numerical solution lead to movement away from the solutions of the DAE. One remedy

was the use of stabilized differentiation rather than just differentiation [3]. This proved

very successful although there are theoretical concerns [1]. Subsequently there was

work on finding completions for more general DAEs [10, 11, 22, 23, 24].
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DAEs occur in many control problems. An important tool in solving many control

problems is the use of observers, which are dynamical systems used to asymptotically

estimate the states of another system that are not directly accessible to measurement.

With observers, you not only want to control the growth of error terms but you

want to be able to specify the rate of convergence. If the convergence is too slow,

the estimates will not be useful and if the convergence is too fast, the controllers

will react to transient disturbances that should be ignored. Several authors have

considered observer design and DAEs, for example, [4, 13, 14, 16, 17, 19, 25].

The goal of using completions in the design of observers lead first to additional

research on stabilized completions and their rate of convergence [22, 23, 24] and then

to research on the design of observers [5, 6, 7, 8]. This work considered both linear

time invariant and nonlinear systems.

Two important problems in engineering are fault detection and fault identifica-

tion. This is needed for both safety and performance reasons and is part of essentially

all complex systems [20, 26]. One approach to fault detection and identification uses

observers [30]. However, a new issue now arises. In a typical control problem, the

system comes with its own eigenvalues. But with a completion additional eigenvalues

are produced by the algorithm. If we want to detect a fault, it should be observable

in some sense. But the ways previously given in the literature for designing stabi-

lized completions tend to produce repeated eigenvalues and systems with repeated

eigenvalues will have unobservable subspaces [2]. This leads to the need to be able

to construct stabilized completions of DAEs for which the additional eigenvalues are

distinct, have negative real part, and we have some control over where those eigen-

values are. This paper addresses the eigenvalue placement problem for completions

of linear time invariant DAEs. The use of stabilized completions to build observers

for fault detection is discussed in [28, 29].

This paper considers what is possible in terms of eigenvalue placement using the

least squares completion. For a given application for which the results of this paper

are not strong enough, alternative formulations or stabilization techniques may be

needed.

2. Least squares stabilized completions. Two general approaches have been

developed for computing stabilized completions of linear DAEs. We focus here on the

one that is called the least squares completion. The other is called the alternative

stabilized completion [23, 24] and is based on ideas from [21]. Linear time varying

and nonlinear DAEs are of interest also, but as a first step we consider the linear time

invariant case,

(2.1) Ex′ + Fx = f,
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where E,F are square matrices, E is singular, there is a scalar s for which sE + F

is invertible, and x and f are functions of time t. Such DAEs are called solvable.

E and F may be real or complex although in applications they are usually real.

The vector x is an n dimensional vector which may also be real or complex. We

shall use real notation in this paper. The complex case is covered by substituting

the conjugate transpose for the transpose and unitary transformations for orthogonal

transformations.

We know from DAE theory that the question is not whether to differentiate

but rather where to differentiate and the best thing to differentiate are the known

equations as opposed to computed quantities. Suppose that we apply the differential

polynomial D = d
dt

+ λI to (2.1) k times. Usually it is assumed that λ is a real

and positive scalar. Then putting each of these differentiated equations into a single

equation, we get the system of equations called the derivative array. For convenience,

we give here just the k = 2 case, but we consider more general cases in this paper.

We have then

(2.2) Eλz + Fλx = f̂λ,

where

Eλ =





E 0 0

F + λE E 0

2λF + λ2E F + 2λE E



 , Fλ =





F

λF

λ2F





and

z =





x′

x′′

x′′′



 , f̂ =





f

f ′ + λf

f ′′ + 2λf ′ + λ2f



 .

If λ = 0, then we omit the subscript λ. To be fully consistent with our later notation

we should write EλI but we omit the I.

There are several ways to define the index of a DAE. For the linear case, (2.1)

with square coefficients the DAE is solvable if there is at least one value of parameter

s̃ such that s̃E+F is nonsingular. We assume our system is solvable. Then the index

is the largest nilpotent block in the Kronecker form of the matrix pencil. Alternatively

it is the number of differentiations needed to uniquely determine x′.

The matrix Eλ is rank deficient. If k is greater than or equal to the index of

(2.1), then the first n entries of z can be determined from (2.2). But different answers

are found depending on how the equations are solved [10]. Particularly in nonlinear

or time varying systems where they have to be repeatedly solved, it is important to

have some control over the solution. In the linear time invariant case, you still need
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to know what the additional eigenvalues are. Accordingly we will use least squares

solutions which have a number of nice properties. For the remainder of this paper,

we assume k is greater or equal to the index of (2.2).

Solving (2.2) in the least squares sense we get the solution ẑ is given by

(2.3) ẑ = −E†
λFλx+ E†

λf̂λ.

E†
λ denotes the Moore-Penrose inverse of Eλ [12]. If x is a solution of the DAE, then

the first n components of ẑ are the derivative of x . The other components of ẑ will

usually not be the higher derivatives of x and will be ignored. Thus, taking the top

n equations of (2.3), we get the completion

(2.4) x′ = Âλx+ hλ,

where Âλ is the top n rows of −E†
λFλ and hλ is the top n entries of E†

λf̂λ,

Let s be a scalar. Those s for which det(sE + F ) = 0 are called the finite

generalized eigenvalues of the matrix pencil sE+F . The finite generalized eigenvalues

play the same role for (2.1) that eigenvalues do for an ordinary differential equation.

Let ρ(Âλ) be the eigenvalues of Âλ from (2.4) and ρ(E,F ) be the finite generalized

eigenvalues of the matrix pencil {E,F}. Note that ρ(I,−Âλ) = ρ(Âλ). Then

ρ(E,F ) ⊂ ρ(Âλ).

Let ρ(E,F )c be those complex numbers not in ρ(E,F ). Those ŝ ∈ ρ(Âλ) ∩ ρ(E,F )c,

are the additional eigenvalues from the completion and are what we are concerned

with in this paper. The results in [22, 23] tell us that these additional eigenvalues

will be −λ. They also tell us what their Jordan blocks will look like. Basically there

will be Jordan blocks that are similar to the nilpotent blocks in the Kronecker form

of {E,F}.

But this means the stabilized least squares completion will be producing repeated

eigenvalues and that is something we would like to avoid if possible as pointed out

in the introduction. Thus, we will modify the above procedure as follows. Instead of

using d
dt
+λI where Re(λ) > 0, we shall use d

dt
+Λ where Re(s) > 0 for all eigenvalues

s of the n×n matrix Λ. Usually Λ will be chosen real but that is not necessary. Since

we are only interested in the additional eigenvalues we will omit the nonhomogeneous

terms f from (2.1) and hλ from (2.4).
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Let k be the index of (2.1) and define the (k + 1)× (k + 1) block matrix E by

E =























E 0
. . .

. . . 0

F E
. . .

. . .
...

0 F E
. . .

...
...

. . .
. . .

. . . 0

0 . . . 0 F E























and the (k + 1)× (k + 1) block matrix MΛ, and (k + 1)× 1 block matrix F by

MΛ =























I 0 . . . . . . 0

Λ I
. . . . . .

...

Λ2 2Λ I
. . .

...

Λ3 3Λ2 3Λ I
...

∗ ∗ ∗ ∗
. . .























, F =











F

0
...

0











.

In terms of previous notation, E = E0 and F = F0. Note that stabilized differentiation

results in the coefficient matrices EΛ = MΛE and FΛ = MΛF . Then the coefficient

matrix of the Λ stabilized least squares completion is the top n× n block of

(2.5) − E†
Λ
FΛ = −(MΛE)

†MΛF ,

which we denote ÂΛ. Whether Λ stabilized differentiation actually results in asymp-

totically stable additional dynamics is one question of interest in this paper.

Our interest here is only in the eigenvalues of ÂΛ. It is helpful to be able to

simplify the matrices we are working with as long as the eigenvalues are not affected.

Because we use a least squares in the calculation of our coefficient matrices we cannot

use similarity to simplify our problems. We can however, use orthogonal transforma-

tions.

Proposition 2.1. If U, V are two n×n orthogonal matrices, then the eigenvalues

of ÂΛ for {E,F,Λ} and ÂUΛUT for {UEV,UFV, UΛUT} are the same.

Proof. Let D(Z) be a (k+1)n× (k+1)n block diagonal matrix with n×n matrix

Z k times on the principle diagonal. Let ẼUΛUT , F̃UΛUT be the large matrices of

{UEV,UFV, UΛUT}.
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Then from {UEV,UFV, UΛUT} we get that (2.5) is X = −Ẽ†

UΛUT F̃UΛUT , that

is

X = −
(

D(U)MΛD(UT )D(U)ED(V )
)† (

D(U)MΛD(UT )D(U)FD(V )
)

= − (D(U)MΛED(V ))† (D(U)MΛFD(V ))

= −D(V T ) (MΛE)
†
(MΛF)D(V )

since D(U),D(V ) are orthogonal. Thus, the coefficient matrices for the two least

squares completions are unitarily similar using V .

A key to using Proposition 2.1 is Theorem 3.1.

3. Explicit constraints. We have from Theorem 2 of [11] that adding extra

equations to a stabilized derivative array by performing additional differentiation

does not alter the completion. This gives us the following useful fact.

Theorem 3.1. Suppose that we have a solvable DAE

(3.1)

[

E1

0

]

x′ +

[

F1

F2

]

x = 0

with E1 an m×n matrix. Let Λ = diag{P1, P2} be an n×n block diagonal matrix with

P2 a (n −m) × (n −m) matrix. Then the additional eigenvalues of the Λ stabilized

least squares completion of (3.1) include the eigenvalues of −P2.

Proof. The proof consists of noting that if we form the Λ = diag{P1, P2} stabilized

derivative array for (3.1), then it is also a derivative array for
[

E1

F2

]

x′ +

[

F1

P2F2

]

x = 0.

Thus, the terms w = F2x where x is from the completion, satisfy the differential

equation w′ +P2w = 0 and hence ρ(−P2) will be among the additional eigenvalues.

4. Index one systems. The first class of systems that we consider are the index

one systems. They are of interest in their own right and also because they will serve

as building blocks for our later results. There is a special case of an index one system

which is a purely algebraic system. We consider it separately. For a purely algebraic

homogeneous system, we have simply

Cx = 0

with C invertible. The augmented matrix for the Λ stabilized derivative array equa-

tions is then
[

0 0 −C

C 0 −ΛC

]

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 26, pp. 520-534, August 2013



ELA

526 S.L. Campbell and L.E. Holte

and the Λ stabilized least squares completion is given by

x′ = −C−1ΛCx.

In this simple case, the new eigenvalues are precisely those of −Λ and to get a given set

of eigenvalues, we only have to choose Λ accordingly. We shall see that the behavior

of more complex systems can be different in several ways and this example is not

indicative of the general case.

Suppose then that (2.1) is a general solvable homogeneous index one system with

E 6= 0. There exist orthogonal transformations U, V which can be computed from the

singular value decomposition (SVD) of E, so that letting x = V w and premultiplying

by U gives

Jw′
1 = Aw1 +Bw2(4.1a)

0 = Cw1 +Dw2(4.1b)

where J is invertible. In fact, J can be taken positive definite if the SVD is used. Since

orthogonal transformations are used, by Proposition 2.1 it suffices to consider (4.1)

instead of (2.1). D is invertible by the index one assumption. Note that solving the

second equation for w2 and substituting into the first equation gives w′
1 = J−1(A −

BD−1C)w1 so that the finite pencil eigenvalues are ρ(J−1A− J−1BD−1C).

Since orthogonal changes of coordinates were used, for a given Λ we can consider

the UΛUT stabilized completion of (4.1). This leads to the following fundamental

result.

Theorem 4.1. Suppose that the index one DAE (2.1) with E 6= 0 is put into the

form (4.1) by orthogonal transformations U, V . Suppose that

UΛUT =

[

P1 P2

P3 P4

]

and a Λ stabilized completion of the original DAE (2.1) was computed. Then the ad-

ditional eigenvalues of the least squares completion stabilized by Λ are the eigenvalues

of −P4.

Proof. Since the DAE is index one we can take k = 1. The derivative array

augmented matrix [ME | −MF ] is

(4.2)









J 0 0 0 A B

0 0 0 0 C D

P1J −A −B J 0 P1A+ P2C P1B + P2D

P3J − C −D 0 0 P3A+ P4C P3B + P4D









.
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Note that we cannot just cancel the M in [ME |MF ] since that alters the least

squares solution. We only care about the top two entries of the solution so we can

drop the fourth column of (4.2). Switching the second row to the bottom is allowed

since that is also an orthogonal operation. Thus, we only have to solve

(4.3)





J 0 0 A B

P1J −A −B J P1A+ P2C P1B + P2D

P3J − C −D 0 P3A+ P4C P3B + P4D





in the least squares sense. But (4.3) has a unique solution since the left side is

invertible. The invertibility follows since it is known that if k is greater or equal to

the index of the DAE, then the nullity of E is the same as the number of algebraic

constraints. For an index one DAE that is the same as the number of zero rows, we

have deleted to get an invertible left hand side. We have reduced our least squares

problem to a standard nonsingular problem which frees us to use a wider variety of

operations. The second equation in (4.3) only gives the x′′
1 term which we do not care

about. So we now have to solve

[

J 0 A B

P3J − C −D P3A+ P4C P3B + P4D

]

or

(4.4)

[

I 0 J−1A J−1B

P3J − C −D P3A+ P4C P3B + P4D

]

.

Adding C − P3J times row 1 to row 2 in (4.4) gives

[

I 0 J−1A J−1B

0 −D P3A+ P4C + (C − P3J)J
−1A P3B + P4D + (C − P3J)J

−1B

]

,

or equivalently,

[

I 0 J−1A J−1B

0 −D P4C + CJ−1A P4D + CJ−1B

]

.

Thus, the eigenvalues of the completion are given by the eigenvalues of

(4.5)

[

J−1A J−1B

−D−1
(

P4C + CJ−1A
)

−D−1P4D −D−1CJ−1B

]

.

One way to reveal the eigenvalues of (4.5) is to do a similarity which makes (4.5)

block upper triangular. We see a −D−1P4D in the lower right corner of (4.5). If

we had that as a diagonal block that would be great since the new eigenvalues then
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would be ρ(−P4). Thus, we add D−1C times the top row to the second. We need

this to be part of a similarity so we compute
[

J−1A J−1B

−D−1P4C −D−1P4D

] [

I 0

−D−1C I

]

which is

(4.6)

[

J−1A− J−1BD−1C J−1B

0 −D−1P4D

]

.

Matrix (4.6) is upper triangular which proves that

ρ(ÂΛ) = ρ(J−1A− J−1BD−1C) ∪ ρ(−P4)

as proposed.

From Theorem 4.1 we get several corollaries. The first recovers a special case of

the classical result already known in the literature [22, 23].

Corollary 4.2. Suppose the DAE is index one and Λ is a multiple λ of the

identity. Then the additional eigenvalues of the Λ stabilized least squares completion

are just −λ.

Proof. This follows since UλIUT = λI for any orthogonal matrix U .

Corollary 4.3. If the DAE is index one and Λ is positive definite, then all the

additional eigenvalues of the Λ stabilized least squares completion will have negative

real part. It is not possible to say what the eigenvalues will be without additional

computation but one can say that their absolute value will be less than the largest

eigenvalue of Λ.

Proof. If Λ is positive definite, then P4 will also be positive definite and a principle

minor of UΛUT . The conclusion now follows.

Corollary 4.4. Let (2.1) be any index one system which has at least one finite

eigenvalue. That is, it is not purely algebraic. Then there is a matrix Λ, all of whose

eigenvalues are positive, such that the Λ stabilized additional dynamics are not stable.

Proof. Construct a matrix Λ with the P4 having an eigenvalue which is negative

but the matrix Λ has positive eigenvalues.

Example 4.5. As a simple illustration of Corollary 4.4 take

E =

[

1 0

0 0

]

, F =

[

1 2

3 4

]

,Λ =

[

4 −2

5 −2

]

.

Then the pencil {E,F} has one finite eigenvalue 0.5, Λ has eigenvalues 1 ± i which

have positive real part and the Λ stabilized least squares completion has eigenvalues
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{0.5, 2.0} as predicted by Theorem 4.1. The additional eigenvalue 2 does not have

negative real part.

5. Hessenberg index two. The previous section shows that in the index one

case the additional eigenvalues are determined by a specific submatrix and that sub-

matrix is based on the structure of the coefficients. This suggests that in more general

cases we should look at various representations of the structure that the coefficients

of a DAE can have. One such structure is the Hessenberg DAE which arises in me-

chanics and other areas [9, 21]. A linear homogeneous Hessenberg index two DAE

has the form

Jx′
1 = Ax1 +Bx2(5.1a)

0 = Cx1(5.1b)

where it is assumed that CJ−1B is invertible. In particular, we also have B is full

column rank and C is full row rank.

The finite pencil eigenvalues in the index two case are a bit harder to describe

than in the index one case. Note that if C,B are invertible, then x1 = x2 = 0 and

there are no finite eigenvalues. So suppose that C is just full row rank. Then doing

an orthogonal change of coordinates on x1 we can get CU = [C1 0] and the DAE

(5.1) becomes (5.2) after multiplying by J−1 (we reuse the name x for our variables)

x′
1 = A11x1 +A12x2 +B1x3(5.2a)

x′
2 = A21x1 +A22x2 +B2x3(5.2b)

0 = C1x1(5.2c)

and C1, B1 are invertible. Furthermore, we may assume that C1 is positive definite.

This will be convenient later.

But this just says that x1 = 0. Then our system of equations (5.2) becomes

0 = A12x2 +B1x3(5.3a)

x′
2 = A22x2 +B2x3.(5.3b)

But since B1 is invertible, this is a semi-explicit index one DAE written in the reverse

order and we know the finite eigenvalues are ρ(A22 −B2B
−1

1
A12).

Suppose that we take

(5.4) Λ = diag{P1, P2},

where Λ is partitioned conformally with (5.1). We know that the eigenvalues of −P2

will be included in the eigenvalues of the stabilized completion by Theorem 3.1. The
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augmented matrix of the derivative array equations for (5.1) is,

(5.5)



















J 0 0 0 0 0 A B

0 0 0 0 0 0 C 0

−A+ P1J −B J 0 0 0 P1A P1B

−C 0 0 0 0 0 P2C 0

−2P1A+ P 2
1 J −2P1B −A+ 2P1J −B J 0 P 2

1A P 2
1B

−2P2C 0 −C 0 0 0 P 2
2C 0



















.

In taking a least squares solution, we may ignore zero rows or columns of the left side

of (5.5). Thus, we can drop the second row and sixth column of (5.5). Reordering of

rows is an orthogonal operation. Thus, the first, fourth, third, fifth, and sixth rows

give us

(5.6)















J 0 0 0 0 A B

−C 0 0 0 0 P2C 0

−A+ P1J −B J 0 0 P1A P1B

−2P2C 0 −C 0 0 P 2
2C 0

−2P1A+ P 2
1 J −2P1B −A+ 2P1J −B J P 2

1A P 2
1B















.

But














J 0 0 0 0

−C 0 0 0 0

−A+ P1J −B J 0 0

−2P2C 0 −C 0 0

−2P1A+ P 2
1 J −2P1B −A+ 2P1J −B J















is a block lower triangular matrix whose (1,1) block is full column rank by the Hes-

senberg assumption and whose (2,2) block is full row rank since J is invertible. Then

from Theorem 3.4.1 of [12], we have its Moore-Penrose generalized inverse is also

block lower triangular. Since we are only concerned with the first two block variables

of (5.6), we may consider just the augmented matrix derivative array

(5.7)









J 0 0 0 A B

−C 0 0 0 P2C 0

−A+ P1J −B J 0 P1A P1B

−2P2C 0 −C 0 P 2
2C 0









.

But (5.7) is the augmented matrix for the Λ derivative array of

[

J 0

−C 0

]

x′ +

[

−A −B

−P2C 0

]

x = 0

which is index one by the index two Hessenberg assumption.
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If C is a full row rank matrix, let

(5.8) ∆ =
√

JTJ + CTC, ∆̂ =
√

I + CJ−1J−TCT

and define UC by

UC =

[

∆−1JT −∆−1CT

∆̂−1CJ−1 ∆̂−1

]

.

Then UC is an orthogonal matrix since UCU
T
C = I and

(5.9) UC

[

J

C

]

=

[

∆

0

]

.

Now we can use (5.9) and (5.4) and apply Theorem 4.1 to get that the key entry

is the (2,2) block of

UCΛU
T
C =

[

∆−1JT −∆−1CT

∆̂−1CJ−1 ∆̂−1

] [

P1 0

0 P2

]

[

J∆−1 J−TCT ∆̂−1

−C∆−1 ∆̂−1

]

.

Thus, we have proved the following.

Theorem 5.1. Suppose that we have the Hessenberg index two DAE (5.1) where

C is full row rank. Let Λ be given by (5.4) and let ∆̂ be given by (5.8). Then

the additional eigenvalues of the Λ stabilized least squares completion consist of the

eigenvalues of −P2, and the eigenvalues of

−∆̂−1[CJ−1P1J
−TCT + P2]∆̂

−1.

Corollary 5.2. If Λ is positive definite, then the Λ stabilized least squares com-

pletion of the homogeneous index two Hessenberg DAE of Theorem 5.1 has stabilized

additional dynamics.

6. Hessenberg index three. The Hessenberg system of index three is very

important because of its frequent appearance in constrained mechanics [15, 18, 27].

The linear homogeneous version is

x′
1 = A11x1 +A12x2 +A13x3(6.1a)

x′
2 = A21x1 +A22x2(6.1b)

0 = A32x2(6.1c)

where A32A21A13 is nonsingular.
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We ran a number of tests computing the Λ stabilized completion of (6.1) where Λ

was block diagonal with randomly generated positive definite diagonal blocks and the

Aij were randomly generated. While many of the eigenvalues of Â had negative real

part, we frequently saw an eigenvalue with positive real part. Thus, the analogue of

Corollary 4.3 does not hold for index three Hessenberg systems. When we generated

random diagonal positive definite Pi, we frequently saw stabilization. However with

enough experimentation, we did find examples where stabilization did not occur.

Example 6.1. Let the coefficients of the index three Hessenberg DAE be

F =



















−0.8005 −0.8214 −0.3545 −0.5722 −0.7425 −0.3891

−0.1051 −0.8411 −0.4301 −0.7008 −0.7579 −0.4293

−0.9563 −0.8497 −0.6223 −0.9635 0 0

−0.5730 −0.2763 −0.5884 −0.0859 0 0

0 0 −0.5005 −0.0902 0 0

0 0 −0.5216 −0.9047 0 0



















,

E =



















1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0



















.

Take Λ = diag(P1, P2, P3) P1 = diag(0.2211, 0.4390), P2 = diag(0.0156, 0.0045), and

P3 = diag(0.0018, 0.3909). There are no finite eigenvalues. Then the eigenvalues of ÂΛ

are {−0.4715,−0.3909,−0.0562, 0.0321, 0.0192,−0.0018} of which two are positive.

There remains a way to get distinct additional eigenvalues with negative real

part. We know that if we take Λ to be a multiple of the identity, then the additional

eigenvalues will all be minus this multiple. We also know the size of the Jordan blocks.

For an index three Hessenberg system they are 3× 3 Jordan blocks. The eigenvalues

of Â are continuous in Λ. Thus, if we perturb the diagonal entries a small amount

from λ the additional eigenvalues will still have negative real part. Most, but not all

perturbations will produce distinct additional eigenvalues.

Example 6.2. Returning to Example 6.1, let each Pi be diag(0.3, 0.3). Then the

eigenvalues of ÂΛ are all −0.3. Suppose that we then perturb the diagonals, for exam-

ple, to give P1 = diag(0.2, 0.3), P2 = diag(0.25, 0.35), and P3 = diag(0.32, 0.40). Then

the eigenvalues of ÂΛ turn out to be {−0.2387,−0.4366,−0.4000,−0.3200,−0.3391±

0.0259i}.

Of course, it is not enough just to get distinct eigenvalues since one must also

worry about conditioning of the observability matrix.
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7. Conclusion. This paper has examined the relationship between the stabiliz-

ing weight Λ which occurs in the algorithm for computing a least squares completion

of a DAE and the additional eigenvalues of the computed completions. This relation-

ship is explicitly developed for the important classes of general index one DAEs and

for Hessenberg index two DAEs. It is shown for index three Hessenberg DAEs that

having positive definite weights is no longer sufficient to guarantee that the additional

eigenvalues have negative real part. A way around this that could be helpful on some

problems is presented.
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