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ON PROPERTIES OF THE GENERALIZED MAJORIZATION∗

MARIJA DODIG† AND MARKO STOŠIĆ‡

Abstract. In this paper, a complete solution of a problem involving generalized majorization of

partitions is given: for two pairs of partitions (d, a) and (c,b) necessary and sufficient conditions for

the existence of a partition g that is majorized by both pairs is determined. The obtained conditions

are explicit, the solution is constructive and it uses novel techniques and indices. Although the

problem is motivated by the applications in matrix pencil completions problems, all results are

purely combinatorial and they give a new perspective on comparison of partitions.
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1. Introduction. The concept of majorization of partitions turned out to be a

powerful tool in matrix and matrix pencils completion problems.

Let a := (a1, . . . , as) and w := (w1, . . . , ws) be two partitions, i.e., two finite

non-increasing sequences of integers. If

j
∑

i=1

wi ≤

j
∑

i=1

ai, for all j = 1, . . . , s,

and

s
∑

i=1

wi =

s
∑

i=1

ai,

then we say that w is majorized by a, and write

w ≺ a.

This, classical, majorization is well studied and there are many results concerning

its properties [3, 12, 13, 16]. It also appears in matrix completion problems, see e.g.,

[2, 11, 17, 18], in particular, to express conditions for matrix row completion problem

up to a square matrix.
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1, 1049-001 Lisbon, Portugal.

471

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 26, pp. 471-509, July 2013



ELA

472 M. Dodig and M. Stošić

However, by using classical majorization one cannot compare more than two

partitions. For that reason in [4] the notion generalized majorization was introduced.

It deals with triples of partitions a, d and g, such that the length of g is equal to the

sum of the lengths of a and d. The generalized majorization is denoted by

g ≺′ (d, a).

In the case when d is a partition of length zero, the generalized majorization becomes

the classical majorization between partitions g and a.

This majorization was motivated by results in matrix completion problems in the

case of column or row completion of rectangular matrices. As to our knowledge, it

first appeared in [1, 15], and later on in [5, 8, 9]. In [9] some combinatorial properties

of the generalized majorization have been obtained, including the generalization of

the elementary operations for classical majorization.

The generalized majorization turns out to be a very convenient way of writing

the conditions of the results in completion problems involving both row and column

minimal indices.

In this paper, we give a complete solution to the following problem:

Problem 1. Let a, b, c and d be partitions such that the sum of the lengths of

a and d is equal to the sum of the lengths of b and c.

Find necessary and sufficient conditions for the existence of a partition g, such

that

g ≺′ (d, a)

g ≺′ (c,b).

Problem 1 is a hard and challenging combinatorial task. The obtained conditions

involve novel indices and labels on the partitions c and d introduced in Section 3. In

fact, Problem 1 was inspired by matrix and matrix pencils completion problems. Its

solution enables new approach to those problems, since it allows studying relations

between partitions made of column (or row) minimal indices of the pencils involved.

For instance, a solution of a particular case of Problem 1 when b = 0 was obtained

in [5, 8].

We expect more applications of this result. In particular, its impact on the general

rank distance problem [7], as well as to the general matrix pencils completion problem

[14] and its particular cases [6, 7, 10] is crucial.
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1.1. Notation. For any sequence of integers satisfying c1 ≥ · · · ≥ cm, by
∑

ci≤a ci we mean the sum of all the integers ci that are less than or equal to a.

We put
∑

i∈W ci = 0 whenever W is an empty set. Also, we assume that
∑b

i=a ci = 0

if a > b. Finally, we assume c0 = +∞ and cm+1 = cm+2 = · · · = −∞.

Let x be an integer such that cj ≥ x ≥ cj+1, for some j ∈ {0, . . . ,m}. And let c =

(c1, . . . , cm). Then by c ∪ {x} we mean the partition c̄ = (c1, . . . , cj , x, cj+1, . . . , cm).

Also, c̄ \ {x} := c.

2. Generalized majorization. Generalized majorization presents a general-

ization of the majorization in Hardy-Littlewood-Pólya sense [12]. It deals with three

partitions such that the length of one of them is equal to the sum of the lengths of

another two.

Let m and s be nonnegative integers, and let d1 ≥ · · · ≥ dm, g1 ≥ · · · ≥ gm+s,

and a1 ≥ · · · ≥ as be integers.

Consider partitions

a = (a1, . . . , as),(2.1)

d = (d1, . . . , dm)(2.2)

and

g = (g1, . . . , gm+s).(2.3)

Definition 2.1. If

di ≥ gi+s, i = 1, . . . ,m,(2.4)
hj
∑

i=1

gi −

hj−j
∑

i=1

di ≤

j
∑

i=1

ai, j = 1, . . . , s,(2.5)

m+s
∑

i=1

gi =
m
∑

i=1

di +
s

∑

i=1

ai,(2.6)

where hj := min{i|di−j+1 < gi}, j = 1, . . . , s, then we say that g is majorized by d

and a. This type of majorization we call the generalized majorization, and we write

g ≺′ (d, a).

As to our knowledge, this type of majorization was first considered in [1, 15], and

later on under this name in [4, 5, 6, 8, 9].

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 26, pp. 471-509, July 2013



ELA

474 M. Dodig and M. Stošić

If m = 0, i.e., if d is an empty partition, then the generalized majorization be-

tween g and (d, a), becomes a classical majorization between g and a.

We note that, if (2.6) is satisfied, then (2.5) is equivalent to the following:

m+s
∑

i=hj+1

gi ≥
m
∑

i=hj−j+1

di +

s
∑

i=j+1

ai, j = 1, . . . , s.(2.7)

Also, we note that from the definition of hj ’s we have:

0 < h1 < h2 < · · · < hs < m+ s+ 1,

and we set h0 := 0 and hs+1 := m+ s+ 1.

There is an additional property given in [8, Lemma 4.2]:

Lemma 2.2. Suppose that d1 ≥ · · · ≥ dm, g1 ≥ · · · ≥ gm+s and a1 ≥ · · · ≥ as
satisfy (2.4) and (2.7). Let u be such that hj < u ≤ hj+1, for some j ∈ {0, . . . , s}.

Then the following is also valid:

m+s
∑

i=u

gi ≥
m
∑

i=u−j

di +

s
∑

i=j+1

ai.

Various combinatorial properties of the generalized majorization have been ob-

tained in [9]. In this paper, we are focusing on different properties and aspects of

generalized majorization.

2.1. Basic properties of the generalized majorization. In this subsection,

we show some properties of generalized majorization that enables simplifying par-

titions involved. More precisely, the results of the following lemmas will allow that

without loss of generality Problem 1 can be considered in the case when the partitions

c and d do not have the same elements.

Lemma 2.3. Let a, d and g be partitions as given in (2.1)–(2.3). Let x be an

integer and let g′ := g ∪ {x} and d′ := d ∪ {x}. Then

g ≺′ (d, a)(2.8)

if and only if

g′ ≺′ (d′, a).(2.9)
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Proof. Let u = max{i|gi > x}. Then

gu > x ≥ gu+1.(2.10)

Let l = max{i|di > x}. Then

dl > x ≥ dl+1.(2.11)

Let g′ = (g′1, . . . , g
′
m+s+1) and d′ = (d′1, . . . , d

′
m+1). From (2.10) and (2.11) we have

g′ : g1 ≥ · · · ≥ gu > x ≥ gu+1 ≥ · · · · · · ≥ gm+s,

d′ : d1 ≥ · · · ≥ dl > x ≥ dl+1 ≥ · · · ≥ dm,

i.e.,

g′i = gi, i ≤ u, d′i = di, i ≤ l,

g′u+1 = x, d′l+1 = x,

g′i = gi−1, i ≥ u+ 2, d′i = di−1, i ≥ l + 2.

(2.12)

Let hj := min{i|di−j+1 < gi}, j = 1, . . . , s (h0 := 0, hs+1 := m + s + 1), and

h′
j := min{i|d′i−j+1 < g′i}, j = 1, . . . , s (h′

0 := 0, h′
s+1 := m+ s+ 2).

Let α ∈ {0, . . . , s} be such that hα ≤ u < hα+1, i.e., such that ghα
> x ≥ ghα+1.

Then by the definition of hα and hα+1, we have

dhα−α ≥ ghα−1 ≥ ghα
> x ≥ ghα+1

> dhα+1−α.(2.13)

By (2.12), (2.13) implies u ≤ l + α, and thus we have

h′
j = hj , j ≤ α,(2.14)

h′
j = hj + 1, j > α.(2.15)

Now, suppose that (2.8) is valid. From the definition of the generalized majoriza-

tion, we have that (2.8) is equivalent to (2.4), (2.5) and (2.6).

In order to prove (2.9), we are left with proving

d′i ≥ g′i+s, i = 1, . . . ,m+ 1,(2.16)

h′

j
∑

i=1

g′i −

h′

j−j
∑

i=1

d′i ≤

j
∑

i=1

ai, j = 1, . . . , s,(2.17)

m+s+1
∑

i=1

g′i =

m+1
∑

i=1

d′i +

s
∑

i=1

ai.(2.18)

Equation (2.18) follows directly by (2.6) and by the definition of g′ and d′.
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Let us prove (2.16). By (2.4) and (2.11), we have x ≥ dl+1 ≥ gl+1+s. Hence, by

(2.10) we obtain

u ≤ l+ s.(2.19)

By (2.4), (2.19) and (2.12), for i ≥ l + 2 we have

d′i = di−1 ≥ gi−1+s = g′i+s.

For i ≤ u− s, we have

d′i = di ≥ gi+s = g′i+s.

Finally, for u− s+ 1 ≤ i ≤ l+ 1, we have

d′i ≥ d′l+1 = x = g′u+1 ≥ g′i+s.

Hence, we have proved that (2.16) is valid.

Now we are left with proving (2.17). Since hα ≤ u < hα+1, (2.17) for j ≤ α,

becomes the same inequality as in (2.5), while for j > α, (2.17) has the same additional

summand x added to the both sides of (2.5). Hence, (2.17) follows by (2.5).

Now suppose that (2.9) is valid.

In order to prove (2.8) we are left with proving (2.4), (2.5) and (2.6). Since (2.9)

is valid, we have (2.16), (2.17) and (2.18). Hence, the definitions of g and d together

with (2.18) give (2.6).

By (2.16), we have that x = d′l+1 ≥ g′l+s+1, and so

u ≤ l+ s.

Then, we have

for i ≥ l + 1 : di = d′i+1 ≥ g′i+1+s = gi+s,

for i ≤ u− s : di = d′i ≥ g′i+s = gi+s,

for u− s < i ≤ l : di ≥ dl > x ≥ gu+1 ≥ gi+s

which proves (2.4).

Hence, we are left with proving (2.5). Now, for j ≤ α, from (2.14) the inequality

(2.5) is the same as the corresponding inequality in (2.17). For j > α, from (2.15),

the inequality in (2.5) is the same as the corresponding inequality in (2.17) after

subtracting the same summand, x, from both sides. Hence, (2.5) follows from (2.17),

which finishes our proof.

Lemma 2.4. Let a = (a1, . . . , as), d = (d1, . . . , dm), and ḡ = (ḡ1, . . . , ḡm+s) be

partitions such that

di ≥ ḡi+s,
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m+s
∑

i=h̄j+1

ḡi ≥
m
∑

i=h̄j−j+1

di +

s
∑

i=j+1

ai, j = 1, . . . , s,(2.20)

m+s
∑

i=1

ḡi ≥
m
∑

i=1

di +

s
∑

i=1

ai,

where h̄j := min{i|di−j+1 < ḡi}, j = 1, . . . , s.

Let f ∈ {2, . . . ,m+ s}, and let g = (g1, . . . , gm+s) be a partition such that

gi = ḡi, i ≥ f,

gi ≤ ḡi, i < f,

ḡf−1 ≥ g1 ≥ gf−1 ≥ g1 − 1,
m+s
∑

i=1

gi ≥
m
∑

i=1

di +

s
∑

i=1

ai.(2.21)

Then

m+s
∑

i=hj+1

gi ≥
m
∑

i=hj−j+1

di +

s
∑

i=j+1

ai, j = 0, . . . , s,(2.22)

where hj := min{i|di−j+1 < gi}, j = 1, . . . , s, h0 := 0.

Proof. From the definition of hj and h̄j we have h̄j ≤ hj , j = 1, . . . , s. Moreover,

let p ∈ {0, . . . , s} be such that h̄p < f ≤ h̄p+1. Then we have that hj = h̄j , j ≥ p+1,

and so by (2.20), equation (2.22) is trivially satisfied for all j ≥ p+ 1.

Since f − 1 < h̄p+1, we have df−p−1 ≥ ḡf−1 ≥ g1. Thus, hj ≥ f − p+ j − 1, for

every j = 1, . . . , p.

We shall prove by induction on j that the condition (2.22) is satisfied for every

j = 0, . . . , p, thus completing the proof of (2.22).

If j = 0, (2.22) equals (2.21).

Now, let 1 ≤ j ≤ p, and suppose that (2.22) is satisfied for j − 1.

If ghj
≤ aj , then by the induction hypothesis, we have

m+s
∑

i=hj+1

gi =

m+s
∑

i=hj−1+1

gi −

hj
∑

i=hj−1+1

gi ≥
m
∑

i=hj−1−j+2

di +

s
∑

i=j

ai −

hj−1
∑

i=hj−1+1

gi − ghj
=

=

m
∑

i=hj−j+1

di +

s
∑

i=j+1

ai +

hj−j
∑

i=hj−1−j+2

di −

hj−1
∑

i=hj−1+1

gi + aj − ghj
.(2.23)
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By the definition of hj , we have that for all i < hj, gi ≤ di−j+1. Hence, by (2.23)

follows (2.22), as wanted.

So, in the rest of the proof of (2.22) we assume that ghj
> aj . Then since

ghj
≤ g1 ≤ gf−1 + 1, we have gf−1 + 1 > aj , i.e., gf−1 ≥ aj .

If hj < f , then by (2.20) and Lemma 2.2, we have

m+s
∑

i=hj+1

gi =

f−1
∑

i=hj+1

gi +

m+s
∑

i=f

ḡi ≥

f−1
∑

i=hj+1

gi +

m
∑

i=f−p

di +

s
∑

i=p+1

ai =

=





f−1
∑

i=hj+1

gi +

hj−j
∑

i=f−p

di −

p
∑

i=j+1

ai



+





m
∑

i=hj−j+1

di +

s
∑

i=j+1

ai



 .

Let us see that
∑f−1

i=hj+1
gi+

∑hj−j
i=f−p di−

∑p
i=j+1

ai ≥ 0. Indeed, by the definition

of hj we have

f−1
∑

i=hj+1

gi +

hj−j
∑

i=f−p

di −

p
∑

i=j+1

ai ≥

f−1
∑

i=hj+1

gi +

hj−1
∑

i=f−p+j−1

gi −

p
∑

i=j+1

ai

≥

f−1
∑

i=f−p+j

gi −

p
∑

i=j+1

ai,

and since gf−1 ≥ aj , the last expression is nonnegative, as wanted.

If hj ≥ f , then h̄p < f < hj +1 ≤ hp+1 = h̄p+1. Thus, by (2.20) and Lemma 2.2,

we have

m+s
∑

i=hj+1

gi =

m+s
∑

i=hj+1

ḡi ≥
m
∑

i=hj+1−p

di +

s
∑

i=p+1

ai

=





hj−j
∑

i=hj+1−p

di −

p
∑

i=j+1

ai



+





m
∑

i=hj−j+1

di +

s
∑

i=j+1

ai



 .

Finally, since ghj
> aj , from the definition of hj , we have

hj−j
∑

i=hj+1−p

di −

p
∑

i=j+1

ai ≥

hj−1
∑

i=hj−p+j

gi −

p
∑

i=j+1

ai ≥ 0,

as wanted.

Lemma 2.5. Let a, d and g be partitions as given in (2.1)–(2.3), such that

g ≺′ (d, a).(2.24)
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Let x be an integer such that there exists u ∈ {1, . . . ,m} with du = x, and there does

not exist l ∈ {1, . . . ,m+ s} such that gl = x.

Then there exists a partition g′ = (g′1, . . . , g
′
m+s), such that

g′ ≺′ (d, a),

and such that there exists l ∈ {1, . . . ,m+ s} with g′l = x. Moreover, such a g′ can be

defined independently from d and a, i.e., it depends only on g and x.

Proof. First suppose that g1 > x > gm+s. Then there exists j ∈ {1, . . . ,m+s−1}

such that

gj > x > gj+1.

If gj + gj+1 ≥ 2x, then let g′j = gj + gj+1 − x and g′j+1 = x.

If gj + gj+1 < 2x, then let g′j = x and g′j+1 = gj + gj+1 − x.

In both cases, we have gj ≥ g′j ≥ g′j+1 ≥ gj+1. Also, for i 6= j, j + 1, we set

g′i = gi. Thus, we have that g′i’s are nonincreasing. We claim that for such defined

g′ := (g′1, . . . , g
′
m+s) we have

g′ ≺′ (d, a).(2.25)

By the definition of ≺′, (2.25) is equivalent to:

di ≥ g′i+s, i = 1, . . . ,m,(2.26)

h′

w
∑

i=1

g′i −

h′

w−w
∑

i=1

di ≤
w
∑

i=1

ai, w = 1, . . . , s,(2.27)

m+s
∑

i=1

g′i =

m
∑

i=1

di +

s
∑

i=1

ai,(2.28)

where h′
w := min{i|di−w+1 < g′i}, w = 1, . . . , s. Since (2.24) is valid, we have (2.4),

(2.5) and (2.6). Hence, the definition of g′ together with (2.6), gives (2.28).

For all i 6= j − s+ 1, we have di ≥ gi+s ≥ g′i+s.

Since dj−s ≥ gj > x = du, we have u ≥ j − s+ 1. So

dj−s+1 ≥ du = x ≥ g′j+1,

as well. Hence, we have proved (2.26).
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Let hw := min{i|di−w+1 < gi}, w = 1, . . . , s (h0 := 0, hs+1 := m + s + 1). Now

let α ∈ {0, . . . , s} be such that

hα ≤ j < hα+1.

First of all, we have j + 1 < hα+1. Otherwise, we would have j + 1 = hα+1, and

so gj+1 = ghα+1
> dj+1−α. However, since j < hα+1, we have dj−α ≥ gj > x, and so

u ≥ j − α+ 1. Hence, dj−α+1 ≥ du = x > gj+1, which is a contradiction.

Now, if hα < j < j+1 < hα+1, then we have dj−α ≥ gj > x, and so u ≥ j−α+1.

Hence, dj−α+1 ≥ x ≥ g′j+1. So, in this case we have h′
i = hi, for all i = 1, . . . , s, and

hl
∑

i=1

gi =

h′

l
∑

i=1

g′i, l = 1, . . . , s.

Hence, (2.27) follows from (2.5).

If hα = j < j + 1 < hα+1, then again we have dj−α ≥ gj−1 ≥ gj > x, and so

u ≥ j − α + 1, i.e., dj−α+1 ≥ x ≥ g′j+1. So h′
i = hi, for i ≥ α + 1. Also, obviously

h′
i = hi, for i ≤ α− 1. Since, for all l 6= α we have

hl
∑

i=1

gi =

h′

l
∑

i=1

g′i,

for all such indices (2.27) follows from (2.5).

As for h′
α, we have hα ≤ h′

α < h′
α+1 = hα+1.

If h′
α = hα, then

h′

α
∑

i=1

g′i =

hα
∑

i=1

g′i ≤
hα
∑

i=1

gi ≤
hα−α
∑

i=1

di +

α
∑

i=1

ai =

h′

α−α
∑

i=1

di +

α
∑

i=1

ai.

If h′
α > hα, then

h′

α
∑

i=1

g′i =

h′

α
∑

i=1

gi =

hα
∑

i=1

gi+

h′

α
∑

i=hα+1

gi ≤
hα−α
∑

i=1

di+

α
∑

i=1

ai+

h′

α−α
∑

i=hα−α+1

di =

h′

α−α
∑

i=1

di+

α
∑

i=1

ai.

The middle inequality follows from (2.5) for j = α and the fact that h′
α < hα+1.

This ends the proof in the case g1 > x > gm+s.

Since x = du ≥ dm ≥ gm+s, the only remaining case is

x > g1.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 26, pp. 471-509, July 2013



ELA

On Properties of the Generalized Majorization 481

In this case, let

g′1 = x,

and we define the rest of g′i’s in the following way:

Let f := max{v ∈ {2, . . . ,m+s}|(v−1)gv+x >
∑v

i=1 gi}. Then we define g′i = gi
for i > f , and we define g′2 ≥ · · · ≥ g′f as the most homogeneous partition such that
∑f

i=2
g′i =

∑f
i=1

gi − x.

Such defined g′1 ≥ · · · ≥ g′m+s satisfy (2.28). Also, since di ≥ gi+s ≥ g′i+s

for all i = 1, . . . ,m, we have (2.26). So we are left with proving (2.27). Since

d1 ≥ du = x = g′1 ≥ g1, we have that h1 ≥ 2,

m+s
∑

i=2

gi ≥
m
∑

i=2

di +

s
∑

i=1

ai

and

m+s
∑

i=2

g′i ≥
m
∑

i=2

di +

s
∑

i=1

ai.

If we denote g̃ = g \ {g1}, d̃ = d \ {d1} and g̃′ = g′ \ {g′1}, then by applying

Lemma 2.4 for g̃, d̃, a and g̃′, we obtain (2.27), as wanted.

2.2. Relaxation on partitions c and d. Let m, n, k and s be nonnegative

integers such that

m+ s = n+ k.

Let

a = (a1, . . . , as),(2.29)

b = (b1, . . . , bk),(2.30)

c = (c1, . . . , cn)(2.31)

and

d = (d1, . . . , dm)(2.32)

be partitions of nonincreasing integers.
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Lemmas 2.3–2.5 enable to consider Problem 1 in the case when there do not exist

i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} such that ci = dj . More precisely, we have the

following result:

Proposition 2.6. Consider the partitions a, b, c and d as given in (2.29)–

(2.32).

Let x be such that there exist w ∈ {1, . . . , n} and u ∈ {1, . . . ,m} such that

cw = du = x.

Let

d′ := (d1, . . . , du−1, du+1, . . . , dm),

and

c′ := (c1, . . . , cw−1, cw+1, . . . , cn).

Then there exists a partition g = (g1, . . . , gm+s) such that

g ≺′ (d, a)(2.33)

g ≺′ (c,b)(2.34)

if and only if there exists a partition g′ = (g′1, . . . , g
′
m+s−1) such that

g′ ≺′ (d′, a)(2.35)

g′ ≺′ (c′,b).(2.36)

Proof. Let there exists g which satisfies (2.33) and (2.34). By Lemma 2.5, there

exists a partition g′′ = (g′′1 , . . . , g
′′
m+s) such that there exists l ∈ {1, . . . ,m+ s} with

g′′l = x, and such that

g′′ ≺′ (d, a)

g′′ ≺′ (c,b).

Now, let g′ = g′′ \ {x}.

By Lemma 2.3, we have that (2.35) and (2.36) are satisfied, as wanted.

Conversely, let g′ be such that (2.35) and (2.36) are satisfied. Let g := g′ ∪ {x}.

Then by Lemma 2.3, (2.33) and (2.34) are valid, as wanted.

Thus, from now on without loss of generality, we shall consider Problem 1 only

for partitions c and d such that for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, we have

ci 6= dj .
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3. Sets S and ∆. Let a, b, c and d be partitions as given in (2.29)–(2.32).

Moreover, let c1 ≥ · · · ≥ cn and d1 ≥ · · · ≥ dm be such that there do not exist

i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} such that ci = dj .

In this section, we shall define certain labels on the sequences c1, . . . , cn and

d1, . . . , dm. We are going to define the set S of the indices of chosen integers among

c1 ≥ · · · ≥ cn and the set ∆ as the indices of special ones among d1 ≥ · · · ≥ dm.

We note that the definition is similar to, but not the same as the one from Section

3.1. in [8]. It is given by recursion on (c1, . . . , cn) ∪ (d1, . . . , dm), starting from the

smallest integer. More precisely:

Put S := ∅, ∆ := ∅.

The definitions are given recursively, so first we take the smallest integer from

(c1, . . . , cn, d1, . . . , dm). Then we have two possibilities (a) and (b), depending on

whether the chosen integer belongs to (d1, . . . , dm) or it belongs to (c1, . . . , cn).

(a) If the observed integer is among (d1, . . . , dm), say dj , then let

qj = s− ♯{ci < dj |i ∈ S}+ ♯{i > j|i /∈ ∆}+ 1.(3.1)

If qj > s or qj < 0, we add j to ∆, i.e., ∆ := ∆ ∪ {j}.

If s ≥ qj ≥ 0, we check the following equation:

∑

ci < dj

i ∈ S

ci <
∑

i > j

i /∈ ∆

di + dj +

s
∑

i=qj+1

ai.(3.2)

If dj satisfies (3.2), then we add j to ∆, i.e., ∆ := ∆ ∪ {j}.

(b) If the observed integer is among (c1, . . . , cn), say cj , then let

q′j = k − ♯{di < cj |i ∈ ∆}+ ♯{i > j|i /∈ S}+ 1.(3.3)

If q′j > k or q′j < 0, we add j to the set S, i.e., S := S ∪ {j}.

If k ≥ q′j ≥ 0, we check the following inequality:

∑

di < cj
i ∈ ∆

di <
∑

i > j

i /∈ S

ci + cj +

k
∑

i=q′j+1

bi.(3.4)

If (3.4) is satisfied, then we add j to the set S, i.e., S := S ∪ {j}.
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Now, we select the next smallest integer among (c1, . . . , cn, d1, . . . , dm), and

proceed.

In this way, we have defined the sets ∆ and S. These sets will play an essential role

in the rest of the paper. Also, it is trivial to see that these definitions are symmetric,

i.e., one can be obtained from the another by simply exchanging ∆, di, ai and qi with

S, ci, bi and q′i, respectively, and vice-versa.

3.1. Some additional notation. We also introduce a couple of definitions in

order to simplify and clarify further notation.

Let h := ♯S. We shall denote by c1 ≥ · · · ≥ ch the nonincreasing ordering of ci’s

such that i ∈ S. Also, for each cx, x = 1, . . . , h, we shall define

zx := max{i|di > cx}

and

mx := max{i|ai > cx},

i.e.,

dzx > cx > dzx+1, amx
> cx ≥ amx+1.

We also set c0 := c0, c
h+1 := cn+1, z0 := 0, zh+1 := m, m0 := 0 and mh+1 := s.

Moreover, we define

tx := s− (h− x) + ♯{i /∈ ∆|di < cx}, x = 0, . . . , h,(3.5)

and th+1 := s+ 1.

Analogously, let h′ := ♯∆. We shall denote by d1 ≥ · · · ≥ dh
′

the nonincreasing

ordering of di’s such that i ∈ ∆. Also, for each dx, x = 1, . . . , h′, we shall define

z′x := max{i|ci > dx}

and

m′
x := max{i|bi > dx},

i.e.,

cz′

x
> dx > cz′

x+1, bm′

x
> dx ≥ bm′

x+1.

We also set d0 := d0, d
h′

+1 := dm+1, z
′
0 := 0, z′h′+1 := n, m′

0 := 0 and m′
h′+1 := k.

Moreover, we define

t′x := k − (h′ − x) + ♯{i /∈ S|ci < dx}, x = 0, . . . , h′,(3.6)

and t′h′+1 := k + 1.
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4. Properties of the sets S and ∆ . In this section, we present some auxiliary

lemmas. Many of them are analogous to lemmas from Section 3.1 in [8]. However,

since the definition of the sets S and ∆ (DC) are different from the analogous definition

given in [8], we have to re-state and re-prove all of the lemmas given in [8].

Lemma 4.1. Let j ∈ {1, . . . ,m} and x ∈ {0, . . . , h} be such that cx > dj > cx+1,

and j ∈ ∆. Then

zx + 1, zx + 2, . . . , j − 1 ∈ ∆.(4.1)

Proof. If x = h, then qj > s. Moreover, by the definition of qi’s we have that

qzx+1 ≥ · · · ≥ qj−1 ≥ qj > s, thus proving (4.1).

If x < h, then dj > ch. Suppose on the contrary to (4.1) that among {zx +

1, . . . , j − 1} there are indices that are not from ∆. Denote by u the largest of them.

Then since qj = qu (by the definition), we have that s ≥ qj = qu ≥ 0, and thus dj
satisfies (3.2), i.e.,

h
∑

i=x+1

ci < dj +
∑

i > j

i /∈ ∆

di +
s

∑

i=qj+1

ai,

while du does not satisfy (3.2), and so we have

h
∑

i=x+1

ci ≥ du +
∑

i > j

i /∈ ∆

di +

s
∑

i=qj+1

ai.

Last two equations together give that dj > du, which is a contradiction. This proves

(4.1), as wanted.

Now, as a corollary of Lemma 4.1, we have:

Lemma 4.2. Let cx > dj > cx+1, and let j /∈ ∆. Then j + 1, . . . , zx+1 /∈ ∆.

Denote by wx the number of di’s such that i /∈ ∆ and such that cx > di > cx+1.

Then from the definition of zx and wx, by Lemmas 4.1 and 4.2, we have

dzx > cx > dzx+1 ≥ dzx+2 ≥ . . . ≥ dzx+1−wx
︸ ︷︷ ︸

∈∆

≥ dzx+1−wx+1 ≥ . . . ≥ dzx+1
︸ ︷︷ ︸

/∈∆

> cx+1.(4.2)

In particular, we have

tx+1 = tx − wx + 1.
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Completely analogously, we obtain the following dual results:

Lemma 4.3. Let j ∈ {1, . . . , n} and x ∈ {0, . . . , h′} be such that dx > cj > dx+1,

and j ∈ S. Then

z′x + 1, z′x + 2, . . . , j − 1 ∈ S.

Lemma 4.4. Let dx > cj > dx+1, and let j /∈ S. Then j + 1, . . . , z′x+1 /∈ S.

Denote by w′
x the number of ci’s such that i /∈ S and such that dx > ci > dx+1.

Then from the definition of z′x and w′
x, by Lemmas 4.3 and 4.4, we have

cz′

x
> dx > cz′x+1 ≥ cz′x+2 ≥ . . . ≥ cz′

x+1
−w′

x
︸ ︷︷ ︸

∈S

≥ cz′
x+1

−w′

x+1 ≥ . . . ≥ cz′
x+1

︸ ︷︷ ︸

/∈S

> dx+1.(4.3)

The proofs of the following two lemmas follow directly by the definitions of zi, z
′
i,

ti and t′i:

Lemma 4.5. Let j ∈ S. Let i ∈ {1, . . . , h} be such that cj = ci and let x ∈

{0, . . . , h′} be such that dx > cj > dx+1. Then

zi + ti = j + t′x.

Lemma 4.6. Let j ∈ ∆. Let i ∈ {1, . . . , h′} be such that dj = di and let

x ∈ {0, . . . , h} be such that cx > dj > cx+1. Then

z′i + t′i = j + tx.

Lemma 4.7. Let x ∈ {1, . . . , h}, and let mx ≥ tx. Let

zu+mu
∑

i=zu+tu

ei ≤
h
∑

i=u

ci −
∑

i > zu
i /∈ ∆

di −
s

∑

i=mu+1

ai,(4.4)

for all u ≥ x such that mu ≥ tu.

Here (ezu+tu , . . . , ezu+mu
) are defined as the smallest mu− tu+1 elements among

(a1, . . . , amu
, d1, . . . , dzu).

Let dj ∈ (ezx+tx , . . . , ezx+mx
). Then j /∈ ∆.
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Proof. The proof goes by induction on x. Let x = h. Then mh ≥ s(= th). Hence,

as > ch. By (4.4) for u = h, we have that

ch < min(dzh , as) = ezh+s ≤ ch,

which is a contradiction. Hence, the condition mx ≥ tx implies that x < h. Thus, let

x < h and suppose that our claim is valid for all i > x, for which mi ≥ ti.

If mx = tx, then ezx+tx = dj and j = zx. Thus s ≥ qj = mx ≥ 0. Moreover, by

(4.4), dj satisfies

dj = dzx ≤
h
∑

i=x

ci −
∑

i > j

i /∈ ∆

di −
s

∑

i=mx+1

ai,

i.e., by (3.2) j /∈ ∆, as wanted.

Now, consider the case mx > tx. First we shall prove that then mx+1 ≥ tx+1.

Suppose on the contrary that mx+1 < tx+1. Then tx < mx ≤ mx+1 < tx+1, i.e.,

tx + 2 ≤ tx+1.(4.5)

However, by the definition of tx, tx+1 and wx we have that tx = tx+1+wx−1 ≥ tx+1−1.

Thus, (4.5) is impossible.

Moreover, we shall prove that mx > tx implies zx = zx+1 − wx, i.e., that all di’s

such that cx > di > cx+1, satisfy i /∈ ∆.

In order to prove this, suppose on the contrary that zx < zx+1 − wx. Then,

zx+1 − wx ∈ ∆ and dzx+1−wx
< cx (see (4.2)). By the induction hypothesis, we

have that dzx+1−wx
is not among (ezx+1+tx+1

, . . . , ezx+1+mx+1
), i.e., all ei’s for i =

zx+1 + tx+1, . . . , zx+1 + mx+1 are less than or equal to dzx+1−wx
. This implies that

among (ezx+1+tx+1
, . . . , ezx+1+mx+1

), there are at most wx di’s, and at least mx+1 −

tx+1 + 1 − wx = mx+1 − tx ai’s. Thus atx+1 is among (ezx+1+tx+1
, . . . , ezx+1+mx+1

)

and so atx+1 ≤ dzx+1−wx
< cx. This means that mx ≤ tx, which contradicts mx > tx.

Hence, zx = zx+1 − wx, and so zx + tx + 1 = zx+1 + tx+1.

Now we have that dj is among (ezx+tx+1, . . . , ezx+mx
) or dj is ezx+tx .

If dj is among (ezx+tx+1, . . . , ezx+mx
), then since zx + tx + 1 = zx+1 + tx+1, dj is

among (ezx+1+tx+1
, . . . , ezx+1+mx+1

). Hence, by the induction hypothesis we have that

j /∈ ∆.
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If dj is ezx+tx , then (4.4) gives

dj +

zx+mx
∑

i=zx+tx+1

ei =

zx+mx
∑

i=zx+tx

ei ≤
h
∑

i=x

ci −
∑

i > zx
i /∈ ∆

di −
s

∑

i=mx+1

ai.(4.6)

The sequence (ezx+tx+1, . . . , ezx+mx
) consists of dj+1, . . . , dzx and aqj+1, . . . , amx

.

Hence,

qj ≤ mx ≤ s.(4.7)

By the induction hypothesis j + 1, . . . , zx /∈ ∆. Thus, (4.6) gives

dj ≤
h
∑

i=x

ci −
∑

i > j

i /∈ ∆

di −
s

∑

i=qj+1

ai.(4.8)

Last implies that qj ≥ 0, which together with (4.7), (4.8) and (3.2), gives that j /∈ ∆,

as wanted.

Completely analogously, we have the dual result:

Lemma 4.8. Let y ∈ {1, . . . , h′}, and let m′
y ≥ t′y. Let

z′

u+m′

u
∑

i=z′

u+t′u

e′i ≤
h′

∑

i=u

di −
∑

i > z′

u

i /∈ S

ci −
k
∑

i=m′

u+1

bi,(4.9)

for all u ≥ y such that m′
u ≥ t′u. Here, (e

′
z′

u+t′u
, . . . , e′z′

u+m′

u
) are defined as the smallest

m′
u − t′u + 1 elements among (b1, . . . , bm′

u
, c1, . . . , cz′

u
).

Let cj ∈ (e′z′

y+t′y
, . . . , e′z′

y+m′

y
). Then j /∈ S.

Lemma 4.9. For every x = 0, . . . , h− 1, we have zx+1 + tx+1 > zx + tx.

Proof. From the definition of wx we have wx ≤ zx+1 − zx, and so

zx+1 + tx+1 = zx+1 + tx + 1− wx ≥ zx + tx + 1 > zx + tx,

as wanted.

Analogously, we have:

Lemma 4.10. For every x = 0, . . . , h′ − 1, we have z′x+1 + t′x+1 > z′x + t′x.
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From (4.2) and the definitions of qj ’s and ti’s (see (3.1) and (3.5)), we have the

following result:

Lemma 4.11. Let x ∈ {0, . . . , h}. Then

qzx+1 = qzx+2 = · · · = qzx+1−wx
= tx + 1,

and

qzx+1−wx+j = tx − j + 1, j = 1, . . . , wx.

In particular, if wx > 0 (i.e., if tx+1 ≤ tx), then for every i such that tx+1 ≤ i ≤ tx
there exists j /∈ ∆ such that cx > dj > cx+1 and qj = i.

From (4.3) and the definitions of q′j ’s and t′i’s (see (3.3) and (3.6)), we have the

following result:

Lemma 4.12. Let x ∈ {0, . . . , h′}. Then,

q′z′

x+1 = q′z′

x+2 = · · · = q′z′

x+1
−w′

x
= t′x + 1,

and

q′z′

x+1
−w′

x+j = t′x − j + 1, j = 1, . . . , w′
x.

In particular, if w′
x > 0 (i.e., if t′x+1 ≤ t′x), then for every i such that t′x+1 ≤ i ≤ t′x

there exists j /∈ S such that dx > cj > dx+1 and q′j = i.

Lemma 4.13. Let x = 0, . . . , h. Suppose that the condition (4.4) is valid for all

u = x+ 1, . . . , h such that mu ≥ tu. Then

tx ≥ 0.

Proof. The proof goes by induction on x.

For x = h, we have th = s ≥ 0.

Now, let x < h. By the induction hypothesis we have that tx+1 ≥ 0.

By the definition of ti’s we have

tx = tx+1 − 1 + wx.

Hence, if tx+1 > 0 or wx > 0, we directly obtain tx ≥ 0, as wanted. So, the

only remaining case is if tx+1 = 0 and wx = 0 (and hence, tx = −1). The set
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{ezx+1
, . . . , ezx+1+mx+1

} has mx+1 + 1 elements, and since it consists of di’s and

ai’s strictly greater than cx+1, there must be at least one dj among them (since

amx+1
> cx+1 ≥ amx+1+1). Then dzx+1

∈ {ezx+1
, . . . , ezx+1+mx+1

}. So, by Lemma 4.7

we have that zx+1 /∈ ∆. By the definition of ∆ this gives that qzx+1
≥ 0. Let v ≥ 0 be

such that cx−v−1 > dzx+1
> cx−v. Then by the definition of qi’s and tj ’s we have that

qzx+1
= tx− v, and thus tx ≥ v ≥ 0. Last contradicts our assumption that tx = −1.

Analogously, we obtain the dual result:

Lemma 4.14. Let y = 0, . . . , h′. Suppose that the condition (4.9) is valid for all

u = y + 1, . . . , h′ such that m′
u ≥ t′u. Then

t′y ≥ 0.

Lemma 4.15. For every j such that t0 < j ≤ s, there exists i ∈ {1, . . . , h}, such

that ti = j.

Proof. Suppose that for some j with t0 < j ≤ s, there are no i ∈ {1, . . . , h}, such

that ti = j. Then from ti+1 ≤ ti + 1, for i = 0, . . . , h− 1, we have that ti < j implies

ti+1 < j, for every i = 0, . . . , h− 1. Since t0 < j, this would imply that th < j, which

is a contradiction since th = s.

Analogously, we have the dual result:

Lemma 4.16. For every j such that t′0 < j ≤ k, there exists i ∈ {1, . . . , h′}, such

that t′i = j.

Lemma 4.17. [8, Lemma 4.9] Let u1 ≥ · · · ≥ uk and v1 ≥ · · · ≥ vk be integers.

If

♯{i|ui > vj} ≥ j, for all j = 1, . . . , k,

then

k
∑

i=1

ui ≥
k

∑

i=1

vi + k.

Lemma 4.18. For every i = 0, . . . , h− 1, we have ti < s, while th = s.

Proof. By the definition of th we directly obtain that th = s. Now, suppose that

there exists i ∈ {0, . . . , h− 1} such that ti ≥ s. Let y := max{i|ti ≥ s}. Note that

th−1 = s− 1.(4.10)
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Indeed, by the definition th−1 = s−1+wh−1. However, if wh−1 > 0, then ch−1 > dzh ,

with zh /∈ ∆, and qzh = s. Hence, by (3.2) we would have ch ≥ dzh , which is

impossible. Thus (4.10) is satisfied.

So y < h − 1. Thus, ty ≥ s > ty+1 and so wy ≥ 2. By Lemma 4.11 there exists

f /∈ ∆ such that cy > df > cy+1 and qf = s. Hence, df does not satisfy (3.2), i.e.,

h
∑

i=y+1

ci ≥
∑

i ≥ f

i /∈ ∆

di.(4.11)

We note that the number of summands on both sides of (4.11) is equal.

For every j = y+1, . . . , h, we have tj ≤ s = qf . From the definitions of qi’s (3.1)

and ti’s (3.5), we obtain ♯{i /∈ ∆|i ≥ f, di > cj} = ♯{i /∈ ∆|f ≤ i ≤ zj} ≥ j − y,

j = y+ 1, . . . , h. This together with Lemma 4.17 contradicts (4.11). Thus, ti < s, for

all i = 0, . . . , h− 1, as wanted.

And analogously, we have the dual result:

Lemma 4.19. For every i = 0, . . . , h′ − 1, we have t′i < k, while t′h′ = k.

5. Main result. Consider partitions a, b, c and d as given in (2.29)–(2.32).

In this section, we give a complete and explicit solution to Problem 1.

As it was proven in Subsection 2.2, it is enough to resolve the Problem 1 in the

case when partitions c and d do not have same elements.

Thus we assume that c and d are such that there are no i ∈ {1, . . . , n} and no

j ∈ {1, . . . ,m} such that ci = dj . For such a, b, c and d we define the sets S and ∆,

together with labels tx, t
′
y, c

x and dy as in Section 3.

The solution of Problem 1 is given in the following theorem:

Theorem 5.1. Let m, n, k and s be nonnegative integers such that m+s = n+k.

Let a, b, c and d be partitions as given in (2.29)– (2.32).

Then there exists a partition g = (g1, . . . , gm+s), such that

g ≺′ (d, a)(5.1)

g ≺′ (c,b)(5.2)

if and only if the following conditions are valid:

(i)

n
∑

i=1

ci +

k
∑

i=1

bi =

m
∑

i=1

di +

s
∑

i=1

ai,
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(ii)

h
∑

i=x+1

ci ≥
∑

di < cx

i /∈ ∆

di +

s
∑

i=tx+1

ai, x = 0, . . . , h,

(iii)

h′

∑

i=y+1

di ≥
∑

ci < dy

i /∈ S

ci +

k
∑

i=t′y+1

bi, y = 0, . . . , h′.

5.1. Auxiliary results. In this section, we give four crucial lemmas for the

proof of the necessity part of Theorem 5.1.

Lemma 5.2. Let a, b, c and d be partitions as given in (2.29)–(2.32). Let g be

a partition such that

g ≺′ (d, a).(5.3)

Let dj, j ∈ {1, . . . ,m} be such that j ∈ ∆.

Let x ∈ {0, . . . , h} be such that

cx > dj > cx+1.

Suppose that

ci ≥ gzi+ti , i ≥ x+ 1,(5.4)

h
∑

i=y+1

ci ≥
∑

di < cy

i /∈ ∆

di +
s

∑

i=ty+1

ai, for y ≥ x,(5.5)

and that for all di < cx+1, i ∈ ∆, the following holds

di ≥ gi+tw , where w is such that cw > di > cw+1.(5.6)

Then

dj ≥ gj+tx .(5.7)

Proof. The proof is split into two parts depending on the value of x.
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Let x = h. By (3.5), we have that th = s, hence (5.7) follows from (5.3).

Let x < h. Since cx > dj > cx+1 and j ∈ ∆, we have that wx < zx+1 − zx.

Let hu := min{i|di−u+1 < gi}, u = 1, . . . , s (h0 := 0, hs+1 := m+ s+ 1).

If htx+1 ≥ zx+1+ tx+1, then for all i < zx+1+ tx+1− tx = zx+1−wx+1, we have

di ≥ gi+tx , as wanted. Thus it is sufficient to prove that htx+1 ≥ zx+1 + tx+1.

Suppose on the contrary that htx+1 ≤ zx+1 + tx+1 − 1, and let u be such that

hu ≤ zx+1 + tx+1 − 1 < hu+1. Then u ≥ tx + 1. From (5.3) by Lemma 2.2, we have

that the following is valid:

m+s
∑

i=zx+1+tx+1

gi ≥
m
∑

i=zx+1+tx+1−u

di +

s
∑

i=u+1

ai.(5.8)

Moreover, since qzx+1−wx
= tx + 1 and since (5.5) is valid, by Lemmas 4.13 and 4.18,

we have s ≥ qzx+1−wx
≥ 0. Hence zx+1 − wx ∈ ∆ implies that (3.2) is valid for

dzx+1−wx
, i.e.,

h
∑

i=x+1

ci <
∑

i > zx+1 − wx

i /∈ ∆

di + dzx+1−wx
+

s
∑

i=qzx+1−wx+1

ai.(5.9)

By (5.4) and (5.6), we have

m+s
∑

i=zx+1+tx+1

gi ≤
h
∑

i=x+1

ci +

m
∑

i=zx+1+1

di −
∑

i > zx+1

i /∈ ∆

di.(5.10)

Inequalities (5.9) and (5.10) together give

m+s
∑

i=zx+1+tx+1

gi <

m
∑

i=zx+1−wx

di +

s
∑

i=tx+2

ai.(5.11)

Since wx = tx − tx+1 + 1 and u ≥ tx + 1, (5.8) and (5.11) together give

zx+1−tx+tx+1−2
∑

i=zx+1+tx+1−u

di <

u
∑

i=tx+2

ai.(5.12)

Note that the number of the summands on both sides of (5.12) is equal. We shall

prove that the smallest summand on the left hand side, dzx+1−tx+tx+1−2, is larger

than or equal to the largest summand on the right hand side, atx+2, of (5.12), thus

obtaining the contradiction.
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Equation (5.9), together with (5.5) for y = x, gives dzx+1−wx
> atx+1, which

finishes our proof.

Now we can state the dual result:

Lemma 5.3. Let a, b, c and d be partitions as given in (2.29)–(2.32). Let g be

a partition such that

g ≺′ (c,b).

Let cj, j ∈ {1, . . . , n} be such that j ∈ S.

Let y ∈ {0, . . . , h′} be such that

dy > cj > dy+1.

Suppose that

di ≥ gz′

i
+t′

i
, i ≥ y + 1,

h′

∑

i=x+1

di ≥
∑

ci < dx

i /∈ S

ci +

k
∑

i=t′x+1

bi, for x ≥ y,

and that for all ci < dy+1, i ∈ S, the following holds

ci ≥ gi+t′w , where w is such that dw > ci > dw+1.

Then

cj ≥ gj+t′y .

Lemma 5.4. Let a, b, c and d be partitions as given in (2.29)–(2.32). Let g be

a partition such that

g ≺′ (d, a).(5.13)

Let x ∈ {0, . . . , h− 1}. Suppose that

ci ≥ gzi+ti , i ≥ x+ 1,(5.14)
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h
∑

i=y+1

ci ≥
∑

di < cy

i /∈ ∆

di +

s
∑

i=ty+1

ai, for y ≥ x+ 1,(5.15)

and that for all di < cx+1, i ∈ ∆, the following holds

di ≥ gi+tw , where w is such that cw > di > cw+1.(5.16)

Then

h
∑

i=x+1

ci ≥
∑

di < cx

i /∈ ∆

di +

s
∑

i=tx+1

ai.(5.17)

Proof. The proof is split into two parts. First let suppose that h = x + 1. Then

(5.17) becomes

ch ≥ as.(5.18)

Let hu := min{i|di−u+1 < gi}, u = 1, . . . , s (h0 := 0, hs+1 := m + s + 1). Let

j ∈ {0, . . . , s} be such that

hj < zh + th = zh + s ≤ hj+1.

Then (5.13) together with Lemma 2.2 gives

m+s
∑

i=zh+s

gi ≥
m
∑

i=zh+s−j

di +

s
∑

i=j+1

ai.(5.19)

Also, (5.14) and (5.16) give

ch +

m
∑

i=zh+1

di ≥
m+s
∑

i=zh+s

gi.(5.20)

Inequalities (5.19) and (5.20) give

ch +

m
∑

i=zh+1

di ≥
m
∑

i=zh+s−j

di +

s
∑

i=j+1

ai.(5.21)
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If j = s, equation (5.21) becomes ch ≥ dzh , which is impossible by the definition

of zh. Thus, we have j < s and then (5.21) becomes

ch +

zh+s−j−1
∑

i=zh+1

di ≥
s

∑

i=j+1

ai.

The last implies

(s− j)ch ≥ ch +

zh+s−j−1
∑

zh+1

di ≥
s

∑

i=j+1

ai ≥ (s− j)as,

i.e., we obtain (5.18), as wanted.

Now suppose that x+ 1 < h.

If wx > 0, then by the definition of zx+1, wx and by Lemmas 4.1 and 4.2, we have

that zx+1 − wx + 1 /∈ ∆. Hence, dzx+1−wx+1 does not satisfy (3.2), i.e., we have

h
∑

i=x+1

ci ≥ dzx+1−wx+1 +
∑

i > zx+1 − wx + 1

i /∈ ∆

di +

s
∑

i=qzx+1−wx+1+1

ai.(5.22)

Moreover, we have

dzx+1−wx+1 +
∑

i > zx+1 − wx + 1

i /∈ ∆

di =
∑

i > zx
i /∈ ∆

di,

and

qzx+1−wx+1 = tx.

Hence, (5.22) implies (5.17), as wanted.

Thus, we are left with the case wx = 0. Then

tx+1 = tx + 1
∑

i > zx+1

i /∈ ∆

di =
∑

i > zx
i /∈ ∆

di.

We shall consider two subcases. Let mx+1 < tx+1. Then

cx+1 ≥ amx+1+1 ≥ atx+1
= atx+1.
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Last, together with (5.15) for y = x+ 1, gives (5.17), as wanted.

Now, let mx+1 ≥ tx+1. Since (5.13) is valid, by Lemma 2.2, we have that for

u ∈ {0, . . . , s} such that hu < zx+1 + tx+1 ≤ hu+1, we have

m+s
∑

i=zx+1+tx+1

gi ≥
m
∑

i=zx+1+tx+1−u

di +

s
∑

i=u+1

ai.(5.23)

Now, by (5.14), (5.16) and (5.23), follow

h
∑

i=x+1

ci +
∑

i > zx+1

i ∈ ∆

di ≥
m+s
∑

i=zx+1+tx+1

gi ≥
m
∑

i=zx+1+tx+1−u

di +

s
∑

i=u+1

ai.(5.24)

Let (ezx+1+tx+1
, . . . , ezx+1+mx+1

) be the smallest mx+1− tx+1+1 elements among

(a1, . . . , amx+1
, d1, . . . , dzx+1

).

Now we shall consider the possible values of u. We have three cases:

If u < tx+1 ≤ mx+1, then (5.24) gives

h
∑

i=x+1

ci −
∑

i > zx+1

i /∈ ∆

di −
s

∑

i=mx+1+1

ai ≥ −

zx+1+tx+1−u−1
∑

i=zx+1+1

di +

mx+1
∑

i=u+1

ai.(5.25)

In this case, we have that

au+1 ≥ · · · ≥ amx+1−tx+1+u+1 ≥ · · · ≥ amx+1
≥ cx+1

> dzx+1+1 ≥ · · · ≥ dzx+1+tx+1−u−1.

Hence, (5.25) implies

h
∑

i=x+1

ci −
∑

i > zx+1

i /∈ ∆

di −
s

∑

i=mx+1+1

ai ≥

zx+1+mx+1
∑

i=zx+1+tx+1

ei.(5.26)

If u ≥ mx+1 ≥ tx+1, then (5.24) gives

h
∑

i=x+1

ci −
∑

i > zx+1

i /∈ ∆

di −
s

∑

i=mx+1+1

ai ≥

zx+1
∑

i=zx+1+tx+1−u

di −
u
∑

i=mx+1+1

ai.(5.27)
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In this case, we have that

dzx+1+tx+1−u ≥ · · · ≥ dzx+1
> cx+1 ≥ amx+1+1 ≥ · · · ≥ au.

Hence, (5.27) implies (5.26).

Finally, if mx+1 > u ≥ tx+1, then (5.24) becomes

h
∑

i=x+1

ci −
∑

i > zx+1

i /∈ ∆

di −
s

∑

i=mx+1+1

ai ≥

zx+1
∑

i=zx+1+tx+1−u

di +

mx+1
∑

i=u+1

ai.

Last, by the definition of ezx+1+tx+1
, . . . , ezx+1+mx+1

also implies (5.26).

Thus, we have proved that in all the cases (5.26) is valid.

From (5.26) and (5.15), by Lemma 4.7, we have that for all i such that di ∈

(ezx+1+tx+1
, . . . , . . . , ezx+1+mx+1

), we have that i /∈ ∆.

Denote by E = (ezx+1+tx+1
, . . . , ezx+1+mx+1

). The rest of the proof is split into

two cases.

Case 1. There are no di’s in E. Then

E = (atx+1
, . . . , amx+1

) = (atx+1, . . . , amx+1
).

Then (5.26) gives

h
∑

i=x+1

ci −
∑

i > zx+1

i /∈ ∆

di −
s

∑

i=mx+1+1

ai ≥

mx+1
∑

i=tx+1

ai,

i.e., we have that (5.17) is valid, as wanted.

Case 2. There is i ∈ {1, . . . , zx+1} such that di ∈ E. By the definition of zx+1 and

by the definition of E, this implies that dzx+1
∈ E. Thus, by Lemma 4.7, zx+1 /∈ ∆.

Since wx = 0, we have dzx+1
> cx. Let v ≥ 0 be such that cx−v−1 > dzx+1

> cx−v.

Then

cx−v−1 > dzx+1
> cx−v ≥ · · · ≥ cx ≥ cx+1.

Last, together with the fact that zx+1 /∈ ∆, by (3.2), gives

cx−v + · · ·+ cx +

h
∑

i=x+1

ci ≥ dzx+1
+

∑

i > zx+1

i /∈ ∆

di +

s
∑

i=tx−v+1

ai.(5.28)
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Moreover, since

∑

i > zx+1

i /∈ ∆

di =
∑

i > zx
i /∈ ∆

di,

and since dzx+1
> cx−v, equation (5.28) implies

h
∑

i=x+1

ci −
∑

i > zx
i /∈ ∆

di −
s

∑

i=tx+1

ai ≥
tx
∑

i=tx−v+1

ai − cx−v+1 − · · · − cx.(5.29)

However, since dzx+1
∈ E, the number of ai’s in E is at most mx+1 − tx+1, and so

atx+1
/∈ E. Hence, atx+1

is bigger than or equal to all the elements from E, i.e.,

atx+1 = atx+1
≥ dzx+1

> cx−v. Hence, (5.29) implies (5.17), as wanted.

Analogously, we obtain the dual result:

Lemma 5.5. Let a, b, c and d be partitions as given in (2.29)–(2.32). Let g be

a partition such that

g ≺′ (c,b).

Let x ∈ {0, . . . , h′ − 1}.

Suppose that

di ≥ gz′

i
+t′

i
, i ≥ x+ 1,

h′

∑

i=y+1

di ≥
∑

ci < dy

i /∈ S

ci +
k
∑

i=t′y+1

bi, for y ≥ x+ 1,

and that for all ci < dx+1, i ∈ S, the following holds

ci ≥ gi+t′w , where w is such that dw > ci > dw+1.

Then

h′

∑

i=x+1

di ≥
∑

ci < dx

i /∈ S

ci +
k

∑

i=t′x+1

bi.
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6. Proof of the main result. In this section, we give a proof of Theorem 5.1.

6.1. Necessity. Suppose that there exists a partition g such that (5.1) and (5.2)

are valid. Then, by the definition of the generalized majorization, we have that (i) is

valid. So we are left with proving the necessity of the conditions (ii) and (iii).

In fact, we shall prove even more, that apart from (ii) and (iii), the following

also hold

cx ≥ gzx+tx , x = 1, . . . , h,(6.1)

dy ≥ gz′

y+t′y , y = 1, . . . , h′.(6.2)

The proof goes by induction on x = 0, . . . , h and y = 0, . . . , h′. We prove that

the conditions (ii), (iii), (6.1) and (6.2) are satisfied for all the elements from the set

X = {ci|i ∈ S} ∪ {dj|j ∈ ∆}.

More precisely, denote and order the elements from the set X in the following

way: f1 ≥ · · · ≥ fh+h′ . Then we shall prove that for every α ∈ {1, . . . , h + h′} the

following is valid: if fα = ci for some i = 1, . . . , h, then (ii) and (6.1) are satisfied

for x = i, and if fα = dj for some j = 1, . . . , h′, then (iii) and (6.2) are satisfied for

y = j.

Before proceeding we note that by Lemma 4.5, the condition (6.1) is equivalent

to the following:

For all y = 1, . . . , h′ and for all ci < dy, i ∈ S the following is valid

ci ≥ gi+t′w , where dw > ci > dw+1.

Also, by Lemma 4.6, the condition (6.2) is equivalent to the following:

For all x = 1, . . . , h and for all di < cx, i ∈ ∆ the following is valid

di ≥ gi+tw , where cw > di > cw+1.

The proof goes by the induction on w ∈ {1, . . . , h+ h′}, starting from h+ h′.

As the base of induction, consider fh+h′ . Suppose that fh+h′ = ch. Then we need

to prove the necessity of (ii) and (6.1) for x = h. However, by the definition of th and

by Lemma 4.1, condition (ii) is trivially satisfied. Moreover, (6.1) for x = h becomes

ch ≥ gzh+s.(6.3)

Let j ∈ {0, . . . , n} be such that ch = cj . Hence, by Lemma 4.5 (since th = s and

dh
′

> cj), (6.3) is equal to ch ≥ gj+t′
h′
, which follows by Lemma 5.3, as wanted.
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If fh+h′ = dh
′

, then we are left with proving the necessity of (iii) and (6.2) for

y = h′. By the definition of t′h′ and by Lemma 4.3, condition (iii) is trivially satisfied.

Also, completely analogously as in the proof of (6.1) for x = h, by Lemma 4.6, we have

that (6.2) for y = h′ becomes dh
′

≥ gj+th . Last follows by Lemma 5.2, as wanted.

Now, we pass to the induction step. Let w ∈ {1, . . . , h+h′ − 1}. We are left with

proving that if the conditions are satisfied for all fj with j ∈ {w+1, . . . , h+h′}, then

they will be satisfied for fw, as well. This is equivalent to the following:

If fw = ci, for some i = 1, . . . , h, and if the conditions (ii) and (6.1) are valid for

all x = i + 1, . . . , h, and the conditions (iii) and (6.2) are valid for all y such that

dy < ci, then we are left with proving that the conditions (ii) and (6.1) are also valid

for x = i.

In order to prove (ii), it is enough to apply the result of Lemma 5.4. As for (6.1),

let u ∈ {0, . . . , h′} be such that

du > ci > du+1.

Then by the induction hypothesis, we have that (6.2) and (iii) are satisfied for all

y = u+ 1, . . . , h′, and that (6.1) is satisfied for all j ∈ S such that cj < du+1. So, by

applying Lemma 5.5, we have that the condition (iii) is satisfied for y = u as well.

Hence, we can now apply Lemma 5.3, and obtain (6.1) for x = i, as wanted.

Analogously as above, by the symmetry of the sets S and ∆ and by applying

Lemmas 5.2, 5.4 and 5.5, we obtain that if fw = di, for some i = 1, . . . , h′, and if the

conditions (iii) and (6.2) are valid for all y = i+1, . . . , h, and the conditions (ii) and

(6.1) are valid for all x such that cx < di, then the conditions (iii) and (6.2) are valid

for y = i, as wanted.

Finally we are left with proving that the condition (ii) is satisfied for x = 0, and

that (iii) is satisfied for y = 0. The first follows by Lemma 5.4 for x = 0, while the

second follows by Lemma 5.5 for x = 0.

This ends the proof of the necessity of the conditions (i), (ii) and (iii).

6.2. Sufficiency. Let us suppose that the conditions (i), (ii) and (iii) are sat-

isfied.

We need to define a certain partition g such that (5.1) and (5.2) are valid.

We shall do this in two steps. First we are going to define a partition ḡ =

(ḡ1, . . . , ḡm+s) that satisfies

di ≥ ḡi+s, i = 1, . . . ,m,(6.4)
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ci ≥ ḡi+k, i = 1, . . . , n,(6.5)

m+s
∑

i=h̄j+1

ḡi ≥
m
∑

i=h̄j−j+1

di +
s

∑

i=j+1

ai, j = 1, . . . , s,(6.6)

where h̄j = min{i|di−j+1 < ḡi},

n+k
∑

i=h̄′

j
+1

ḡi ≥
n
∑

i=h̄′

j
−j+1

ci +

k
∑

i=j+1

bi, j = 1, . . . , k,(6.7)

where h̄′
j = min{i|ci−j+1 < ḡi}, and

m+s
∑

i=1

ḡi ≥
m
∑

i=1

di +

s
∑

i=1

ai.(6.8)

Then we shall define the wanted partition g, by decreasing the elements of ḡ

so that we obtain the correct sum, while preserving the remaining properties of the

generalized majorization.

From the definition of t0 and t′0, we have t0 = t′0 = m + s − h− h′. By Lemma

4.13, t0 ≥ 0, and we define

ḡj := max(d1, a1, c1) + 1, j = 1, . . . , t0.

The remaining h+h′ of ḡi’s, i.e., ḡt0+1, . . . , ḡm+s, we define as a nonincreasing ordering

of all ci’s with i ∈ S and of all dj ’s with j ∈ ∆.

We can write this explicitly in the following way, by using the definitions of zi, ti
and the property (4.2) on the placement of dj ’s with j ∈ ∆:

ḡj := max(d1, a1, c1) + 1, j = 1, . . . , t0,(6.9)

ḡj := dj−ti , zi + ti < j < zi+1 + ti+1, for some i = 0, . . . , h,(6.10)

ḡzi+ti := ci, i = 1, . . . , h.(6.11)

Recall that by Lemma 4.9 the sequence zi+ ti, i = 0, . . . , h, is strictly increasing, and

thus (6.10) and (6.11) are well-defined.

Dually, we can also write the explicit formula for ḡi’s by exchanging the roles of

ci’s and dj ’s:

ḡj := max(d1, a1, c1) + 1, j = 1, . . . , t′0,

ḡj := cj−t′
i
, z′i + t′i < j < z′i+1 + t′i+1, for some i = 0, . . . , h′,(6.12)

ḡz′

i
+t′

i
:= di, i = 1, . . . , h′.(6.13)

Recall that by Lemma 4.10 the sequence z′i + t′i, i = 0, . . . , h′, is strictly increasing,

and thus (6.12) and (6.13) are well-defined.
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Proof of (6.4). By Lemma 4.18, we have that t0 ≤ s, and so ḡj ’s involved in (6.4)

are the ones defined by (6.10) and (6.11). From the definition, all such ḡj ’s satisfy

ḡj ≤ dj−ti , where i is such that zi + ti ≤ j < zi+1 + ti+1.(6.14)

Finally, since ti ≤ s (Lemma 4.18), for all i = 0, . . . , h, (6.14) implies (6.4), as wanted.

Proof of (6.5). Equation (6.5) follows analogously as (6.4), by duality and by

Lemma 4.19.

Proof of (6.6). From the definitions of ḡ1 ≥ · · · ≥ ḡm+k, we have that

h̄j = j, j = 1, . . . , t0,(6.15)

h̄j = zu + tu, j = t0 + 1, . . . , s,(6.16)

where u := min{i ∈ {1, . . . , h}|ti = j} (note that u is well-defined by Lemma 4.15).

Indeed, (6.15) follows from the definition (6.9). As for (6.16), first note that h̄j , for

some j ∈ {t0 +1, . . . , s} is always equal to zi + ti, for some i ∈ {1, . . . , h}. Otherwise,

let i ∈ {0, . . . , h} be such that zi + ti < h̄j < zi+1 + ti+1. Then by (6.10), we have

ḡh̄j
= dh̄j−ti , and from the definition of h̄j , we have dh̄j−j+1 < ḡh̄j

= dh̄j−ti , which

implies j ≤ ti, and so i ≥ 1. But then, from (6.11), ḡzi+ti = ci > dzi+1 ≥ dzi+ti−j+1,

and so h̄j ≤ zi + ti.

Thus, for every j ∈ {t0+1, . . . , s}, h̄j is of the form zi+ti, for some i ∈ {1, . . . , h}.

Finally, we claim that h̄j = zu + tu, where u is the minimal index i ∈ {1, . . . , h} such

that ti = j. First of all, we have ḡzu+tu = cu > dzu+1 = dzu+tu−j+1. Moreover, for all

α < zu + tu, we have that ḡα ≤ dα−j+1. Indeed, as shown in the previous paragraph

it is enough to prove this fact for α of the form zi + ti, and since α < zu + tu, we are

left with proving ḡzβ+tβ ≤ dzβ+tβ−j+1, for β < u. From the definition of u and since

ti+1 ≤ ti + 1, for all i ∈ {0, . . . , h− 1}, we have that tβ < j, for all β < u. Therefore

ḡzβ+tβ = cβ ≤ dzβ ≤ dzβ+tβ−j+1, for all β < u, as wanted.

Hence, we have h̄j = zu + tu, where u = min{i ∈ {1, . . . , h}|ti = j}, as wanted.

Now, the proof of (6.6) is split into two cases, depending on the value of h̄j ,

j = 1, . . . , s.

Case j = 1, . . . , t0: Then h̄j = j, and the condition (6.6) becomes

m+s
∑

i=j+1

ḡi ≥
m
∑

i=1

di +

s
∑

i=j+1

ai, j = 1, . . . , t0.(6.17)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 26, pp. 471-509, July 2013



ELA

504 M. Dodig and M. Stošić

The condition (ii) for x = 0 gives

h
∑

i=1

ci ≥
∑

i/∈∆

di +

s
∑

i=t0+1

ai,

i.e.,

h
∑

i=1

ci +

h′

∑

j=1

dj ≥
m
∑

i=1

di +

s
∑

i=t0+1

ai.

Hence, we obtain

m+s
∑

i=t0+1

ḡi ≥
m
∑

i=1

di +

s
∑

i=t0+1

ai.

Since ḡt0 ≥ a1, last gives (6.17), as wanted.

Case j = t0 + 1, . . . , s: Then h̄j = zu + tu = zu + j, where u ∈ {1, . . . , h} is the

minimal index such that tu = j. To prove (6.6), we are going to prove

m+s
∑

i=zx+tx+1

ḡi ≥
m
∑

i=zx+1

di +

s
∑

i=tx+1

ai, for all x = 1, . . . , h.

By the definition of ḡi’s, we have that

m+s
∑

i=zx+tx+1

ḡi =

m
∑

i=zx+1

di −
∑

i > zx
i /∈ ∆

di +

h
∑

i=x+1

ci.

Thus, we are left with proving

h
∑

i=x+1

ci ≥
∑

di < cx

i /∈ ∆

di +

s
∑

i=tx+1

ai, x = 1, . . . , h.

Last is exactly the condition (ii), which finishes the proof.

Proof of (6.7). Equation (6.7) follows analogously as (6.6) by the symmetry of

the sets S and ∆, i.e., by duality between ci’s and di’s, and by the condition (iii).

Proof of (6.8). Again, from the condition (ii) for x = 0 and the definition of ḡi’s,

we have:

m+s
∑

i=t0+1

ḡi ≥
m
∑

i=1

di +

s
∑

i=t0+1

ai.(6.18)
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Equation (6.18), together with ḡt0 ≥ a1, gives

m+s
∑

i=1

ḡi ≥
m
∑

i=1

di +

s
∑

i=1

ai,

as wanted.

Now, our aim is to decrease some of the ḡi’s in order to define gi’s which will

satisfy

di ≥ gi+s, i = 1, . . . ,m,(6.19)

ci ≥ gi+k, i = 1, . . . , n,(6.20)

m+s
∑

i=hj+1

gi ≥
m
∑

i=hj−j+1

di +

s
∑

i=j+1

ai, j = 1, . . . , s,(6.21)

where hj = min{i|di−j+1 < gi},

n+k
∑

i=h′

j+1

gi ≥
n
∑

i=h′

j−j+1

ci +

k
∑

i=j+1

bi, j = 1, . . . , k,(6.22)

where h′
j = min{i|ci−j+1 < gi}, and

m+s
∑

i=1

gi =
m
∑

i=1

di +
s

∑

i=1

ai.(6.23)

We shall do this in the following way: start from ḡ1 and decrease it till ḡ2. If the

sum is OK, stop. If not proceed by decreasing ḡ1 and ḡ2 till ḡ3. And so on until we

have decreased ḡi’s such that (6.23) is valid.

More precisely, let Ω :=
∑m+s

i=1 ḡi − (
∑s

i=1 ai +
∑m

i=1 di) ≥ 0 and let f :=

min{i|
∑i

j=1
ḡj− iḡi ≥ Ω}. Then we are going to define gi, i = 1, . . . ,m+s, such that

m+s
∑

i=1

gi =

m
∑

i=1

di +

s
∑

i=1

ai,

gi = ḡi, for all i ≥ f,

ḡf−1 ≥ gi ≥ ḡf for all i = 1, . . . , f − 1,

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 26, pp. 471-509, July 2013



ELA

506 M. Dodig and M. Stošić

and

g1 ≥ gf−1 ≥ g1 − 1.

In other words, we decrease the smallest possible number of ḡi’s, such that the

sum is correct, and such that g1 ≥ g2 ≥ . . . ≥ gf−1 becomes the most homogeneous

partition of ḡ1 + ḡ2 + · · ·+ ḡf−1 − Ω. Such defined g1 ≥ · · · ≥ gm+s satisfy (6.23).

Since ḡi ≥ gi, i = 1, . . . ,m + s, from (6.4) and (6.5), we have that (6.19) and

(6.20) are valid. So we are left with proving (6.21) and (6.22).

Proof of (6.21). Follows directly by applying Lemma 2.4 for ḡ, d, a, f and g.

Proof of (6.22). Follows by Lemma 2.4 for ḡ, c, b, f and g.

Now, conditions (6.19), (6.21) and (6.23) give (5.1), while conditions (6.20), (6.22)

and (6.23) give (5.2). This finishes our proof.

7. Some corollaries. In course of the proof of Theorem 5.1, we have in fact

obtained a solution for the analogous slightly relaxed problem. Namely, we can define

a weak generalized majorization:

Definition 7.1. Let a = (a1, . . . , as), d = (d1, . . . , dm) and g = (g1, . . . , gm+s)

be nonincreasing partitions. We write

g ≺′′ (d, a)

if the following three conditions are satisfied:

di ≥ gi+s, i = 1, . . . ,m,
m+s
∑

i=hj+1

gi −
m
∑

i=hj−j+1

di ≥
s

∑

i=j+1

ai, j = 1, . . . , s

m+s
∑

i=1

gi ≥
m
∑

i=1

di +

s
∑

i=1

ai,

where hj := min{i|di−j+1 < gi}, j = 1, . . . , s.

Then by repeating the same proof as for Theorem 5.1, we have:

Theorem 7.2. Let a, b, c and d be partitions as given in (2.29)–(2.32).

There exists a partition g = (g1, . . . , gm+s), such that

g ≺′′ (d, a)

g ≺′′ (c,b)
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if and only if the following conditions are valid:

(i)

h
∑

i=x+1

ci ≥
∑

di < cx

i /∈ ∆

di +

s
∑

i=tx+1

ai, x = 0, . . . , h,

(ii)

h′

∑

i=y+1

di ≥
∑

ci < dy

i /∈ S

ci +

k
∑

i=t′y+1

bi, y = 0, . . . , h′.

Recall that by the result obtained in Subsection 2.2, in Theorem 7.2 we are only

considering partitions c and d such that for all i = 1, . . . , n, and for all j = 1, . . . ,m,

we have ci 6= dj .

7.1. Nonnegative partitions. In this subsection, we are considering Problem

1, in a case when the involved partitions consist only of nonnegative integers. In

this case, some improvements can be made in Theorem 5.1. Also, this restriction is

particularly important in the applications in the matrix and matrix pencils completion

problems.

Let c = (c1, . . . , cn) and d = (d1, . . . , dm) be partitions such that c1 ≥ · · · ≥ cc >

cc+1 = · · · = cn = 0 and d1 ≥ · · · ≥ dd > dd+1 = · · · = dm = 0. Then we can

determine the number of nonzero elements of partitions ḡ and g obtained as in the

sufficiency part of the proof of Theorem 5.1 (Section 6.2).

Namely, let ḡ = (ḡ1, . . . , ḡm+s), where ḡ1 ≥ · · · ≥ ḡḡ > ḡḡ+1 = · · · = ḡm+s = 0 be

defined as in (6.9)–(6.11). Then,

m+ s− ḡ = max(n− c,m− d).(7.1)

Indeed, if both ci’s and dj ’s contain zeros (i.e., if c < n and d < m), then

by Proposition 2.6 we can “erase” the same number of zeros from both of them. So,

without loss of generality, we can assume that only one of the partitions c or d contains

zeros, say d. Then from the definition of the set ∆, all j = d+1, . . . ,m satisfy j ∈ ∆

(since for all of them qj = s+1). Since {ḡi}
m+s
i=t0+1 = {ci|i ∈ S}∪{dj|j ∈ ∆}, we have

that m + s − ḡ = m − d, as wanted. We get the analogous result in the case when

only partition c contains zeros. Altogether, we have proved (7.1), as wanted.

Equation (7.1) gives

ḡ = min(c+ k, d+ s).

Now, from the definition of g = (g1, . . . , gm+s) with g1 ≥ · · · ≥ gg > gg+1 =

· · · = gm+s = 0, we have that either g = ḡ, or we have that g1 = · · · = gg = 1,
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in which case g ≤ ḡ. In the latter case we have g =
∑m+s

i=1
gi =

∑m
i=1

di +
∑s

i=1
ai

=
∑n

i=1
ci +

∑k
i=1

bi, and thus we obtain:

Proposition 7.3. Let c = (c1, . . . , cn) and d = (d1, . . . , dm) be nonnegative

partitions with c1 ≥ · · · ≥ cc > cc+1 = · · · = cn = 0 and d1 ≥ · · · ≥ dd > dd+1 =

· · · = dm = 0. Let g = (g1, . . . , gm+s) be partition defined in the sufficiency part of

Theorem 5.1 in Section 6.2. Then g1 ≥ · · · ≥ gg > gg+1 = · · · = gm+s = 0 with

g = min(c+ k, d+ s,

m
∑

i=1

di +

s
∑

i=1

ai).
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[15] S. Mondié. Contribution à l’Étude des Modifications Structurelles des Systèmes Linéares. PhD.
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