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A REMARK ON WARING DECOMPOSITIONS

OF SOME SPECIAL PLANE QUARTICS∗

ALESSANDRO DE PARIS†

Abstract. Motivated by questions on tensor rank, this work concerns the following unexpected

result concerning Waring decompositions of plane quartics containing a double line, along with some

preparatory and additional remarks. Let x, l1, . . . , l7 be linear forms and q a quadratic form on a

vector space of dimension 3. If x2q = l4
1
+ · · · + l4

7
and the lines l1 = 0, . . ., l7 = 0 in P2 intersect

x = 0 at seven distinct points, then the line x = 0 is (possibly improperly) tangent to the conic

q = 0.
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1. Introduction. Let f ∈ K[x0, . . . , xn] be a degree d homogeneous polynomial

and

f = ld1 + · · ·+ ldr(1.1)

be a decomposition of f as a sum of d-th powers of linear forms. The minimum

number of summands for such a decomposition is called the Waring rank of f , or the

symmetric tensor rank (the latter term is sometimes used with a different meaning:

see [11], where the Waring rank is called polar rank instead). We shall refer to it

simply as the rank of f . By a Waring decomposition, we mean a decomposition (1.1)

that is minimal, i.e., with r equal to the rank.

The problem of finding the maximum possible rank, given d and n, is called the

little Waring problem for polynomials in [6]. We refer the reader to [6] for a friendly

exposition and to [9] for an extensive and up-to-date survey on the role of tensor rank

theory in a broad range of applications. The latter will also be our default reference

for basic terminology.

When n = 1, the answer is known: a detailed description is given by the Comas-

Seiguer theorem (see [5] or, e.g., [9, Theorem 9.2.2.1]). In the case (d, n) = (3, 2),

the maximal rank is five (see [10, Section 8]). The answer for (d, n) = (4, 2), seven,
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was given in [8] and, surprisingly, it seems not to be widely known. For instance,

there is no mention of it in [9], in particular in the preamble to Chapter 9. But,

beyond the Waring problem, much work has recently been done to understand the

rank stratification of polynomials. A careful account in the case (d, n) = (4, 2) is given

by [2, Theorem 44] (cf. also [9, Theorem 10.9.3.2]), among a considerable number of

other interesting results. Further developments in [1] give the rank stratification for

polynomials of border rank four, for all (d, n), yielding in particular a positive answer

in the case n = 3 to a conjecture by J. H. Rhodes about cubic polynomials.

According to [9, 0.2, p. xv], ‘Results [. . .] indicate there is beautiful geometry

associated to rank that is only beginning to be discovered.’. Several recent papers,

and the book [9] itself, give evidence that classical, even elementary, results from

algebraic geometry are very useful in tensor rank questions, and a bit more advanced

tools such as nonreduced schemes have considerably increased the knowledge. We

may likely expect that deeper tools from algebraic geometry, e.g., the homological

ones, will provide a deeper understanding when carefully adapted to the subject. In

our opinion, outstanding results in this respect are some of those in [9, Part 4], and

[3, Proposition 3.1] (to compare its scope and simplicity with what was previously

known, see [9, 3.2.3 and 9.3.3]).

We believe that, in such situations, even results that look very partial and far

from being outstanding may positively contribute to the discovery mentioned in [9,

loc. cit.]. For instance, quartics that are decomposed in a double line and a conic seem

to yield matter for good tests (think, e.g., of plane cubics, for which the maximal rank

is achieved by a conic together with a line tangent to it). We also mention that such

quartics are among the simplest examples of what in [7] are called padded polynomials.

That is why the focus of the present work is on Proposition 3.2. It was computationally

detected, it looks rather unexpected, and the proof required some considerations that

are not completely routine in this context. A few additional remarks and applications,

though of some independent interest, are presented in view of that result.

We have tried to optimize the technical background at the beginning of Section 3,

so that arguments in the subsequent proof could be developed both concisely and in

detail. To prevent the ‘optimized language’ from obscuring some more elementary

facts, in Section 2 we anticipated some results in an elementary setting (at the cost of

a lesser optimization in the arguments). Proposition 2.2 in that preliminary section

deals with quartics that are decomposed in a double line and a nondegenerate conic

not tangent to the line. In spite of its ancillary illustrative role, it has its own in-

terest, because the proof includes a quite detailed description of the space of Waring

decompositions of such quartics and gives quite a direct check that their rank is six

(an earlier reference for this fact is [2, Case (2) in the proof of Theorem 44], but we

found the indirect argument there rather obscure).
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2. Preliminary remarks. First of all,

we fix an algebraically closed field K of zero characteristic

(generally one may assume K = C: see, e.g., [9, Subsection 1.2.1]). That is a common

assumption when one deals with the rank of polynomials, possibly because positive

characteristics often lead to cumbersome subtleties. Moreover, note that xy, as a

polynomial over a field of characteristic 2, cannot be expressed as a sum of the squares

of linear forms; similarly for −x2 as a polynomial over R. However, we shall outline

how things go for arbitrary fields by making a quick separate remark.

We start with some very elementary considerations in the usual coordinate set-

tings. Let us consider six linear forms in a polynomial ring K [x0, x1, x2]:

l1 := x0 + h1x1 + k1x2 , . . . , l6 := x0 + h6x1 + k6x2 .(2.1)

We seek a linear combination of l41, . . . , l
4
6 such that the quartic curve it represents

doubly contains the line x2 = 0:

α1l
4
1 + · · ·+ α6l

4
6 = x22q (x0, x1, x2) ,(2.2)

with q being a quadratic form. Simple arguments indicate that, for a generic choice

of l1, . . . , l6, one does not expect such a combination to exist. In geometric terms, we

are dealing with the intersection of an osculating 5-space to the 4-th Veronese surface

S ⊂ P
14 and a secant 5-space. On the other hand, one expects plenty of special choices

of l1, . . . , l6 leading to (2.2). Note also that the generic rank for ternary quartics is

expected to be 5, but it is actually 6 (in fact, (d, n+1) = (4, 3) is an exceptional case

of the Alexander-Hirschowitz theorem; see [9, Theorem 3.2.2.4]).

The expectation of many solutions for (2.2) could be threatened by the existence

of special quartics of higher rank than the generic. More precisely, if the conic repre-

sented by q is nondegenerate and tangent to the line x2 = 0, then the rank of x22q is

seven (see [9, Theorem 10.9.2.1] or [2, case (1) in the proof of Theorem 44, (p. 50)]). If

this were the case for all quadratic forms q 6= 0, then (2.2) would admit no solutions,

apart from those with q = 0. Now, trivially, when q = x22, the rank of x22q is one.

Even if q = x2l, with l a linear form not proportional to x2, then qx
2
2 is of rank 4 (see,

e.g., [5]). Incidentally, in such cases we do not immediately get a solution for (2.2),

because l1, . . . , l6, though generic, are in the form (2.1).

When q = 0 has no singular points lying on x2 = 0, a good lower bound on the

rank is given by [10, Theorem 1.3] (also reported in [9, 9.2.1.4]). In this case we have,

in notation of that theorem, dimΣ1 = 1 and rank φ1,3 = 3; this way we get that the

rank is at least five. The same bound may be deduced by taking s = 2 in the same

theorem, i.e., by looking at Σ2 and φ2,2 (with a bit extra work to detect the rank of
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φ2,2). Note also that assuming s = 2 in [10, Section 6, proof of Theorem 1.3], we get

a geometric picture which has some interesting relationships with the results we are

going to prove in this paper.

A solution for (2.2) is given by the following example.

Example 2.1. Set

l1 := x0 , l2 := x0 + x2 , l3 := x0 − x2 ,

l4 := x0 + x1 , l5 := x0 + x1 + x2 , l6 := x0 + x1 − x2 .

We have

2l41 − l42 − l43 + 2l44 − l45 − l46 = −4
(

6x20 + 6x0x1 + 3x21 + x22
)

x22

and 6x20 + 6x0x1 + 3x21 + x22 = 0 is nondegenerate and not tangent to x2 = 0.

The above decomposition looks somewhat special, because the set of hi’s reduces

to only two values. That is why we find it a bit surprising that this is a necessary

condition, as we quickly explain now.

Proposition 2.2. In the above notation, when the conic q = 0 is nondegenerate

and not tangent to the line x2 = 0, for every decomposition (2.2), the αi’s are all

nonzero and the six hi’s reduce to only two values, with correspondence three-to-one.

Proof. Let us split li = Li + kix2, with Li := x0 + hix1, think of L1, . . . , L6

as fixed and look for appropriate values of α1, . . . , α6, k1, . . . , k6. We find ourselves

dealing with a system of equations

6
∑

i=1

αih
d
i = 0 , 0 ≤ d ≤ 4 ,(2.3)

6
∑

i=1

αikih
d
i = 0 , 0 ≤ d ≤ 3 .(2.4)

Suppose that h1, . . . , h6 are distinct. Equations (2.3) involve some Vandermonde

determinants, so that we have a solution α = (α1, . . . , α6), with all nonzero entries αi,

which is unique up to a scalar factor. The subsystem with 0 ≤ d ≤ 3 admits a two-

dimensional space of solutions β = (β1, . . . , β6). Solutions k = (k1, . . . , k6) of (2.4)

are given by ki = βi/αi, and therefore they form a two-dimensional space. But since

6
∑

i=1

αiLi (x0, x1)
4
= 0 ,(2.5)
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setting li = Li (x0 + ̺0x2, x1 + ̺1x2) for arbitrary ρ0, ρ1 ∈ K, we get that (2.2) holds

with q = 0. Hence, the whole two-dimensional space of solutions k for (2.4) must give

q = 0. This shows that no nonzero quartics of type x22q can arise when the hi’s are

distinct.

Suppose then that h1, . . . , h6 are not distinct. Let us subdivide the six li’s in

groups, according to the distinct values of the hi’s, and call f1, . . . , fs (s ≤ 5) the

corresponding linear combinations of their fourth powers, with the coefficients being

the αi’s. Since fewer than six distinct L4
i ’s are linearly independent, in view of (2.5)

we have that each fj contains x2 as a factor, and it vanishes if it consists of only

one term as a linear combination αil
4
i (simply because αi must vanish). Therefore,

dividing each nonzero fj by x2, we get g1, . . . , gt such that

x2q = g1 + · · ·+ gt(2.6)

and 1 ≤ t ≤ 3. Each gj must represent a cone (union of lines) with vertex Vj of

the form (hi,−1, 0) for some i depending on j. Moreover, each cone gj = 0 either

contains the line x2 = 0, or intersects it into 3Vj . Since the Vj ’s are distinct, in

view of (2.6) we deduce that each gj contains x2 as a factor. But when fj is a linear

combination of only two of the li’s, then it cannot contain x22 as a factor (from an

algebro-geometric viewpoint, this is an elementary fact about linear series on a line;

it may also be deduced from [9, Theorem 9.2.1.4]). This proves that t ≤ 2. On the

other hand, it cannot be t = 1 because q does not represent a cone. Moreover, each

of the two nonzero fj ’s must be a linear combination of three (and not less) of the

l4i ’s, and this immediately leads to the statement.

Following from the above line of thought, we turn our attention to a quartic x22q,

with q representing a nondegenerate conic tangent to the line x2 = 0. As mentioned

before, it is known that such a quartic is of rank seven. By some trial calculations,

one can find α1, . . . , α7 and l1, . . . , l7 such that α1l
4
1 + · · ·+ α7l

4
7 is a quartic of that

type, where l7 = x0 + h7x1 + k7x2, similarly to the preceding l1, . . . , l6.

What is new in this case is that h1, . . . , h7 can be distinct. In our opinion, it

would be reasonable to expect that for a generic linear combination of l41, . . . , l
4
7 that

yields x22q, the quadric q = 0 should be not tangent to the line x2 = 0 (i.e., the

tangency case should be special). The main result we are going to prove asserts that

this expectation fails.

Before going into the proof, we want to briefly discuss some computational as-

pects. Put into elementary terms as before, our result reduces to the following asser-

tion. If the hi’s are distinct, and ki, αi such that

7
∑

i=1

αih
d
i = 0 , 0 ≤ d ≤ 4 ,

7
∑

i=1

αikih
d
i = 0 , 0 ≤ d ≤ 3 ,(2.7)
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then we have

(

7
∑

i=1

αik
2
i hi

)2

−
(

7
∑

i=1

αik
2
i

)(

7
∑

i=1

αik
2
i h

2
i

)

= 0 .

In principle, this can be proved by a brute force calculation. Indeed, let f be the

above polynomial in hi, ki, αi; let g :=
∏

j>i (hi − hj) and a the ideal generated by

all polynomials in (2.7). Then it would suffice to check that fg ∈ √
a. We have tried

to perform this check with CoCoA (see [4]) on a common computer. But even with the

simpler (sufficient) condition fg ∈ a, and even with some of the indeterminates spe-

cialized, the calculation was out of reach. Only some tests with many specializations

ended up (with a positive answer).

3. Main result. The symmetric algebra S•V of a K-vector space V will be

denoted by SV . The projective space PV will simply be the set of proportionality

classes of nonzero vectors in V . An f ∈ SV ∗ will be interpreted, as usual, as a

polynomial function on V . Dually, elements of SV are interpreted as polynomial

functions on V ∗, and we find it comfortable to denote the value of s ∈ SV on x ∈ V ∗

by

x(s)

(for instance, with v ∈ V , we allow ourselves to say that x (vn) = x(v)n = xn(v)).

To speed up calculations, we assume the following reasonable conventions. When

dealing with n-tuples of polynomials, say f = (f1, . . . , fn), g = (g1, . . . , gn), we mul-

tiply them by the rule

fg = (f1g1, . . . , fngn) .

(Hadamard product): It is nothing but the multiplication in the ordinary cartesian

product ring (SV ∗)
n
(or (SV )

n
). We shall also make use of the standard bilinear form

(SV ∗)
n × (SV ∗)

n → SV ∗ :

f · g = f1g1 + · · ·+ fngn ,

for which we shall keep the dot notation. Note that fg · h = f · gh. These operations

can be performed, in particular, on elements ofKn ⊆ (SV ∗)
n
. Since we are considering

Kn also as a ring, sometimes 1 will stand for the identity element in this ring, i.e.,

(1, . . . , 1). This way, a decomposition (1.1) of f ∈ SdV ∗ may be written

f = 1 · ld ,

with l ∈ (V ∗)
n ⊂ (SV ∗)

n
being an n-tuple of linear forms.
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Let us also recall the notation f for the polarization of f ∈ SdV ∗, i.e., the

symmetric d-multilinear form such that

f(v) = f(v, . . . , v)

(d!f may be regarded as the image of f through a canonical map SdV ∗ →
(

SdV
)∗

).

Moreover, partial polarizations of f ,

fδ,d−δ : S
δV → Sd−δV ∗

are also defined (see [9, 2.6.6]; cf. also [2, Definition 17]).

Remark 3.1. Let W be a K-vector space and ℓ ∈ W ∗. The partial polarization

ℓd+δ
d,δ : SdW → SδW ∗

of ℓd+δ ∈ Sd+δW ∗ acts by associating each t ∈ SdW with the linear form

SδW → K , s 7→ ℓ(ts) = ℓ(t)ℓ(s) .

Since partial polarization f 7→ fd,δ is a K-linear procedure, if L ∈ (W ∗)
n
is an n-tuple

of linear forms, then for all a ∈ Kn, the partial polarization SdW → SδW ∗ of a ·Ld+δ

acts as follows:

s 7→ a · L(t)L (s) = aL(t) · L (s) , ∀ t ∈ SdW.

Proposition 3.2. Let V be a K-vector space, dim V = 3, and let x ∈ V ∗,

q ∈ S2V ∗, x, q 6= 0. If

x2q = l41 + · · ·+ l47

with l1, . . . , l7 ∈ V ∗ such that the lines l1 = 0, . . ., l7 = 0 in PV intersect x = 0 at

seven distinct points, then the line x = 0 is (possibly improperly) tangent to the conic

q = 0.

Proof. Let W := x⊥ = kerx ⊆ V and let us use capital letters for restrictions

to W :

L1 := l1 ↾W , . . . , L7 := l7 ↾W .

Set also l := (l1, . . . , l7) ∈ (V ∗)
7 ⊂ (SV ∗)

7
and, similarly, L := (L1, . . . , L7) ∈ (SW∗)

7
.

By the hypothesis on the intersections with PW : x = 0 we have that [L1] , . . . , [L7]

are distinct in PW ∗. This easily implies that Ld
1, . . . , L

d
7 span SdW ∗ when d ≤ 6, so

that in this case the linear map

ϕd : K7 → SdW ∗

a 7→ a · Ld
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is surjective. Therefore, we have

dim kerϕd = 6− d , d = 0, . . . , 6 .

By Remark 3.1, and taking into account that L
(

wd
)

= Ld(w) for all w ∈W , we have

that if a ∈ kerϕd+δ and t ∈ SδW then aL(t) ∈ kerϕd. Thus, whenever a ∈ kerϕd+δ,

we can define a linear map

ψa,δ,d : SδW → kerϕd

t 7→ aL(t)
.

Again because of the hypothesis on the intersections, we have:

• a generator for kerϕ5 is invertible in K7 (i.e., all of its components are

nonzero);

• with an invertible a ∈ K7 and δ ≤ 6, the map ψa,δ,d is injective.

In particular, if a is a generator for kerϕ5 then the map ψa,1,4 is injective. It is

henceforth surjective, because dimW = dimkerϕ4 = 2. But since 1 · l4 = x2q, we

have that 1 ∈ kerϕ4. This way we end up with a w ∈ W such that

a =
1

L(w)

generates kerϕ5.

Now let us pick v ∈ V such that x(v) = 1 and set lv := l − l(v)x, where

l(v)x := (l1(v)x, . . . , l7(v)x) ∈ (V ∗)
7 ⊂ (SV ∗)

7

(in other terms, we are writing to the right the SV ∗–module multiplication in (SV ∗)
7
,

to avoid ambiguities due to the evaluation at v). Clearly lv(v) = 0 and the restriction

of lv to W is again L. From

1 · (lv + l(v)x)
4
= 1 · l4 = x2q(3.1)

we deduce that

1 · l4v + 4
(

l(v) · l3v
)

x ∈ x2S2V ∗ ⊂ S4V ∗ .

But from 1 · L4 = 0, lv(v) = 0 easily follows 1 · l4v = 0, hence l(v) · l3v is divisible by x.

Therefore

l(v) · L3 = 0 ,

that is, l(v) ∈ kerϕ3. Since the injective linear map ψ1/L(w),2,3 : S2W → kerϕ3 is

also surjective by dimension reasons, we end up with a b ∈ S2W such that

l(v) =
L(b)

L(w)
.
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With Q := q ↾W and Q its polarization, (3.1) implies

Q = 6l(v)2 · L2 = 6
L(b2)

L(w)2
· L2 .

Therefore, for all u ∈ W we have

Q (w, u) = 6
L(b2)

L(w)
· L(u) = 0 ,

since L(b2)/L(w) = ψ1/L(w),4,1

(

b2
)

∈ kerϕ1. In other words, w is in the kernel of the

polarization Q, which exactly means that q = 0 and x = 0 are tangent at [w].

Remark 3.3. In the above proof we did not use the fact that K was assumed

algebraically closed. For fields of characteristic ≥ 7 the proof basically works without

changes (one has only to be careful with definitions about symmetric powers and

polarizations). In characteristic 5, kerϕ5 fails to be one-dimensional, but we can still

find an invertible element in it. In characteristic 2 or 3 the result is rather trivial,

because q becomes divisible by x.

Though we have chosen quite a direct algebraic language, we prefer not to miss

hinting at a more geometric interpretation, in view of possible generalizations. In

notation of the proof of Proposition 3.2, let Y := {[L1] , . . . , [L7]} ⊆ PW ∗. The maps

ϕd are dual to the restriction maps

H0 (O(d)) → H0 (OY (d)) ,

and hence, their kernels are dual to H1 (IY (d)) (one might also note that they are

naturally isomorphic to Hom(IY (d), ω), by Serre duality). The direct sum over d of

the H1 (IY (d))’s is known as the Hartshorne-Rao module of Y , and the maps ψa,δ,d

are byproducts of that module structure.
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