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GRAPHS WITH SMALL SPECTRAL GAP∗

ZORAN STANIĆ†

Abstract. It is conjectured that connected graphs with given number of vertices and minimum

spectral gap (i.e., the difference between their two largest eigenvalues) are double kite graphs. The

conjecture is confirmed for connected graphs with at most 10 vertices, and, using variable neigh-

bourhood metaheuristic, there is evidence that it is true for graphs with at most 15 vertices. Several

spectral properties of double kite graphs are obtained, including the equations for their first two

eigenvalues. No counterexamples to the conjecture are obtained. Some numerical computations and

comparisons that indicate its correctness are also given. Next, 3 lower and 3 upper bounds on spec-

tral gap are derived, and some spectral and structural properties of the graphs that minimize the

spectral gap are given. At the end, it is shown that in connected graphs any double kite graph has

a unique spectrum.
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1. Introduction. All graphs considered are simple and undirected. For a graph

G, n = n(G) andm = m(G) as usual denote its order (the number of vertices) and size

(the number of edges). If A = A(G) is the adjacency matrix of G, then the eigenvalues

of G, λ1 = λ1(G) ≥ λ2 = λ2(G) ≥ · · · ≥ λn = λn(G), are just the eigenvalues of

A(G). The difference between the first two eigenvalues δ(G) = λ1(G) − λ2(G) will

be called the spectral gap of G (it is also called the separator of G), while the first

eigenvalue is usually called the index of G, and if G is connected then λ1(G) > λ2(G),

i.e., δ(G) > 0. Due to this property we shall assume that the graph considered is

connected. Eigenvectors that correspond to the first two eigenvalues will be denoted

by x = (x1, x2, . . . , xn)
T and y = (y1, y2, . . . , yn)

T , respectively. Note that x can be

taken to be positive whenever G is connected. In addition, if xTx = 1 then x is called

the principal eigenvector of G.

For two graphs G1 and G2 we define G1 ∪ G2 to be their disjoint union, while

pG denotes disjoint union of p copies of G. The join G1∇G2 is a graph obtained

by joining every vertex of G1 with every vertex of G2. The line graph L(G) is a
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graph whose vertices are the edges of G with two vertices being adjacent whenever

the corresponding edges in G are incident with the same vertex. In this case, we say

that G is the root graph of L(G).

For other notions not defined in this paper, the reader is referred to [6, 7].

The spectral gap is mainly investigated for the class of (connected) regular graphs

since it is known that regular graphs with large spectral gap have high connectivity

properties which make them relevant in several branches of theoretical computer sci-

ences (see [7, pp. 392–394] and the references cited therein). Conversely, in this

paper, we consider graphs with small spectral gap. In the next section, we conjecture

that the minimum spectral gap is attained for the double kite graphs. The double

kite graph is obtained by taking an (l + 2)-vertex path Pl+2 (l ≥ 0), two copies of

a k-vertex complete graph Kk (k ≥ 1), and by identifying one terminal vertex of

Pl+2 with a vertex of one copy of Kk and the other terminal vertex with a vertex of

the other copy of Kk (see Fig. 1 in the next section). This graph will be denoted

by DK(k, l) and it has n = 2k + l vertices and m = 2
(

k
2

)

+ l + 1 edges. Note that

DK(1, l) and DK(2, l) are isomorphic to paths Pl+2 and Pl+4, respectively.

We indicate some similarities between the spectral gap and the algebraic connec-

tivity, which is defined as the second smallest eigenvalue of the Laplacian of a graph.

This invariant is very frequently investigated – see the survey [1] and the correspond-

ing references. It is known that for regular graphs the algebraic connectivity coincides

with the spectral gap, and connected regular graphs of degree 3 with minimum alge-

braic connectivity (and therefore, minimum spectral gap) are determined in [4]. It is

conjectured in [2] that the graphs with given order and size and minimum algebraic

connectivity are so-called path-complete graphs defined as follows: They consist of a

complete graph, a path, and one or several edges joining one endvertex of the path

with one or several vertices of the complete graph. It is proved in [11] that for trees

with given order and diameter the algebraic connectivity is minimized for paths with

stars of (almost) equal size attached to both ends. Notice that the graphs conjectured

in [2] have obvious similarity to double kite graphs, while the resulting graphs of [11]

with equal stars are in fact the root graphs of double kite graphs.

The paper is organized as follows. In Section 2, we derive the equations for

the first two eigenvalues of double kite graphs along with some spectral properties,

inequalities, and numerical data. In Section 3, we obtain 3 lower bounds on spectral

gap in terms of order and size, and another 3 upper bounds in terms of coordinates

of the corresponding principal eigenvector. We also give some structural and spectral

properties of graphs that minimize the spectral gap. In Section 4, we prove that in

connected graphs any double kite graph has a unique spectrum.
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2. Spectral gap of double kite graphs. We start with the following conjec-

ture.

Conjecture 2.1. Of all connected graphs with given number of vertices, the

spectral gap is minimized for some double kite graph.

Remark 2.2. The conjecture is based on underlying results confirmed by use

of computer, some spectral properties of double kite graphs obtained in Propositions

2.3 and 2.6, and numerical data given in Table 1.

We used the library of programs Nauty [15] to generate the graphs and confirm

the conjecture for those with at most 10 vertices.

Seeking counterexamples we used the facilities of the AutoGraphiX system [12]

(an efficient tool based on a variable neighbourhood search metaheuristic for produc-

ing extremal graphs with given parameters). We applied several approaches to impose

the direction to possible solutions, but we did not found any counterexample with at

most 15 vertices.

In the sequel, we give the equations for the first two eigenvalues of double kite

graphs, determine certain spectral properties, and conclude the section with some

numerical data.

Using the eigenvalue interlacing [7, Theorem 0.10], we get that λ2(DK(k, l)) is a

simple eigenvalue greater than k − 2; if l > 0 then it is greater than k − 1. We prove

a proposition.

Proposition 2.3. DK(k, l) is a unique graph with minimum index within the

set of all connected n-vertex graphs (n ≥ 2k) which contain (not necessarily induced)

subgraph equal to either 2Kk, or K1∇2Kk−1.

Proof. If k < 2 the proof follows from the fact that within the set of all trees with

given number of vertices, the path has minimum index [7, p. 78].

If k ≥ 3 then any graph, say H , belonging to the described set contains a sub-

graph equal to either K1∇2Kk−1, or DK(k, l′) (l′ ≤ l). In the first case since both

DK(k, l) and H have at least 2k vertices, using [7, Theorem 0.7] and the result

concerning the index of graphs with an internal path (cf. [13]), we get λ1(H) >

λ1(K1∇2Kk−1) > λ1(D(k, l)). In the latter case, by the same argumentation, we get

λ1(H) ≥ λ1(DK(k, l′)) ≥ λ1(DK(k, l)) with the equalities iff H = DK(k, l).

Proposition 2.4. If λ2(DK(k, l)) > 2 then λ1(DK(k, l)) and λ2(DK(k, l)) are

equal to 2 cosh(2t) where t is respectively equal to the unique positive root of

2(k − 2) cosh t cosh((l + 2)t)− cosh((l + 5)t) = 0(2.1)
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t❅
❅❅

❆
❆

✁
✁

❍❍▲
▲
▲
▲

t

t

t

t tt

t

t

t

�
��

✁
✁

❆
❆

☞
☞
☞
☞

✟✟

. . ....
...

1

2

k-1

k+l

k+l+1

k+l+2

2k+l

k+l+3

k k+1

Fig. 1: DK(k, l) with vertex labelling.

and

(2− k + 2 cosh(2t))

(

2 cosh(2t)− sinh((l − 1)t)

sinh((l + 1)t)

)

− k + 1 = 0.(2.2)

Proof. Let n = 2k + l, and x = (x1, x2, . . . , xn)
T and y = (y1, y2, . . . , yn)

T be

the eigenvectors which correspond to λ1 = λ1(DK(k, l)) and λ2 = λ2(DK(k, l)),

respectively. Assume that the vertices are labelled as in Fig. 1, and the coordinates

xi, yi correspond to vertex i (i = 1, . . . , 2k + l). We have

λ1xi =
∑

i∼j

xj and λ2yi =
∑

i∼j

yj (i = 1, . . . , 2k + l).(2.3)

In what follows, we construct the eigenvectors x and y, i.e., we determine all of

their coordinates such that both equalities above hold. Using these equalities we get

xi − λ1xi+1 + xi+2 = 0 and yi − λ2yi+1 + yi+2 = 0 (i = k, . . . , k + l − 1).(2.4)

We have x > 0 (since it corresponds to the largest eigenvalue) and, by [6, Propo-

sition 5.3.1], there are exactly 2 connected subgraphs of DK(k, l) such that y is

positive in one and negative in the other. The symmetry of the graph considered and

the equalities (2.3) allow us to assume

x1 = x2 = · · · = xk−1 = xk+l+2 = xk+l+3 = · · · = x2k+l

y1 = y2 = · · · = yk−1 = −yk+l+2 = −yk+l+3 = · · · = −y2k+l,
(2.5)

and

xk+i = xk+l+1−i and yk+i = −yk+l+1−i

(

i = 0, . . . ,

⌊

l

2

⌋)

.(2.6)

Since any eigenvector is determined up to a multiplying constant we can take

x1 = λ1 and y1 = λ2 (it is clear that y1 6= 0). Substituting these values into (2.5) we
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get that if the equalities (2.3) hold for 1 ≤ i ≤ k − 1 and for k + l + 2 ≤ i ≤ 2k + l

then

xk = xk+l+1 = λ1(λ1 − k + 2) and yk = −yk+l+1 = λ2(λ2 − k + 2),(2.7)

must hold.

Consider now the remaining coordinates. Solving the systems (2.4) we get

xi = a1r
i−k+1
1 + b1r

−(i−k+1)
1 and

yi = a2r
i−k+1
2 + b2r

−(i−k+1)
2 (i = k, . . . , k + l + 1),

where rj =
λj+

√
λ2
j−4

2 (j = 1, 2). Using (2.6) we get b1 = a1r
l+3
1 and b2 = −a2r

l+3
2 ,

which yields

xi = a1

(

ri−k+1
1 + r

−(i−k−l−2)
1

)

and

yi = a2

(

ri−k+1
2 − r

−(i−k−l−2)
2

)

(i = k, . . . , k + l + 1),
(2.8)

In particular, putting i = k, we get

xk = a1
(

r1 + rl+2
1

)

and yk = a2
(

r2 − rl+2
2

)

,

while (2.7) gives another equalities for xk and yk respectively, which together with

these above give

a1 =
λ1(λ1 − k + 2)

r1 + rl+2
1

and a2 =
λ2(λ2 − k + 2)

r2 − rl+2
2

.

Substituting the expression of a1 into the first equality of (2.8), and putting λ1 =

2 cosh(2t), t > 0 (i.e., r1 = e2t), we get

xi = 2 ei−k+1+e−(i−k−l−2)

1+el+2 cosh(2t)(2 cosh(2t)− k + 2) (i = k, . . . , k + l + 1).(2.9)

In this way, we obtain the solutions of the first system of (2.4). In fact, all the

solutions xi (k + 1 ≤ i ≤ k + l) satisfy the first equality of (2.3). It remains to

find the appropriate values of xk and xk+l+1. In this purpose, we apply (2.9) to

λ1xk = (k − 1)λ1 + xk+1, and we get that xk is determined by a positive root of

el+3

e2(1 + el+2)

(

2(k − 2) cosh t cosh((l + 2)t)− cosh((l + 5)t)
)

= 0.

Since el+3

e2(1+el+2)
> 0, the root of the above equation is the root of (2.1), and this

equation clearly has a positive real root (the left hand side is a function with a

different sign in 0 and k, for example). Moreover, this is the unique positive real
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root (since otherwise we would have two non-collinear eigenvectors corresponding to

a simple eigenvalue). The value of xk+l+1 is obtained in the same way and it is

equal to xk. Therefore, we have just collected all coordinates of x corresponding to

λ1 = 2 cosh(2t), where t is the unique positive root of (2.1), i.e., we get the first

assertion of the theorem.

Substituting the expression of a2 into the second equality of (2.8), and using the

same substitutions λ2 = 2 cosh(2t) (t > 0), r2 = e2t we get the solutions of the second

system of (2.4):

yi = 2 ei−k+1−e−(i−k−l−2)

1−el+2 cosh(2t)(2 cosh(2t)− k + 2)

(i = k, . . . , k + l + 1).

Considering the coordinates yk and yk+l+1 we get that the first one is determined

by the unique positive root of (2.2), while yk+l+1 = −yk, and the proof is complete.

Remark 2.5. Notice that both functions on the left hand side of the equations

(2.1) and (2.2) are even; since both eigenvalues, λ1 and λ2, are equal to 2 cosh(2t)

(for the appropriate t), we get that the unique positive and the unique negative root

of both equations produce the same solution for the corresponding eigenvalue. Notice

also that the condition λ2(D(k, l)) > 2 in Proposition 2.4 holds whenever k ≥ 4 or

k = 3, l ≥ 2. In addition, statements of the same proposition hold even if any of the

first two eigenvalues is less than 2 with caveat that in this case, t is a complex root of

the corresponding equation. In this way, we allow the special case when the double

kite graph reduces to a path.

Using Proposition 2.4, we prove the following results.

Proposition 2.6. δ(DK(k, l)) > δ(DK(k, l + 1)).

Proof. First, if k < 3 then the inequality is easily proven by examination of the

corresponding eigenvalues of paths Pn and Pn+1.

If k ≥ 3, then we have λ1(DK(k, l)) > λ1(DK(k, l + 1)) [13].

Next, let λ2(DK(k, l)) = 2 cosh(2t̂). Since sinh((l − 1)t)/ sinh((l + 1)t) is an

increasing function in l ≥ 0 we get that

f(t) = (2− k + 2 cosh(2t))

(

2 cosh(2t)− sinh(lt)

sinh((l + 2)t)

)

− k + 1

is negative in t̂. Moreover, f increases in t ≥ t̂ and limt→∞f(t) = ∞, which yields that

f is equal to zero in some point greater than t̂. Thus, λ2(DK(k, l)) < λ2(DK(k, l+1)).
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The above inequalities on λ1 and λ2 give δ(DK(k, l)) > δ(DK(k, l + 1)).

Proposition 2.7. If k ≥ 2, then

δ(DK(k, 0)) =
1

2

(

2−
√

(k − 1)(k + 3) +
√

5 + k(k − 2)
)

.

Proof. For k = 2 we get the result by direct computation. Using the equalities

2 cosh(2t) = λj and e2t =
λj+

√
λ2
j−4

2 (j = 1, 2), and putting l = 0, we get the rational

expressions of (2.1) and (2.2). Solving them we get

λ1(DK(k, 0)) = 1
2

(
√

5 + k(k − 2) + k − 1
)

and

λ2(DK(k, 0)) = 1
2

(
√

(k − 1)(k + 3) + k − 3
)

,
(2.10)

and the proof follows.

Using the last two propositions we can obtain families of double kite graphs with

very small spectral gap. Numerical computation given below confirms this estimation.

Before that we compare the spectral gaps of a path Pn (as we pointed out, a special

case of double kite graph) and a cycle Cn.

Proposition 2.8. δ(Pn) < δ(Cn), for any n ≥ 3.

Proof. Considering the first two eigenvalues of both graphs we get

δ(Pn) = 2

(

cos
π

n+ 1
− cos

2π

n+ 1

)

and δ(Cn) = 2

(

1− cos
2π

n

)

,(2.11)

and so

δ(Cn)− δ(Pn) = 2

(

1− cos
π

n+ 1
+ cos

2π

n+ 1
− cos

2π

n

)

> 0

(since 1 > cos π
n+1 , and cos 2π

n+1 > cos 2π
n ).

Using the equations (2.1) and (2.2) we determine in the family of double kite

graphs with at most 20 vertices those with minimum spectral gap. For n ≤ 6 the

resulting graph is Pn. For 7 ≤ n ≤ 9, this is DK(3, l). For 10 ≤ n ≤ 15 we get

DK(4, l), and for 16 ≤ n ≤ 20 we get DK(5, l).

Note that, by Proposition 2.6, the extension of an internal path of any double

kite graph (with preserving the complete subgraphs unchanged) necessarily produces

the graph with smaller spectral gap. On the other hand, if two double kite graphs

of different orders both minimize the spectral gap, then the larger one does not nec-

essarily contain the longer internal path. For example, this occurs for minimizers of

order 9 and 10.
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Table 2.1

Spectral gap of some graphs.

n Cn Pn DK(n−4
2 , 4) DK(n−6

2 , 6) DK(4, n− 8)

10 0.3820 0.2365 0.0644 0.2365 0.0640

20 0.0979 0.0665 0.0001 7.2 · 10−6 2.7 · 10−6

50 0.0158 0.0114 3.7 · 10−7 1.1 · 10−9 1.7 · 10−15

100 0.0039 0.0029 1.5 · 10−8 1.1 · 10−11 ∗
200 0.0010 0.0007 2.3 · 10−10 7.1 · 10−14 ∗
500 0.0002 0.0001 2.1 · 10−12 ∗ ∗
1000 3.9 · 10−5 3.0 · 10−5 4.5 · 10−13 ∗ ∗

Finally, using Proposition 2.4 and equations (2.11), we determine spectral gaps

of some graphs with large order. The results are summarized in Table 1. The asterisk

stands for a value less than 10−16 (very commonly used numerical precision). We

note that the unique positive roots of the equations given in Proposition 2.4 are

easily determined for any n (by numerical computation). On the other hand, the

consideration of the characteristic polynomial of DK(k, l) (its explicit form is given

in Lemma 4.3 of Section 4) for the same purpose is more complicated: First it often

has many positive roots, and second its two largest roots are almost equal for large n

(compare Table 1), and so the rounding in numerical computation can cause possible

confusions.

A graph with fixed order and minimum spectral gap may or may not have the

double kite structure (some future research will show), but in any case the results of

this section can be considered as a contribution to the subject of graphs with small

spectral gap.

3. Bounds on spectral gap and properties of minimizers. We derive 2

lower bounds on spectral gap of arbitrary connected graph just in terms of its order

and size, and another lower bound when the corresponding graph is bipartite. We

also give 3 upper bounds in terms of coordinates of its principal eigenvector. All

bounds are obtained by combining known bounds on λ1 and λ2. In the second part

of this section, we give some properties of graph that minimizes the spectral gap in

the family of graphs with given order.

Proposition 3.1. Let G be a connected graph on n (n ≥ 2) vertices and m

edges, then

δ(G) >
2m−

√

mn(n− 2)

n
,(3.1)
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and

δ(G) ≥ 4m− n
√

(n+ 2)(n− 2)

2n
+ 1.(3.2)

Proof. We use λ1(G) ≥ 2m
n [18], and λ2(G) <

√

mn−2
n [5] to get

δ(G) = λ1(G) − λ2(G) >
2m

n
−
√

m
n− 2

n
=

2m−
√

mn(n− 2)

n
.

The inequality (3.2) is obtained in the similar way by using the same lower bound on

λ1(G) and λ2(G) ≤
√

(n+2)(n−2)

2 − 1 [14].

Comparing the bounds obtained we get that (3.2) is better than (3.1) when m >
n
(

n2−4
√

(n+2)(n−2)
)

4(n−2) . Also, if n is even or G is not a regular nor semiregular bipartite

then the equality in (3.2) is not attained (compare the corresponding references).

Proposition 3.2. Let G be a connected bipartite graph on n vertices and m

edges, then

δ(G) >
8m− n

√

n(n+ 4)

4n
.(3.3)

Proof. We have (compare [16])

λ2(G) ≤
{ ⌊

n
4

⌋

, if n = 0(mod4) or n = 1(mod4)
√

⌊

n
4

⌋ (⌊

n
4

⌋

+ 1
)

, if n = 2(mod4) or n = 3(mod4),

and therefore, we have λ2(G) <
√

n
4

(

n
4 + 1

)

, for any n ≥ 1. Next, we get δ(G) =

λ1(G)− λ2(G) > 2m
n −

√

n
4

(

n
4 + 1

)

=
8m−n

√
n(n+4)

4n .

For bipartite graphs, (3.3) gives better estimation than (3.2) for any n ≥ 7.

Proposition 3.3. Let G be a connected graph with distinct vertices u, v, t, and w,

and let xu, xv, xt, and xw be the corresponding coordinates of its principal eigenvector.

(i) Let G′ be the graph obtained from G by replacing edges uv, tw with non-edges

vw, tu. If (xt − xv)(xu − xw) < 0 and λ1(G) ≤ λ1(G
′), then

δ(G) ≤ (xt − xv)
2 + (xu − xw)

2

(xt − xv)(xw − xu)
.
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(ii) Let G′ be the graph obtained from G by replacing edge uv with non-edge tw.

If xtxw − xuxv < 0 and λ1(G) ≤ λ1(G
′), then

δ(G) ≤ x2
u + x2

v + x2
t + x2

w

2(xuxv − xtxw)
.

(iii) Let G′ be the graph obtained from G by replacing edge uv with non-edge uw.

If xw − xv < 0 and λ1(G) ≤ λ1(G
′), then

δ(G) ≤ 2x2
u + (xv − xw)

2

2xu(xv − xw)
.

Proof. All three statements are contrapositives of the corresponding parts of

Propositions 6.4.2, 6.4.5, and 6.4.7 from [8].

We illustrate the previous theorem in an example.

Example. Let G be a connected semiregular bipartite graph with n1 (resp., n2)

vertices in the first (resp., second) colour class, and let us assume that n1 > n2. Then,

the first n1 of coordinates of its principal eigenvector are equal to 1/
√
2n1, while the

remaining coordinates are equal to 1/
√
2n2. If we consider the graph G′ obtained in

the way described in Proposition 3.3 (iii) where u,w belong to the first colour class,

and v belongs to the second then, in general case, the inequality λ1(G) ≤ λ1(G
′) may

or may not hold, but if it does hold then we have

δ(G) ≤ n1 − 2
√
n1n2 + 3n2

2
√
n1n2 − 2n2

,

which can be good estimation in some cases.

From now on, Hn will denote a graph with minimum spectral gap in the family

of connected graphs with n vertices. Since the minimizers of order at most 10 are

determined by computer search, we also assume that n > 10.

Proposition 3.4. Hn has less than
n
√

(n+2)(n−2)

4 edges.

Proof. Assume that Hn has at least
n
√

(n+2)(n−2)

4 edges. Substituting this ex-

pression for m into (3.2) we get

δ(Hn) ≥ 4m−n
√

(n+2)(n−2)

2n + 1 ≥ 4(
n
√

(n+2)(n−2)

4 )−n
√

(n+2)(n−2)

2n + 1 = 1

> δ(DK(3, 4)) > δ(DK(3, n− 6)),

where the last two inequalities follow from Table 1, and Proposition 2.6, respectively.

A contradiction.

Proposition 3.5. If Hn is bipartite then it has less than
n
(

1+
√

n(n+4)
)

8 edges.
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Proof. Assume that Hn has at least
n
(

1+
√

n(n+4)
)

8 edges. Substituting this

expression for m into (3.3) we get

δ(Hn) >
8m−n

√
n(n+4)

4n ≥
8

(

n(1+
√

n(n+4))
8

)

−n
√

n(n+4)

4n = 1
4

> δ(DK(3, 4)) > δ(DK(3, n− 6)).

A contradiction.

We give a spectral characteristic of Hn.

Proposition 3.6. If Hn is not a tree then λ2(Hn) is simple eigenvalue.

Proof. Assume that λ2(Hn) = λ3(Hn). Let uv be an edge which belongs to at

least one cycle of Hn (since Hn is not a tree such an edge must exist). Consider

the graph Hn − u + u′ obtained from Hn by removal of vertex u and addition of

vertex u′ which is not adjacent to v, but it is adjacent to all remaining neighbours

of u. Clearly, the graph obtained is connected and has n vertices; in other words,

Hn − u+ u′ is obtained by deletion of edge uv and then, by [7, Theorem 0.7], we get

λ1(Hn) > λ1(Hn − u+ u′).

On the other hand, by eigenvalue interlacing, we have λ2(Hn−u) = λ2(Hn) (since

λ2(Hn) = λ3(Hn)), and then λ2(Hn − u+ u′) ≥ λ2(Hn).

Collecting the above inequalities we get δ(Hn) > δ(Hn − u + u′). A contradic-

tion.

4. An additional result. We say that two non-isomorphic graphs are cospec-

tral if they are sharing the same spectrum. We give the following result.

Proposition 4.1. There is no connected graph that is cospectral toDK(k, l) (k ≥
1, l ≥ 0).

In order to prove the above proposition we need the following results, and the

subsequent lemmas. From now on, H will stand for a putative connected graph

cospectral to DK(k, l). It is then known that (see [10]):

1. H has 2k + l vertices,

2. H has 2
(

k
2

)

+ l + 1 edges,

3. the number of triangles of H is equal to the number of triangles of DK(k, l),

i.e., t(H) = t(DK(k, l)) = 2
(

k
3

)

.

Recall that a maximal clique of a graph is its complete subgraph that cannot be

extended by a vertex to a larger complete subgraph. Since DK(k, l) is a line graph

of a tree its least eigenvalue is greater than −2, and the same must hold for the least
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eigenvalue of H . If so, then H belongs to one of the following classes of graphs (see

[9, Theorem 2.3.20]):

1. L1 = {L(T ), T is a tree},
2. L2 = {L(U), U is an odd unicyclic graph},
3. L3 – the graphs obtained by taking L(T ), and 2 additional disjoint vertices

along with all edges joining these vertices with each vertex of some maximal

clique of L(T ),

4. E – the exceptional graphs whose least eigenvalue is greater than −2 (there

are 20 such graphs on 6 vertices, 110 on 7 vertices, and 443 on 8 vertices;

they can be found in [9, Table A2]).

Lemma 4.2. There is no connected graph H that is cospectral to DK(k, l) when-

ever one of the following holds:

(i) k ≤ 2 or l = 0,

(ii) H ∈ E,
(iii) H contains Kk+1 as an induced subgraph,

(iv) H contains a subgraph equal to either 2Kk, or K1∇2Kk−1,

(v) H contains 2K1∇Kk−1 as an induced subgraph.

Proof. (i) If k ≤ 2 the result follows from the fact that any path is determined by

its spectrum [10]. Next, DK(k, 0) is a line graph with exactly two positive eigenvalues,

and all such line graphs are determined in [3]. By inspecting their spectra, we get the

result.

(ii) Since there is no double kite graphs on 6 vertices with k ≥ 3, l ≥ 1, H

must have 7 or 8 vertices, and if so then there are exactly 2 double kite graphs to be

compared: DK(3, 1), and DK(3, 2). Inspecting the spectra of possible candidates for

H we get that none of them coincide with spectrum of any of these 2 graphs.

(iii) If H contains Kk+1 as an induced subgraph, we have λ1(H) ≥ k. On the

other hand, λ1(DK(k, l)) ≤ λ1(DK(k, 0)) < k (cf. (2.10)), which yields λ1(H) 6=
λ1(DK(k, l)), and the proof follows.

(iv) The proof follows directly from Proposition 2.3.

(v) The eigenvector (k − 1, k − 1, λ1, λ1, . . . , λ1) corresponds to the eigenvalue

λ1 = λ1(2K1∇Kk−1), and then, from (2.3), we get λ1 = 1
2

(√
k2 + 4k − 4 + k − 2

)

.

Using Proposition 2.6 and (2.10), we get that

λ1(DK(k, l)) < λ1(DK(k, 0)) = 1
2

(

√

k(k − 2) + 5 + k − 1
)

< 1
2

(√
k2 + 4k − 4 + k − 2

)

= λ1(2K1∇Kk−1)
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holds for any k ≥ 3, l ≥ 1, and the proof is complete.

We need another spectral property of DK(k, l).

Lemma 4.3. λ3(DK(k, l)) < 2.

Proof. Since DK(k, 0) belongs to the family of line graphs with exactly 2 pos-

itive eigenvalues, we can assume that l ≥ 1. By eigenvalue interlacing we get that

λ3(DK(k, l)) ≤ max{λ1(Pl), λ1(Kk−1)}, and therefore we can also assume that k ≥ 4.

Using the formula for the characteristic polynomial of a graph obtained by in-

serting an edge between arbitrary vertices of two graphs [7, Theorem 2.12], and the

formula for the characteristic polynomial of an l-vertex path PPl

(

t1/2 + t−1/2
)

=
t−l/2(tl+1−1)

t−1 (see, for example, [17]), we can easily get the explicit form of the char-

acteristic polynomial of DK(k, l):

PDK(k,l)

(

t1/2 + t−1/2
)

=

(

1 + 1+t√
t

)2k
(

(−2 + k + (−2 + k)
√
t− t)2t3+l − (−1 + (−2 + k)(

√
t+ t))2

)

(−1 + t)(1 +
√
t+ t)4t

l
2

.

By eigenvalue interlacing, we have λ3(DK(k, l)) ≤ k − 2. Computing the limit

point limt→1 PDK(k,l)

(

t1/2 + t−1/2
)

, we get PDK(k,l)(2) 6= 0 (for k ≥ 4, l ≥ 1), i.e.,

λ3(DK(k, l)) 6= 2.

We are going to prove that PPD(k,l)
is positive at any point t1/2+t−1/2 of (2, k−2].

Its sign depends only on
(

−2 + k + (−2 + k)
√
t− t)2t3+l − (−1 + (−2 + k)(

√
t+ t)

)2
,

and this factor can be rewritten in
(

t
l+2
2

(

−t
3
2 + (−2 + k)(t+

√
t)
))2

− (−1 + (−2 + k)(
√
t+ t))2,

which is positive for the corresponding values of t iff

f(t) = t
l+2
2

(

−t
3
2 + (−2 + k)(t+

√
t)
)

− (−1 + (−2 + k)(
√
t+ t))

is positive. Since k − 2 ≥
√
t, putting k − 2 =

√
t into above expression we get

f(t) ≥ t
6+l
2 − t

3
2 − t+ 1,

and the right hand side is positive at any t > 1 (since l ≥ 1), implying that f(t) > 0

for any t satisfying t1/2 + t−1/2 ∈ (2, k − 2].

Collecting the above results we get that there are no roots of PDK(k,l) (k ≥ 4, l ≥
1) in [2, k − 2], which yields λ3(DK(k, l)) < 2.
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Recall that a graph is said to be cyclic if it contains at least one cycle.

Lemma 4.4. If a connected graph H contains a set of vertices whose removal gives

rise to a disconnected graph containing at least 3 cyclic components then DK(k, l) is

not cospectral to H.

Proof. Assume to the contrary, then since the index of any cyclic graph is at least

2, we get λ3(H) > λ3(DK(k, l)).

The previous lemma gives very restrictive structural properties of H . For exam-

ple, if H ∈ L1 then it contains at most two maximal cliques of order greater than 4.

And if so, then these cliques have at most one common vertex, H does not contain any

maximal clique of order 4, the maximal cliques of order 3 are mutually disjoint and

each of them has exactly one common vertex with exactly one of two larger cliques.

These and similar properties of H ∈ L2 ∪ L3 will be used in the next proof.

Proof of Proposition 4.1. Assume to the contrary. Then, by Lemma 4.2 (ii),

H ∈ ⋃3
i=1 Li.

Let H ∈ L1 ∪ L2. If X is the vertex set of the corresponding root graph then

counting the number of vertices, edges, and triangles of H , we get:

n(H) =
1

2

∑

v∈X

deg(v) = 2k + l

m(H) =
∑

v∈X

(

deg(v)

2

)

= 2

(

k

2

)

+ l + 1(4.1)

t(H) =
∑

v∈X

(

deg(v)

3

)

+ i= 2

(

k

3

)

,

where deg(v) is the degree of the corresponding vertex and i = 0, unless H = L(U)

and U contains a triangle when i = 1.

Let aj denote the number of vertices in X having degree j. By Lemma 4.2 (iii)

and (iv), we have aj = 0 for j > k, and ak ≤ 1. Using the result of Lemma 4.4, we

get
∑k

j=5 aj ≤ 2, a4 ≤ 2, and if a4 = 2 then
∑k

j=5 aj ≤ 1.

Let k ≥ 7. We get t(H) ≤
(

k
3

)

+
(

k−1
3

)

+a3+i, and (by Lemma 4.4) a3+i ≤ 2k−1.

Thus t(H) ≤
(

k
3

)

+
(

k−1
3

)

+ 2k − 1 < 2
(

k
3

)

. A contradiction.

It remains to consider the case k ∈ {3, 4, 5, 6}.

If k = 6, we get t(H) < t(DK(6, l)) whenever a5 + a6 < 2. So we have t(H) =
(

6
3

)

+
(

5
3

)

+ a3 + i = 2
(

6
3

)

, giving a3 + i = 10. Computing m(H) and n(H) for

a6 = a5 = 1, a4 = 0, we get a1 = 31 − 3i. On the other hand, counting the number
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of terminal vertices in the root graph of H for these parameters we get a1 = 19 (if

H = L(T )) or a1 = 17 (if H = L(U)). A contradiction.

If k = 5, from the system (4.1) we get t(H) = 10a5 + 4a4 + a3 + i = 20 and

15a5+8a4+3a3−a1 = 22. Clearly, t(H) < 20 unless a5 = 1, and then a4 = 1 or a4 = 2

must hold. In the first case we get a3 = 6− i, a1 = 19−3i, and a3 = 2− i, a1 = 15−3i

in the second, but in both cases a1 does not match the exact number of terminal

vertices in the root graph.

If k = 4, in the similar way, we get a1 = 10 − 3i, while the number of terminal

vertices in T (resp., U) with a4 = 1 is 8 (resp., 6).

Finally, if k = 3 then H must contain exactly 2 triangles, but then it is not

cospectral to DK(3, l) by Proposition 2.3.

Let H ∈ L3. Instead of (4.1) we have the following equations:

n(H) =
1

2

∑

v∈X

deg(v) + 2 = 2k + l

m(H) =
∑

v∈X

(

deg(v)

2

)

+ 2d = 2

(

k

2

)

+ l + 1(4.2)

t(H) =
∑

v∈X

(

deg(v)

3

)

+ i+ 2

(

d

2

)

= 2

(

k

3

)

,

where d denotes the order of the maximal clique related to 2 additional vertices (see

definition of L3). By Lemma 4.2 (v), we get d ≤ k− 2. Let X again denote the set of

vertices of T , and let aj ’s be the same as above (along with the inequalities obtained).

Considering the third equation of (4.2) we get t(H) < t(DK(k, l)) unless (a)

ak = ak−1 = 1, d ∈ {1, 2, 3}, (b) ak = 0, k ≤ 5, or (c) ak = 1, d = k − 2. In case

(a) we get t(H) < t(DK(k, l)) unless d = 1, k ≤ 6, or d = 2, k ≤ 7, or d = 3, k ≤ 9.

These particular cases and the case (b) are resolved by solving system (4.2) in a1
and comparing the value obtained with the exact value of a1. Similarly, in case

(c), solving the system we get a3 = k − 2, a1 = 3k − 2, but considering T we get

a1 = k + (k − 3) + (k − 2) = 3k − 5. A contradiction.

Remark 4.5. If some double kite graph has nonunique spectral gap then, ac-

cording to Proposition 4.1, it is not cospectral to other connected graph with equal

gap. In other words, if some double kite graph minimizes the spectral gap then it is

the unique minimizer or there is another minimizer but with different spectrum.

A graph is determined by its spectrum if it is a unique graph having this spectrum.

To show whether a double kite graph is determined by its spectrum, it remains to check
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whether it is cospectral to some disconnected graph or not, but this consideration is

beyond the subject of this paper.
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