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Abstract. The paper provides extensive and systematic investigations of k-potent complex

matrices, with a particular attention paid to tripotent matrices. Several new properties of k-potent

matrices are identified. Furthermore, some results known in the literature are reestablished with

simpler proofs than in the original sources and often in a generalized form.
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1. Introduction. Let Cm,n denote the set of m × n complex matrices. The

symbols A∗, R(A), N (A), and rk(A) will stand for the conjugate transpose, column

space (range), null space, and rank of A ∈ Cm,n, respectively. Moreover, In will be

the identity matrix of order n, and for given A ∈ Cn,n we define A = In − A and

Â = In +A. It will be also assumed that A0 = In.

Customarily, with A† we will denote the Moore–Penrose inverse of A ∈ Cm,n,

i.e., the unique matrix satisfying the following four Penrose conditions:

(1.1) AA†A = A, A†AA† = A†, AA† = (AA†)∗, A†A = (A†A)∗.

Recall that AA† and In −A†A are the orthogonal projectors onto R(A) and N (A),

respectively. Correspondingly, A†A and In−AA† are the orthogonal projectors onto

R(A∗) and N (A∗).

Another generalized inverse exploited in the present paper is the group inverse of

A ∈ Cn,n, which is understood as the unique matrix A# satisfying the equations:

AA#A = A, A#AA# = A#, AA# = A#A.

It is known that not every square matrix has a group inverse, and that its existence

is restricted to so called group matrices, shortly called GP matrices.
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Several subsequent derivations will be based on the following result established

in [22, Corollary 6] as a particular version of the singular value decomposition.

Lemma 1.1. Let A ∈ Cn,n be of rank r. Then there exists unitary U ∈ Cn,n

such that

(1.2) A = U

[
ΣK ΣL

0 0

]
U∗,

where Σ = diag(σ1Ir1 , . . . , σtIrt) is the diagonal matrix of singular values of A, σ1 >

σ2 > · · · > σt > 0, r1 + r2 + · · ·+ rt = r, and K ∈ Cr,r, L ∈ Cr,n−r satisfy

(1.3) KK∗ + LL∗ = Ir.

From Lemma 1.1 it follows that

(1.4) A∗ = U

[
K∗Σ 0

L∗Σ 0

]
U∗ and A† = U

[
K∗Σ−1 0

L∗Σ−1 0

]
U∗.

Another essential fact is that matricesK and L involved in representation (1.2) satisfy

(1.5) L = 0 ⇔ K∗ = K−1.

Formulae (1.2)–(1.4) as well as equivalence (1.5) can be exploited to confirm the

following characterizations of known classes of matrices; see e.g., [8, pp. 2799, 2800]

or [10, p. 1224 and Corollary 1].

Lemma 1.2. Let A ∈ Cn,n be of the form (1.2). Then:

(i) A Hermitian (i.e., A∗ = A) if and only if L = 0 and ΣK = K∗Σ,

(ii) A is normal (i.e., AA∗ = A∗A) if and only if L = 0 and ΣK = KΣ,

(iii) A is EP (i.e., AA† = A†A) if and only if L = 0,

(iv) A is GP (i.e., rk(A2) = rk(A)) if and only if rk(K) = r,

(v) A is a partial isometry (i.e., A = AA∗A) if and only if Σ = Ir,

(vi) A is an orthogonal projector (i.e., A2 = A = A∗) if and only if Σ = Ir,

K = Ir,

(vii) A is k-potent, k ∈ N, (i.e., Ak = A) if and only if (ΣK)k−1 = Ir,

(viii) A is nilpotent of index 2 (i.e., A2 = 0) if and only if K = 0,

(ix) A is SR (i.e., R(A) +R(A∗) = Cn,1) if and only if rk(L) = n− r,
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(x) A is DR (i.e., R(A) ∩R(A∗) = {0}) if and only if rk(L) = r,

(xi) A is a generalized projector (i.e., A2 = A∗) if and only if L = 0, Σ = Ir,

K3 = Ir,

(xii) A is a hypergeneralized projector (i.e., A2 = A†) if and only if L = 0,

(ΣK)3 = Ir,

(xiii) A is a contraction (i.e., the length of Ax does not exceed the length of x

for all x ∈ Cn,1) if and only if Ir −Σ2 = BB∗ for some B ∈ Cr,r.

The literature devoted to k-potent matrices, in particular to idempotents and

tripotents, is quite extensive. The fact that such matrices attract lots of attention

results mostly from their possible applications. Collections of results dealing with

idempotent and tripotent matrices are available in several monographs emphasizing

their usefulness in statistics, for instance [18, Section 12.4], [34, Chapter 5], [35, Chap-

ter 7], and [36, Sections 8.6, 8.7, and 20.5.3]. Furthermore, a number of papers shed

light on the role which those matrices play in the problems occurring in the distribu-

tion of quadratic forms, e.g., [1], [2], [4], [6], [11], [12], [29], [37], and [38] to mention

just a few. Quadripotent matrices recently focused also some special interest, which

originates mostly from the fact that they occur naturally in considerations dealing

with generalized and hypergeneralized projectors introduced in [20]. In addition to

the papers [25], [27], [30], [31], and [43], each of which contains a systematical study

over a selected topic concerning k-potent matrices, a collection of related isolated

results was published in recent years in a number of independent articles. Many of

these results are recalled in the present paper, in which k-potent matrices are revisited

and extensively investigated. Besides several original characteristics of such matrices,

the paper reestablishes also selected results scattered in the literature, often in a gen-

eralized form and by means of new proofs. Apart from the Introduction, the paper

consists of 3 sections, of which the next one is concerned with rank formulae, Section

3 is devoted to tripotent matrices, and the last one provides some results referring to

known classes of matrices.

2. Rank formulae. An important role in the considerations of the present sec-

tion is played by the well-known Frobenius inequality, which for A ∈ Cm,n, B ∈ Cn,p,

and C ∈ Cp,q has the form

(2.1) rk(ABC) > rk(AB) + rk(BC)− rk(B).

As was shown in [39, Theorem 1], equality in (2.1) holds if and only if there exist

matrices X ∈ Cq,p and Y ∈ Cn,m such that BCX + YAB = B. From (2.1) it

straightforwardly follows that A ∈ Cn,n satisfies

(2.2) rk(A3) > 2rk(A2)− rk(A),
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with equality holding if and only if there exist matrices X,Y ∈ Cn,n such that A2X+

YA2 = A. It is seen that equality in (2.2) is satisfied whenever Ak = A for some

k ∈ N, k > 1.

Replacing B in (2.1) with In leads to the so called Sylvester’s inequality, which

for A ∈ Cm,n and C ∈ Cn,q reads

(2.3) rk(AC) > rk(A) + rk(C)− n.

It is known that equality in (2.3) holds if and only if N (A) ⊆ R(C); see [33, Theorem

3.4.14]. If A ∈ Cn,n, then an easy consequence of (2.3) is rk(A2) > 2rk(A)− n, with

equality holding if and only if N (A) ⊆ R(A). Actually, a lower bound for the rank

of any power k ∈ N of A reads rk(Ak) > krk(A) − (k − 1)n.

The first theorem provides an expression for the rank of the difference A−ABA,

which was mentioned in [26, p. 269].

Theorem 2.1. Let A ∈ Cm,n and B ∈ Cn,m. Then rk(A −ABA) = rk(A) +

rk(In −BA)− n.

Proof. Clearly, A−ABA = A(In −BA). By (2.3), we have rk[A(In −BA)] >

rk(A) + rk(In −BA)− n, with equality holding if and only if N (A) ⊆ R(In −BA).

To show that this inclusion is always satisfied, let a vector x ∈ Cn,1 be such that

x ∈ N (A). Then Ax = 0, from where (In −BA)x = x, whence x ∈ R(In −BA).

Alternatively, the identity given in Theorem 2.1 could read rk(A − ABA) =

rk(A)+ rk(Im−AB)−m. Moreover, by exploiting the corresponding expressions for

the rank of B−BAB, we arrive at

(2.4) rk(A−ABA)− rk(B−BAB) = rk(A)− rk(B).

An obvious consequence of (2.4) is that when B is a reflexive inverse of A (satisfying

the first two of the four Penrose conditions given in (1.1)), then rk(A) = rk(B).

Moreover, if B is an inner (outer) inverse of A (satisfying the first (second) condition

in (1.1)) such that rk(A) = rk(B), then it is also an outer (inner) inverse. Another

observation is that by replacing B with A2, from (2.4) we obtain rk(A−A4)−rk(A2−

A5) = rk(A) − rk(A2), whence it follows that A is GP if and only if rk(A −A4) =

rk(A2 −A5). Further consequences of Theorem 2.1 are given in what follows.

Corollary 2.2. Let A ∈ Cn,n. Then:

(i) rk(AA) = rk(A) + rk(A)− n,

(ii) rk(A−A3) = rk(A) + rk(In −A2)− n.

Proof. The identities in points (i) and (ii) of the corollary are obtained from

Theorem 2.1 by taking B = In and B = A, respectively.
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From Corollary 2.2 it follows that A is idempotent if and only if rk(A)+rk(A) =

n, whereas A is tripotent if and only if rk(A)+ rk(In−A2) = n. The former of these

facts is well known in the literature (see e.g., [33, Theorem 3.6.3]), but according to

our knowledge the latter one was so far never mentioned. Combining the two points

of Corollary 2.2 leads to

(2.5) rk(A−A3) + rk(A) = rk(AA) + rk(In −A2).

Another identity of interest is obtained by combining Theorem 2.1 and Corollary 2.2.

Namely, by taking B = −In in Theorem 2.1 we get

rk(AÂ) = rk(A) + rk(Â)− n,

from where, by Corollary 2.2(ii),

(2.6) rk(A−A3) + rk(Â) = rk(AÂ) + rk(In −A2).

From identities (2.5) and (2.6) we directly obtain original characteristics of idempo-

tents, tripotents, involutions, and skew-idempotent matrices. Recall that involutions

and skew-idempotent matrices are defined by conditions A2 = In and A2 = −A,

respectively. Surprisingly, none of the relationships (2.5) and (2.6) was mentioned in

[1], where the following result was established.

Proposition 2.3. Let A ∈ Cn,n. Then rk(A − A3) + rk(A) = rk(AA) +

rk(AÂ).

Proof. Note that A −A3 = AAÂ. Hence, rk(A −A3) > rk(AA) + rk(AÂ) −

rk(A), with equality holding if and only if there exist matrices X,Y ∈ Cn,n such that

AÂX+YAA = A. Choosing X = Y = 1
2In leads to the assertion.

From Proposition 2.3 it follows that A3 = A ⇔ rk(A) = rk(AA) + rk(AÂ),

which was observed in [1, Lemma 3.1]. It should be mentioned that the proof of

Proposition 2.3 provided above seems to be shorter and simpler than the one given

in [1, p. 13].

Corollary 2.2 can be derived also as a particular case of the next theorem.

Theorem 2.4. Let A ∈ Cn,n and let k, l ∈ N∪{0}, l > k. Then rk(Ak−Ak+l) =

rk(Ak) + rk(In −Al)− n.

Proof. By Ak −Ak+l = Ak(In −Al), the rank identity asserted in the theorem

is satisfied if and only if N (Ak) ⊆ R(In − Al). To show that this inclusion always

holds, let a vector x ∈ Cn,1 be such that x ∈ N (Ak). Then Akx = 0, from where

(In −Al)x = x, whence x ∈ R(In −Al).
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A general formula for the rank of In −Ak+1 is established in what follows.

Theorem 2.5. Let A ∈ Cn,n and let k ∈ N ∪ {0}. Then rk(In − Ak+1) =

rk(A) + rk(In +A+A2 + · · ·+Ak)− n.

Proof. It can be straightforwardly checked that In −Ak+1 = A(In +A +A2 +

· · · + Ak). In consequence, the identity given in the theorem holds if and only if

N (A) ⊆ R(In +A +A2 + · · ·+Ak). To verify that this inclusion indeed holds, let

a vector x ∈ Cn,1 be such that x ∈ N (A), i.e., Ax = x. Then (In +A+A2 + · · ·+

Ak)x = (k + 1)x, whence x = (In +A+A2 + · · ·+Ak)x/(k + 1), which means that

x ∈ R(In +A+A2 + · · ·+Ak).

It is easy to show that the idempotency of A ∈ Cn,n implies nonsingularity of

Â (in which case Â−1 = In − 1
2A), but not the other way round. Thus, a question

occurs by what condition should the requirement that rk(Â) = n be supplemented in

order to make this implication reversible. The answer is given in what follows.

Theorem 2.6. Let A ∈ Cn,n. Then A is idempotent if and only if Â is nonsin-

gular and rk(In −A2) = n− rk(A).

Proof. The necessity part is clearly satisfied. To establish the reverse implication,

observe that Theorem 2.5 yields

(2.7) rk(In −A2) = rk(A) + rk(Â)− n.

Hence, the nonsingularity of Â entails rk(In − A2) = rk(A), which combined with

rk(In −A2) = n− rk(A) ensures that A is idempotent; see [33, Theorem 3.6.3].

Theorems 2.4 and 2.5 entail

(2.8) rk(A−Ak+1) = rk(A) + rk(A) + rk(In +A+A2 + · · ·+Ak−1)− 2n.

On the other hand, replacing A with A2 in Corollary 2.2(i) gives

rk(A2 −A4) = rk(A2) + rk(In −A2)− n.

Combining this identity with (2.7) leads to

(2.9) rk(A2 −A4) = rk(A2) + rk(A) + rk(Â)− 2n.

Since (2.8) yields

(2.10) rk(A) + rk(Â)− 2n = rk(A−A3)− rk(A),

equality (2.9) takes the form

(2.11) rk(A2 −A4) = rk(A2) + rk(A−A3)− rk(A).
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Note that from (2.10) it follows that A3 = A ⇔ rk(A) + rk(A) + rk(Â) = 2n.

An additional rank formula is provided below.

Theorem 2.7. Let A ∈ Cn,n and let k, l ∈ N∪{0}, l > 1. Then rk(Ak −Akl) =

rk(Ak) + rk(In −Ak(l−1))− n.

Proof. In view of Ak − Akl = Ak(In − Ak(l−1)), it follows that the equality

claimed in the theorem is satisfied if and only if N (Ak) ⊆ R(In − Ak(l−1)). Let a

vector x ∈ Cn,1 be such that x ∈ N (Ak), which entails Akx = 0. In consequence,

(In −Ak(l−1))x = x, which means that x ∈ R(In −Ak(l−1)).

Observe that Theorems 2.4 and 2.7 coincide when k + l = kl.

Yet another direct consequence of the Frobenius inequality is that A ∈ Cn,n

satisfies

(2.12) rk(A2A) > 2rk(AA)− rk(A).

Hence, it is seen that when A is nilpotent of index 2, then 2rk(A) 6 rk(A). Similarly,

A2 = A3 implies 2rk(AA) 6 rk(A). Note that equality happens in (2.12) if and

only if there exist matrices X,Y ∈ Cn,n such that AAX + YAA = A. A further

observation is that if instead of the rank of A2A we consider the rank of AA
2
, then

we arrive at the conclusion that rk(AA
2
) = rk(AA) + rk(AA) − rk(A) is always

satisfied. The last claim follows from the fact that there exist X,Y ∈ Cn,n such that

AAX+YAA = A is fulfilled, namely X = In and Y = In.

Inspired by the rank identities provided in Theorem 2.1 and (2.7), subsequently

we identify two properties of column spaces.

Theorem 2.8. Let A,B ∈ Cn,n. Then:

(i) R(A −ABA) = R(A) ∩R(In −AB),

(ii) R(In −A2) = R(A) ∩R(Â).

Proof. By replacing A with A∗ and B with B∗ in the relationships given in

points (i) and (ii) of the theorem and taking orthogonal complements of the resulting

equalities, we obtain:

(i′) N (A−ABA) = N (A) +N (In −BA),

(ii′) N (In −A2) = N (A) +N (Â),

respectively. To prove relationship (i′), and simultaneously (i), first note that a vector

x ∈ Cn,1 can be expressed as x = (In−BA)x+BAx. Under the assumption that x ∈

N (A−ABA), i.e., Ax = ABAx, we haveA(In−BA)x = 0 and (In−BA)BAx = 0,

from where we conclude that (In−BA)x ∈ N (A) and BAx ∈ N (In−BA). To show
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thatN (A)+N (In−BA) ⊆ N (A−ABA), let a vector y ∈ Cn,1 be given by y = u+v,

where u ∈ N (A) and v ∈ N (In −BA), i.e., Au = 0 and BAv = v. In consequence,

(A−ABA)y = (A−ABA)(u+ v) = 0, which ensures that y ∈ N (A−ABA).

The proof of identity (ii′) (and, thus, also of (ii)) is obtained in a similar fashion.

Observe that any x ∈ Cn,1 can be written as x = 1
2Ax + 1

2Âx. If now x ∈ N (In −

A2), i.e., A2x = x, then Âx ∈ N (A) and Ax ∈ N (Â). To derive the inclusion

N (A) +N (Â) ⊆ N (In −A2), take a vector y such that y = u+v, where u ∈ N (A)

and v ∈ N (Â). Then (In − A2)y = AÂ(u + v) = ÂA(u + v) = 0, which entails

y ∈ N (In −A2).

By taking B = In and B = −In, from Theorem 2.8(i) we obtain the equivalences

A2 = A ⇔ R(A) ∩R(A) = {0} and A2 = −A ⇔ R(A) ∩R(Â) = {0}, respectively.

The former of them is a known characteristic of idempotent matrices, whereas the

latter property of skew-idempotent matrices seems to be not available in the literature.

Another observation is that from Theorem 2.8(ii) it directly follows that A is an

involution if and only if R(A) ∩R(Â) = {0}.

Interestingly, several of the rank identities given above can be extended to the

corresponding relationships between column and null spaces. The identities (i)–(iv)

listed in Proposition 2.9 below were inspired by (2.5), (2.6), (2.11), and Proposition

2.3, respectively.

Proposition 2.9. Let A ∈ Cn,n. Then:

(i) R(A) = R(AA) +R(In −A2),

(ii) R(Â) = R(AÂ) +R(In −A2),

(iii) R(A) = R(A2) +R(A−A3),

(iv) R(A) = R(AA) +R(AÂ).

Proof. The proof is established straightforwardly by considering the identities:

(i′) N (A) = N (AA) ∩ N (In −A2),

(ii′) N (Â) = N (AÂ) ∩ N (In −A2),

(iii′) N (A) = N (A2) ∩ N (A−A3),

(iv′) N (A) = N (AA) ∩ N (AÂ),

obtained from the characteristics given in points (i)–(iv) of the proposition by replac-

ing A with A∗ and taking orthogonal complement.
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3. Characteristics of tripotent matrices. The present section provides an

extensive study of tripotent matrices, with a particular attention paid to those ma-

trices which are simultaneously Hermitian. It is clear that the set of Hermitian idem-

potent matrices (i.e., orthogonal projectors) is a proper subset of Hermitian tripotent

matrices. For this reason, the latter set hereafter will be called the set of extended

orthogonal projectors. Conditions necessary and sufficient for A of the form (1.2) to

be an extended orthogonal projector are given in what follows.

Lemma 3.1. Let A ∈ Cn,n be of the form (1.2). Then A is an extended orthogonal

projector if and only if L = 0, Σ = Ir, and K∗ = K.

Proof. From Lemma 1.2 we conclude that A is Hermitian and tripotent (i.e., is

an extended orthogonal projector) if and only if

(3.1) L = 0, ΣK = K∗Σ, and (ΣK)2 = Ir.

However, in the light of (1.5), from the middle condition in (3.1) we get Σ = KΣK,

whence Σ2 = ΣKΣK. Combining this identity with the last equality in (3.1) leads

to Σ2 = Ir, from where we arrive at Σ = Ir. In consequence, the middle condition in

(3.1) yields K∗ = K. The reverse implication is clearly satisfied.

The theorem below sheds light on the relationship between idempotency and

tripotency of a matrix. Condition (iii) therein was inspired by problem [24], which

asserts that A2 = A ⇔ rk(A) = tr(A) and rk(A) = tr(A), where tr(.) denotes the

trace of a matrix argument.

Theorem 3.2. Let A ∈ Cn,n. Then A is idempotent if and only if A is tripotent

and any of the following conditions is satisfied:

(i) A is tripotent,

(ii) Â is nonsingular,

(iii) rk(A) = tr(A).

Proof. Clearly, A2 = A implies both A3 = A and A
3
= A. To prove the reverse

implication, note that A
3
= A is equivalent toA3−3A2+2A = 0, which, byA3 = A,

reduces to A2 = A.

In the light of Corollary 2.2(i), from (2.10) we get rk(A−A3) = rk(AA)+rk(Â)−

n. Hence, when A3 = A and rk(Â) = n, then clearly A2 = A. On the other hand,

when A is idempotent, which yields tripotency of A, then rk(Â) = n, and the part

of the theorem referring to its point (ii) follows.

To complete the proof, we only need to show that every tripotent matrix A such

that rk(A) = tr(A) is necessarily idempotent. For this purpose, observe that when
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A3 = A, then by Corollary 2.2(ii),

(3.2) rk(A) + rk(In −A2) = n.

It easy to verify that tripotency of A implies idempotency of In−A2, whence rk(In−

A2) = tr(In−A2). In consequence, taking into account condition (iii) of the theorem,

identity (3.2) reduces to tr(AA) = 0. Since A3 = A implies also idempotency of

− 1
2AA, we have tr(AA) = 0 ⇒ rk(AA) = 0, from where A2 = A follows.

Characterization corresponding to Theorem 3.2(iii) is related to [27, Theorem 2],

which asserts that when A is such that rk(A) = tr(A) and Ak = Al for some k, l ∈ N,

k 6= l, then A is idempotent. Clearly, Theorem 3.2 generalizes this implication to an

equivalence when k = 1 and l = 3. It should be emphasized that the proof of Theorem

3.2 is much simpler than the proof of [27, Theorem 2]. Another fact is that the identity

A−A3 = AAÂ, already mentioned in the proof of Proposition 2.3, may be used to

establish an alternative proof of Theorem 3.2(ii).

If we would impose in Theorem 3.2 a general assumption that A is Hermitian,

then the theorem would demonstrate relationships between orthogonal projectors and

extended orthogonal projectors. As is shown in what follows, the corresponding char-

acteristics hold true also when hermitianness is replaced with the essentially weaker

assumption that A is EP.

Corollary 3.3. Let A ∈ Cn,n. Then A is an orthogonal projector if and only

if A is tripotent, EP, and any of the following conditions is satisfied:

(i) A is tripotent,

(ii) Â is nonsingular,

(iii) rk(A) = tr(A).

Proof. From Theorem 3.2 we know that combining A3 = A with any of the

conditions (i)–(iii) listed in the corollary yields a conjunction equivalent to A2 = A.

Every Hermitian matrix is trivially EP. To show that every idempotent and EP matrix

is an orthogonal projector, we utilize the condition AA† = A†A. Clearly, pre- or

postmultiplying this identity by A leads to A = AA†, which means that A is an

orthogonal projector.

When a tripotent matrix is Hermitian nonnegative definite, then its eigenvalues

belong to the set {0, 1}, in which case, the matrix is idempotent. These facts lead to

the following result.

Corollary 3.4. Let A ∈ Cn,n. Then A is an orthogonal projector if and only

if A is a nonnegative definite extended orthogonal projector.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 26, pp. 446-470, July 2013



ELA

456 O.M. Baksalary and G. Trenkler

It is known thatA ∈ Cn,n is an orthogonal projector if and only ifA is idempotent

and either generalized or hypergeneralized projector; see [3, Theorem 1]. It turns out

that the idempotency condition can be replaced with tripotency.

Theorem 3.5. Let A ∈ Cn,n. Then A is an orthogonal projector if and only if

A is tripotent and any of the following conditions is satisfied:

(i) A is a generalized projector,

(ii) A is a hypergeneralized projector.

Proof. The necessity parts are trivially satisfied. Since the set of generalized

projectors is included in the set of hypergeneralized projectors, we need to prove the

sufficiency only of point (ii) of the theorem. From Lemmas 1.2 and 3.1 we know

that when A is tripotent and a hypergeneralized projector, then (ΣK)2 = Ir and

(ΣK)3 = Ir, whence ΣK = Ir. This condition can be rewritten as Σ = K−1 or

as Σ = (K∗)−1, with the latter equality obtained from the former one by taking

conjugate transpose. In consequence, by (1.5), we arrive at Σ2 = (KK∗)−1 = Ir.

However, Σ2 = Ir ⇒ Σ = Ir, which ensures that K = Ir. Concluding we have shown

that when when A is tripotent and a hypergeneralized projector, then Σ = Ir and

K = Ir, i.e., A is an orthogonal projector.

Next we derive three conditions which are mutually equivalent in the set of tripo-

tent matrices.

Theorem 3.6. Let A ∈ Cn,n be tripotent. Then the following conditions are

equivalent:

(i) A is Hermitian,

(ii) A is normal,

(iii) A is EP and a partial isometry.

Proof. It is clear that when A is Hermitian, then it is normal, and that normality

entails EP-ness. In consequence, the chain of implications (i) ⇒ (ii) ⇒ (iii) will

be established when we show that within the set of tripotent matrices every normal

matrix is necessarily a partial isometry. To do this, note that A of the form (1.2) is

normal and tripotent if and only if

(3.3) L = 0, KΣ = ΣK, and (ΣK)2 = Ir.

The last two conditions in (3.3) yield

(3.4) KΣ2K = Ir.

In view of (1.5), by taking conjugate transpose of (3.4) and pre- and postmultiplying

the resulting equality by K gives Σ2 = K2. Substituting this identity to (3.4) shows
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that K4 = Ir, which means that Σ4 = Ir. In consequence, we arrive at the conclusion

that Σ = Ir, i.e., that A is a partial isometry.

In the last step of the proof, observe that when A is simultaneously tripotent

and a partial isometry, then K2 = Ir, which combined with K−1 = K∗ shows that

K∗ = K. Thus, the implication (iii) ⇒ (i) follows.

Note that alternative expressions for the conjunction in Theorem 3.6(iii) were

provided in [8, Theorem 2].

It was shown in [16, Theorem 8] that A3 = A if and only if A is GP and group

involutory, i.e., A# = A. In what follows we provide a modified version of this result.

Theorem 3.7. Let A ∈ Cn,n. Then the following conditions are equivalent:

(i) A is tripotent,

(ii) A is GP and A2 is idempotent,

(iii) A is GP and AA# = A2,

(iv) A is GP and 1
2 (AA# −A) is idempotent.

Proof. It is clear that rk(A2 −A4) > 0 and rk(A2)− rk(A) 6 0. In view of these

inequalities, the equivalence (i) ⇔ (ii) follows straightforwardly from (2.11). The

part (i) ⇒ (iii) is obtained on account of [16, Theorem 8], and the reverse implication

follows by multiplying AA# = A2 by A. To conclude the proof note that direct

calculations show that the condition given in point (iv) of the theorem is equivalent

to the identity in point (iii).

Observe that the requirement that 1
2 (AA#−A) is idempotent present in Theorem

3.7(iv) can be replaced with the requirement that 1
2 (AA# +A) is idempotent.

It is known that the following conditions are equivalent:

(a) A is idempotent,

(b) R(A) ⊕R(A) = Cn,1,

(c) R(A) ⊆ N (A),

(d) Az = z for all z ∈ R(A);

see e.g., [40, Theorem 1], where the real setup was considered. The next theorem

provides counterparts of these equivalences when A is tripotent.

Theorem 3.8. Let A ∈ Cn,n. Then the following conditions are equivalent:

(i) A is tripotent,
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(ii) R(A) ⊕R(In −A2) = Cn,1,

(iii) R(A) ⊆ N (In −A2),

(iv) A2z = z for all z ∈ R(A).

Proof. To prove that (i) ⇒ (ii), first note that a vector x ∈ Cn,1 can be expressed

as

x = A2x+ (In −A2)x,

where A2x ∈ R(A) and (In − A2)x ∈ R(In − A2). To show that the subspaces

R(A) and R(In −A2) are disjoint, take y ∈ Cn,1 such that y ∈ R(A) ∩R(In −A2).

Then y = Au = (In −A2)v for some u,v ∈ Cn,1. Hence, Ay = A(In −A2)v = 0,

which means that A2u = 0. In consequence, A3u = Au = y = 0. To establish the

part (ii) ⇒ (iii), let R(A) and R(In − A2) be disjoint. Then x ∈ Cn,1 such that

x ∈ R(A) satisfies (In −A2)x = 0, which means that x ∈ N (In −A2). The proof is

thus complete, for the implications (iii) ⇒ (iv) and (iv) ⇒ (i) hold trivially.

It is clear that Theorem 3.8 could be extended by further two equivalent condi-

tions, namely N (A) ∩ N (In − A2) = {0} and R(In −A2) ⊆ N (A), obtained from

points (ii) and (iii) of the theorem by replacing A with A∗ and taking orthogonal

complements of the resulting conditions.

As mentioned above Theorem 3.8, A2 = A ⇔ R(A) ⊆ N (A). It can be verified

that A is an orthogonal projector if and only if R(A∗) ⊆ N (A). In the light of

Theorem 3.8, this observation leads to a question whether the requirement that A is

an extended orthogonal projector can be equivalently expressed as

(3.5) R(A∗) ⊆ N (In −A2).

The answer to this question is negative, what can be confirmed by considering the

matrix

A =

[
2 1

−3 −2

]
,

which is tripotent and satisfies (3.5), but is clearly not Hermitian (for an illustrative

collection of matrices fulfilling various conditions involving powers of matrices see

[42]). It can be shown that inclusion (3.5) ensures that A is tripotent and A2 is

Hermitian, which is a conjunction of conditions involved also in the next theorem.

It is known thatA ∈ Cn,n is an orthogonal projector if and only ifA is idempotent

and A† = A; for real case see [40, Theorem 12]. Another relevant fact is given in

Exercise 105 in [18, Chapter 12], which claims that within the class of real symmetric

matrices we have A3 = A ⇔ A† = A. In what follows we generalize the latter
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equivalence to the complex setup and extend it by several further conditions. One

of them refers to so called Core inverse of a matrix A ∈ Cn,n, introduced in [9], and

understood as the unique matrix A©# such that

AA©# = AA† and R(A©#) ⊆ R(A).

Similarly as in the case of the group inverse, also an existence of the Core inverse is

restricted to GP matrices only.

Theorem 3.9. Let A ∈ Cn,n. Then the following conditions are equivalent:

(i) A is tripotent and EP,

(ii) A† = A,

(iii) A is tripotent and A2 is Hermitian,

(iv) A2 = AA†,

(v) A† = A2A†,

(vi) A(A∗)2 = A,

(vii) (A∗)2A = A,

(viii) A is GP and A2 is an orthogonal projector,

(ix) A is GP and A©# = A,

(x) A is GP and A# = A2A†.

Proof. From Lemma 1.2 we know that A is tripotent and EP if an only if

(ΣK)2 = Ir and L = 0. Direct calculations with representation (1.2) show that

also the conditions in points (ii)–(viii) are satisfied if and only if this conjunction

holds. The proof of the remaining two points is established similarly, but here we

need formulae for the group and Core inverses of A. Both of them were provided in

[9] and read

(3.6) A# = U

[
K−1Σ−1 K−1Σ−1K−1L

0 0

]
U∗ and A©# = U

[
(ΣK)−1 0

0 0

]
U∗.

The proof is complete.

Note that the part (i) ⇔ (ii) of Theorem 3.9 is a particular case of [7, Theorem 4],

according to which A† = Ak if and only if A is EP and Ak+2 = A. Furthermore, the

equivalence (ii) ⇔ (viii) of Theorem 3.9 was posted as Exercise 21 in [13, Section 1.6].

An additional comment is that a modified version of the equivalence (i) ⇔ (viii) of

the theorem (without requirements that A is EP and that A2 is Hermitian in points

(i) and (viii), respectively) was derived with a different proof in [34, Lemma 5.6.3]. It
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is also worth mentioning that the conditions A = A2A† and A∗ = A2A†, obtained

by modifying the identities in points (v) and/or (x) of Theorem 3.9, are satisfied if

and only if A is EP and Hermitian, respectively.

From Theorem 3.9, we obtain what follows.

Corollary 3.10. Let A ∈ Cn,n. Then A is an extended orthogonal projector if

and only if:

(i) A is Hermitian and any of the conditions in Theorem 3.9 is satisfied,

(ii) A is a partial isometry and any of the conditions in Theorem 3.9 is satisfied,

(iii) A is GP and A = A† = A∗ = A# = A©#.

Proof. Points (i) and (ii) of the corollary are established in a similar fashion as

Theorem 3.9 by taking into account that A is Hermitian if and only if L = 0 and

ΣK = K∗Σ, whereas is a partial isometry if and only if Σ = Ir. The point (iii) is

obtained straightforwardly from Theorem 3.9 and point (i) of the corollary; see also

[16, Theorem 8].

Another characterization of the class of extended orthogonal projectors was given

in [27, Theorem 3] and asserts that A belongs to this class if and only if A(A∗A)k =

A∗(AA∗)l for some k, l ∈ N, k 6= l.

Theorem 3.6 asserts that within the set of tripotent matrices, a matrix is Hermi-

tian if and only if it is EP and a partial isometry. The next theorem is related to this

characterization, for it identifies conditions which combined with the requirement that

A is EP and a partial isometry are necessary and sufficient for A to be an extended

orthogonal projector.

Theorem 3.11. Let A ∈ Cn,n. Then A is an extended orthogonal projector if

and only if A is a partial isometry, EP, and either 1
2 (AA† −A) or 1

2 (AA† +A) is

idempotent.

Proof. When A is EP, then idempotency of both 1
2 (AA†−A) and 1

2 (AA†+A) is

equivalent to A2 = AA†. Since this identity occurs in Theorem 3.9(iv) , the assertion

follows by Corollary 3.10(ii).

A different characterization of the set of extended orthogonal projectors is given

below. It refers to the notion of a contraction. Recall that a matrix A ∈ Cn,n is a

contraction if and only if In − AA∗ >L 0, where >L stands for the Löwner partial

ordering introduced in [28], and for B,C ∈ Cn,n specified asB >L C ⇔ B−C = DD∗

for some D ∈ Cn,n.

Theorem 3.12. Let A ∈ Cn,n. Then A is an extended orthogonal projector if

and only if A is tripotent, EP, and a contraction.
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Proof. The necessity part is satisfied trivially. For the proof of sufficiency, letA be

of the form (1.2). As we know A3 = A yields (ΣK)2 = Ir, which can be alternatively

expressed either as KΣK = Σ−1 or as K∗ΣK∗ = Σ−1. Hence, KΣKK∗ΣK∗ = Σ−2

from where, on account of the fact that the EP-ness of A entails KK∗ = Ir, we obtain

KΣ2K∗ = Σ−2. On the other hand, when A is a contraction, then

(3.7) Ir −Σ2
>L 0,

which implies KK∗ −KΣ2K∗ >L 0. In consequence, Ir −Σ−2
>L 0, from where it

follows that Ir −Σ2
6L 0. Combining this condition with (3.7) gives Σ2 = Ir, which

can be rewritten as Σ = Ir. So, we have shown that when A is tripotent, EP, and

a contraction, then it is necessarily also a partial isometry. By Theorem 3.6 we see

that in such a situation A is Hermitian, and the proof is complete.

It is known that the commutativity of two idempotent matrices is a sufficient con-

dition for a product of the matrices to be idempotent. Moreover, the commutativity

becomes necessary and sufficient condition when the two matrices are Hermitian (i.e.,

are orthogonal projectors); see e.g., [5, Section 1]. In the next theorem we show that

the commutativity plays a similar role when idempotent matrices are replaced with

tripotent ones.

Theorem 3.13. Let A,B ∈ Cn,n be tripotent. Then AB = BA is a sufficient

condition for AB to be tripotent. Moreover, if A and B are Hermitian (i.e., are

extended orthogonal projectors), then AB is an extended orthogonal projector if and

only if AB = BA.

Proof. The first claim of the theorem follows from (AB)3 = ABABAB =

A3B3 = AB. To prove the remaining part, first observe that when A and B are

Hermitian, then their commutativity yields (AB)∗ = B∗A∗ = BA = AB. On the

other hand, if AB is an extended orthogonal projector, then (AB)∗ = AB and

(AB)∗ = B∗A∗ = BA, from where the commutativity follows.

It is known that in general (AB)† 6= B†A†; see e.g., [13, Section 4.4]. Below we

provide two conditions necessary and sufficient for (AB)† = B†A† when A and B

are extended orthogonal projectors.

Theorem 3.14. Let A,B ∈ Cn,n be extended orthogonal projectors. Then the

following conditions are equivalent:

(i) (AB)† = B†A†,

(ii) A2B2 is Hermitian,

(iii) (A2B2)2 = B2A2.

Proof. The theorem follows directly from [34, Complement 3.7].
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Observe that condition (ii) of Theorem 3.14 is of particular interest. Since whenA

and B are extended orthogonal projectors, then A2 and B2 are orthogonal projectors,

it follows that this condition expresses the requirement that A2B2 is an orthogonal

projector.

Subsequently, we consider so called star matrix partial ordering introduced in

[17], which for A,B ∈ Cm,n can be defined as

(3.8) A
∗

6 B ⇔ A∗A = A∗B and AA∗ = BA∗.

Original characterizations of the conditions A
∗

6 B and B
∗

6 A, when A and B are

extended orthogonal projectors, are provided in what follows.

Lemma 3.15. Let A,B ∈ Cn,n be extended orthogonal projectors, of which A is

of the form (1.2) and B is partitioned as

(3.9) B = U

[
B1 B2

B∗
2 B4

]
U∗,

where B1 ∈ Cr,r. Then:

(i) A
∗

6 B if and only if B1 = K and B2 = 0,

(ii) B
∗

6 A if and only if B1K = B2
1, B2 = 0, and B4 = 0.

Proof. Let us first prove point (i) of the lemma. Since A and B are Hermitian,

from (3.8) we get A
∗

6 B ⇔ A2 = AB = BA. Taking into account that A2 is

Hermitian as well, the conditions on the right-hand side of this equivalence can be

simplified to A2 = AB. From (1.2) and (3.9) we get

A2 = U

[
Ir 0

0 0

]
U∗ and AB = U

[
KB1 KB2

0 0

]
U∗,

whence it is seen that A
∗

6 B if and only if KB1 = Ir and KB2 = 0. By K∗ = K,

this conjunction can clearly be simplified to B1 = K, B2 = 0.

From the proof of point (i) we conclude that B
∗

6 A if and only if B2 = BA, and

Lemma 3.1 and (3.9) yield

B2 = U

[
B2

1 +B2B
∗
2 B1B2 +B2B4

B∗
2B1 +B4B

∗
2 B∗

2B2 +B2
4

]
U∗ and BA = U

[
B1K 0

B∗
2K 0

]
U∗.

Since B∗
2B2 + B2

4 = 0 is equivalent to B2 = 0 and B4 = 0, we obtain the asserted

equivalence.
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Point (i) of Lemma 3.15 proves to be useful to establish the following results.

Theorem 3.16. Let A,B ∈ Cn,n be extended orthogonal projectors. Then the

following conditions are equivalent:

(i) A
∗

6 B,

(ii) ABA = A and BAB = A,

(iii) ABA = A and A2
∗

6 B2.

Proof. To show that (i) ⇒ (ii) note that A2 = AB implies ABA = A3 =

A. Furthermore, since AB = BA, it also follows that A2 = AB yields BAB =

BA2 = ABA = A. For the reverse implication, observe that A2 = (ABA)(BAB) =

A(BAB)AB = A3B = AB, from where we conclude that A
∗

6 B.

Let us now consider condition (iii). From (1.2) and (3.9), we obtain A2
∗

6 B2

if and only if B1B2 + B2B4 = 0 and B2
1 + B2B

∗
2 = Ir. On account of B1 = K,

which proves to be equivalent to ABA = A, the latter of these conditions reduces to

B2 = 0. Thus, the part (i) ⇔ (iii) follows by Lemma 3.15(i).

It is known that within the class of orthogonal projectors, the Löwner and star

partial orderings are equivalent; see [23, Theorem 5.8]. However, in the class of

extended orthogonal projectors the two orderings prove to be independent. This fact

can be confirmed with the matrices:

A =

[
−1 0

0 0

]
, B =

[
−1 0

0 −1

]
, and C =

[
1 0

0 0

]
.

Direct calculations show that A
∗

6 B, but not A 6L B and A 6L C, but not A
∗

6 C.

On the other hand, when A and B are extended orthogonal projectors, then A
∗

6 B

if and only if A
−

6 B, where A
−

6 B denotes the minus (also called rank-subtractivity)

partial ordering introduced in [21], and understood as A
−

6 B ⇔ rk(B − A) =

rk(B) − rk(A). This result is a consequence of [32, Theorem 5.4.16], which asserts

that the star and minus orderings coincide within the class of partial isometries.

4. Results referring to known classes of matrices. The present section

provides several results dealing with the classes of matrices referred to in Section 3.

One of the questions explored below is how to characterize matrices which belong to

a given class and are k-potent. The section begins with a lemma which will be used

to establish a subsequent theorem.

Lemma 4.1. Let A ∈ Cn,n be of the form (1.2). Then Kk = Ir for some k ∈ N

is a sufficient condition for A to be EP.
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Proof. It is known that the set of EP matrices is included in the set of GP

matrices. Taking this into account, the assertion follows by the obvious fact that

Kk = Ir for some k ∈ N ensures that K is nonsingular, i.e., that A is GP.

The theorem below provides a number of characterizations of normal and (k+1)-

potent matrices. Condition (iii) given therein was inspired by Theorems 2.1 and 2.2

in [31]. From the former of these results it follows that when A ∈ Cn,n is normal and

k-potent, then it is a partial isometry. On the other hand, Theorem 2.2 in [31] asserts

that when A is normal and k ∈ N, k 6= 3, then Ak = A if and only if Ak−1 = AA∗.

Even though the theorem below generalizes these characteristics, its proof seems to be

simpler than the proofs of [31, Theorems 2.1 and 2.2]. Conditions (v) and (vi) of the

theorem below are recalled after [19, Theorem 5] and the remaining two conditions

given therein are new.

Theorem 4.2. Let A ∈ Cn,n and let k ∈ N, k > 2. Then the following conditions

are equivalent:

(i) A is normal and (k + 1)-potent,

(ii) A is a partial isometry and (k + 1)-potent,

(iii) A is a partial isometry and Ak = AA∗,

(iv) A is GP, a partial isometry, and Ak−1 = A#,

(v) A is GP, A∗ = A#, and Ak−1 = A#,

(vi) Ak−1 = A∗.

Proof. The part (i) ⇒ (ii) follows from [31, Theorem 2.1]. Alternatively, the

implication can be derived by exploiting representation (1.2) and observing that when

A is normal and (k + 1)-potent, then Σk = K−k. Hence, similar arguments to those

utilized in the proof of Theorem 3.5 leads to Σ = Ir, i.e., A is a partial isometry.

The implications (ii) ⇒ (iii) ⇒ (iv) are based on the observation that when A is a

partial isometry, then each of the conditions Ak+1 = A, Ak = AA∗, and Ak−1 = A#

is equivalent to Kk = Ir.

The fact that when Σ = Ir and Kk = Ir, then A∗ = A# follows by comparing

the left-hand side representations in (1.4) with (3.6). In consequence, it is seen that

(iv) implies (v).

Since trivially (v) ⇒ (vi), to complete the proof it remains to show that (vi) ⇒

(i). First observe that premultiplying and postmultiplying Ak−1 = A∗ by A gives

Ak = AA∗ and Ak = A∗A, respectively, which shows that the equality in point (vi)

yields normality of A. Substituting (1.2) and the left-hand side formula in (1.4) into
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Ak−1 = A∗ leads to L = 0 and (ΣK)k−1 = K∗Σ. Since normality of A means that

Σ and K commute, we arrive at Σ−(k−2) = Kk. Utilizing the same arguments as in

the proof of Theorem 3.5, we conclude that Σ = Ir, which means that Kk = Ir. In

consequence, it is seen that the equality in point (vi) entails (ΣK)k = Ir, which is

necessary and sufficient for Ak+1 = A to hold. The proof is complete.

In a comment to Theorem 4.2 it is worth mentioning that matrices A such that

Ak−1 = A#, k ∈ N, k > 1, were in [15, p. 9] called {k}-group periodic matrices. It

was pointed out in [15, p. 9] that Ak−1 = A# ⇔ Ak+1 = A, and several equivalent

conditions for a matrix to be {k}-group periodic were given in [15, Theorem 2.1]. A

similar observation is that matrices A such that Ak−1 = A∗, k ∈ N, k > 2, were in

[14, p. 151] called k-generalized projectors, and the equivalence (i) ⇔ (vi) of Theorem

4.2 was originally established in [14, Theorem 2.1]. Parenthetically note that for

k = 2, point (vi) of Theorem 4.2 would express the requirement that A is Hermitian,

which trivially implies normality of A, but not its (k+1)-potency. Actually, from the

proof of Theorem 4.2 it follows that the implication (vi) ⇒ (i) is the only one which

requires that k > 2, for the remaining implications established therein hold also for

k = 2.

The identity given in Theorem 4.2(iii) can be replaced with Ak = AA†. This

condition is characterized in the next theorem.

Theorem 4.3. Let A ∈ Cn,n and let k ∈ N. Then the following conditions are

equivalent:

(i) A is EP and (k + 1)-potent,

(ii) Ak = AA†.

Proof. The result follows directly by exploiting representation (1.2).

Two further conditions equivalent to the requirement that A is EP and k-potent

were derived in [19, Theorem 4].

Matrices which are simultaneously EP and partial isometries are characterized in

what follows.

Theorem 4.4. Let A ∈ Cn,n. Then the following conditions are equivalent:

(i) A is EP and a partial isometry,

(ii) A = A∗A2,

(iii) A = A2A∗.

Proof. The result follows directly by exploiting representation (1.2).
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The next theorem provides a characterization of k-potency of a matrix. It was

originally given in [19, Theorem 3]; see also [30, Theorem 5.2].

Theorem 4.5. Let A ∈ Cn,n and let k ∈ N, k > 1. Then the following conditions

are equivalent:

(i) A is k-potent,

(ii) A is GP and Ak+1 = A2.

Proof. It is clear that when k > 1, then Ak = A implies both Ak+1 = A2 and

rk(A2) = rk(A), which proves that (i) ⇒ (ii). For the reverse implication multiply

Ak+1 = A2 by A# to get Ak = A.

Theorem 4.5 shows that within the class of GP matrices, A2 = A ⇔ A3 = A2,

A3 = A ⇔ A4 = A2, etc. A related characterization, namely that when A is GP,

then A2 = A ⇔ Ak+1 = Ak for some k ∈ N, follows from [41, Theorem 2.6].

Without going into details of the necessary calculations, below we provide rep-

resentations of the orthogonal projectors onto the column spaces of A2 and (A∗)2,

when A is of the form (1.2).

Lemma 4.6. Let A ∈ Cn,n be of the form (1.2). Then the orthogonal projectors

onto R(A2) and R[(A2)∗] are of the forms

(4.1) PR(A2) = U

[
ΣK(ΣK)† 0

0 0

]
U∗

and

(4.2) PR[(A2)∗] = U

[
K∗(ΣKΣ)†ΣKΣK K∗(ΣKΣ)†ΣKΣL

L∗(ΣKΣ)†ΣKΣK L∗(ΣKΣ)†ΣKΣL

]
U∗,

respectively.

Proof. Direct verifications confirm that the Moore–Penrose inverse of A2 is given

by

(A2)† = U

[
K∗(ΣKΣ)† 0

L∗(ΣKΣ)† 0

]
U∗.

Hence, the projector PR(A2) = A2(A2)† takes the form

(4.3) PR(A2) = U

[
ΣKΣ(ΣKΣ)† 0

0 0

]
U∗.

Since R(ΣKΣ) ⊆ R(ΣK) and rk(ΣKΣ) = rk(ΣK), representation (4.3) can be

rewritten as in (4.1).
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The formula in (4.2) is obtained in a similar way by utilizing the fact that

PR[(A2)∗] = (A2)†A2.

Lemma 4.6 is helpful to establish the following result, providing two new charac-

terizations of the EP-ness.

Theorem 4.7. Let A ∈ Cn,n. Then the following conditions are equivalent:

(i) A is EP,

(ii) R(A2) = R(A∗),

(iii) A is GP and A2 is EP.

Proof. The equality in point (ii) of the theorem holds if and only if the orthogonal

projectors onto R(A2) and R(A∗) coincide. The representation of the first of these

projectors is given in Lemma 4.6, whereas the latter one is obtained from (1.2) and

the right-hand formula in (1.4), and reads

A†A = U

[
K∗K K∗L

L∗K L∗L

]
U∗.

In consequence, R(A2) = R(A∗) if and only if L = 0 and K∗K = ΣK(ΣK)†.

However, in the light of (1.5), the latter of these conditions is redundant. Thus, we

have shown that (i) ⇔ (ii).

To prove that (iii) ⇒ (i), note that from (4.1) and (4.2) it follows that for A2

to be EP, i.e., for the identity PR(A2) = PR[(A∗)2] to be satisfied, it is necessary

that K∗(ΣKΣ)†ΣKΣL = 0. If A is GP, then this condition reduces to L = 0,

which means that A is EP. The fact that the reverse implication holds as well is seen

clearly by comparing the projectors given in (4.1) and (4.2) under the assumption

that L = 0.

As was observed at the beginning of Section 2,

(4.4) rk(A2) = 2rk(A)− n ⇔ N (A) ⊆ R(A).

By referring to the representation (1.2), we obtain yet another condition equivalent

to N (A) ⊆ R(A).

Lemma 4.8. Let A ∈ Cn,n be of the form (1.2). Then:

(i) N (A) ⊆ R(A) if and only if L∗L = In−r,

(ii) R(A) ⊆ N (A) if and only if LL∗ = Ir,

(iii) R(A) ∩ N (A) = {0} if and only if R(L) ⊆ R(K).
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Proof. It is known that any matrices B ∈ Cn,p, and C ∈ Cn,q satisfy R(B) ⊆

R(C) ⇔ CC†B = B. Thus, since N (A) = R(In−A†A), the inclusion given in point

(i) of the lemma can be equivalently expressed asAA†(In−A†A) = In−A†A. Hence,

by involving representation (1.2), we have N (A) ⊆ R(A) ⇔ L∗L = In−r, L∗K = 0.

Since L∗L = L∗K(L∗K)∗+(L∗L)2, which is a direct consequence of the idempotency

of A†A, it is clear that L∗L = In−r ⇒ L∗K = 0, and the equivalence in point (i) is

established.

The inclusionR(A) ⊆ N (A) is equivalent to (In−A†A)AA† = AA†, or, in other

words, A†A2A† = 0. Pre- and postmultiplying this condition by A gives A2 = 0. In

consequence, we conclude that R(A) ⊆ N (A) is equivalent to the requirement that

A is nilpotent of index 2. However, from Lemma 1.2 and (1.3) we know that A2 = 0

if and only if LL∗ = Ir, which establishes point (ii) of the lemma.

In the proof of the next point, first recall that R(A) ∩ N (A) = {0} if and

only if A is GP; see e.g., [13, Section 4.4]. In view of Lemma 1.2, this means that

R(A) ∩ N (A) = {0} is equivalent to the nonsingularity of K. Hence, the necessity

part of the equivalence asserted in point (iii) is clear. Since, trivially, R(A2) ⊆ R(A),

the reverse implication will be established when we show that R(L) ⊆ R(K) implies

R(A) ⊆ R(A2), in which case A will be necessarily GP. The inclusion R(A) ⊆

R(A2) is equivalent to PR(A2)A = A, which, by (1.2) and (4.1), holds if and only

if ΣK(ΣK)†ΣL = ΣL. This equality can be equivalently expressed as R(ΣL) ⊆

R(ΣK) or, in yet another form, as R(L) ⊆ R(K).

The paper is concluded with some remarks concerning classes of SR and DR

matrices. On account of Lemma 1.2, it is seen that the conditions involved in Lemma

4.8(i) ensure that A is necessarily SR, whereas the conditions occurring in Lemma

4.8(ii) imply that A is DR.

As was shown in [10, p. 1225], in general rk(K∗L) = rk(K)+rk(L)−r holds (which

is equivalent toN (K∗) ⊆ R(L)). In consequence, whenA is such thatN (A) ⊆ R(A),

then rk(A) = 1
2 [rk(K) + n]. Another observation refers to the known fact that A is

SR if and only if A∗ is SR if and only if A† is SR; see [10, p. 1228]. It turns out that

the same inheritance property holds within the considered subset of the SR class, for

(4.5) N (A) ⊆ R(A) ⇔ N (A∗) ⊆ R(A∗) ⇔ N (A†) ⊆ R(A†).

The former of the equivalences in (4.5) is a direct consequence of (4.4), whereas the

latter follows from N (A∗) = N (A†) and R(A∗) = R(A†). The last remark is that by

combining Lemma 4.8(iii) with [10, Lemma 3] we conclude that A is simultaneously

GP and DR if and only if R(L) = R(K).
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