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Abstract. A fully block recursive method for computing outer generalized inverses of given

square matrix is introduced. The method is applicable even in the case when some of main diagonal

minors of A are singular or A is singular. Computational complexity of the method is not harder

than the matrix multiplication, under the assumption that the Strassen matrix inversion algorithm

is used. A partially recursive algorithm for computing various classes of generalized inverses is

also developed. This method can be efficiently used for the acceleration of the known methods for

computing generalized inverses.
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1. Introduction. Following the usual notations, the set of allm×n real matrices

of rank r is denoted by R
m×n
r , while the set of all real m× n matrices is denoted by

R
m×n. The principal submatrix of n × n matrix A which is composed of rows and

columns indexed by 1 ≤ k1 < k2 < · · · < kl ≤ n, 1 ≤ l ≤ n, is denoted by A{k1,...,kl}.

For any m×n real matrix the following matrix equations in X are used to define

various generalized inverses of A:

(1) AXA=A, (2) XAX=X, (3) (AX)T =AX, (4) (XA)T =XA.

Also, in the case m = n, the following two additional equations are exploited:

(5) AX = XA (1k) Ak+1X = Ak,

where (1k) is valid for any positive integer k satisfying k ≥ ind(A) = min{p :

rank(Ap+1) = rank(Ap)}. The set of matrices obeying the equations represented in S

is denoted by A{S}, for arbitrary sequence S of the elements from {1, 2, 3, 4, 5, 1k}.

Any matrix X ∈ A{S} is known as an S-inverse of A and it is denoted by A(S) [4].

The matrix X satisfying equations (1) and (2) is said to be a reflexive g-inverse

of A, whereas the matrix X satisfying only the equation (2) is called an outer inverse
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of A. Subsequently, the Moore-Penrose inverse X = A† of A satisfies the set of

the equations (1), (2), (3) and (4). The Drazin inverse X = AD of A satisfies the

equations (1k), (2) and (5).

When the subproblems are of the same type as the original problem, the same

recursive process can be carried out until the problem size is sufficiently small. This

special type of Divide and Conquer (D&C) type of algorithms, is referred to as D&C

recursion.

For given function T (n), notations Θ(T (n)) andO(T (n)) mean the set of functions

defined in the following way (see, for example [8]):

Θ(T (n)) = {f(n) | 0 ≤ c1T (n) ≤ f(n) ≤ c2T (n), n ≥ n0, c1, c2, n0 > 0}

O(T (n)) = {f(n) | 0 ≤ f(n) ≤ cT (n), n ≥ n0, c, n0 > 0}.

Denote by add(n), mul(n) and inv(n) complexities of matrix addition, multipli-

cation and inversion on n × n matrices. Also denote the complexity of multiplying

m×n matrix with n× k matrix by mul(m,n, k). Particularly, mul(n) = mul(n, n, n).

Results concerning block recursive algorithms in linear algebra, based on the LU

decomposition, can be found for example in [12, 13, 16, 20, 22]. Our paper [20] deals

with the time complexity of block recursive generalized Cholesky factorization and its

applications to the generalized inversion.

The Schur complement S = (A/A11) = A22 −A21A
−1
11 A12 of the block matrix

(1.1) A =

[

A11 A12

A21 A22

]

∈ R
n×n, A11 ∈ R

k×k

is a basic tool in computation of the inverse matrix A−1 [3]. The generalized Schur

complement S = A22 − A21A
−
11A12, where A−

11 is a generalized inverse of A11, plays

an important role in representations of various generalized inverses A− [2, 5, 6, 9, 10,

17, 18, 23, 24].

Although there are many representations of different generalized inverses in

Banachievich-Schur form, its computational aspect is not well investigated so far.

This problem is investigated in the present paper. Furthermore, we construct ap-

propriate Strassen-type algorithm for generalized matrix inversion. The advantage of

that algorithm is its computational complexity O(mul(n)), but the drawback is that

it produces only outer inverses. For this purpose, we introduce one-step and partially

block recursive Strassen-type algorithms. Although their time complexity is O(n3),

they are efficient and practically applicable.

2. Strassen method for efficient matrix multiplication and inversion.

Let A,B be n× n real or complex matrices. The usual algorithms for computing the
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matrix product C = AB require n3 multiplications and n3−n2 additions (2n3−n2 =

O(n3) floating point operations in total). In the paper [21], V. Strassen introduced an

algorithm for matrix multiplication which complexity is O(nlog
2
7) ≈ O(n2.807) (less

than O(n3)). Some other algorithms for computing the matrix product in a time less

than O(n3) are known. Currently the best one is due to Coppersmith and Winograd

[7] and works in time O(n2.376). An overview of various efficient matrix multiplication

algorithms is presented in [11]. The authors of the paper [11] also improved some of

efficient matrix multiplication algorithms in the case of small matrices.

Strassen in [21] also introduced the algorithm for finding the inverse of a given

matrix A of the form (1.1), with the same complexity as the matrix multiplication.

Lemma 2.1. [21] Assume that A is partitioned as in (1.1) and

(2.1) X = A−1 =

[

X11 X12

X21 X22

]

∈ R
n×n, X11 ∈ R

k×k.

Matrices X11, X12, X21 and X22 are defined by the following relations:

(2.2)

1. R1 = A−1
11

2. R2 = A21R1

3. R3 = R1A12

4. R4 = A21R3

5. R5 = R4 −A22

6. R6 = R−1
5

7. X12 = R3R6

8. X21 = R6R2

9. R7 = R3X21

10. X11 = R1 −R7

11. X22 = −R6.

In the rest of this section, we assume that the matrix A ∈ R
n×n is decomposed as

in (1.1). The matrix R5 in the relations (2.2) is equal to R5 = −(A22−A21A
−1
11 A12) =

−S = −(A/A11). Intermediate matrices R1, . . . , R7 are introduced to ensure a min-

imal number of matrix multiplications. However, these matrices require additional

memory space to be stored. If we eliminate R1, . . . , R7 from the relations (2.2) we

obtain well-known explicit form of the block matrix inversion [3]:

X = A−1 =

[

A−1
11 +A−1

11 A12S
−1A21A

−1
11 −A−1

11 A12S
−1

−S−1A21A
−1
11 S−1

]

.

Now we state complete Strassen-type algorithm for fast matrix inversion (Algo-

rithm 2.2).

Algorithm 2.2. Strassen-based matrix inversion.

Require: Invertible n× n matrix A which all principal submatrices are invertible.

1: If n = 1 then returnX = [a−1
11 ]. Else decompose matrix A as in (1.1) and continue.

2: Compute X11, X12, X21 and X22 using formulas (2.2), where the inverses are

computed recursively and for matrix-matrix multiplication is used one of the

Θ(n2+ǫ) algorithms.
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3: Return the inverse matrix X = A−1.

The parameter k in the decomposition (1.1) can be chosen arbitrarily, but the

most frequent choice is k = ⌊n/2⌋. Algorithm 2.2 in Step 2 recursively computes

the inverse of principal submatrices and its Schur complements. Also, Algorithm 2.2

assumes that the recursion is continued down to the level 1 × 1. The only situation

in which Algorithm 2.2 may crash is Step 1, in the case n = 1 and a11 = 0.

It is hard to verify in advance invertibility of both A11 and S in each recursive

call of Algorithm 2.2. In the rest of this section we give an equivalent condition which

can be directly checked on the input matrix A. Such conditions are not investigated

in the papers concerning Algorithm 2.2.

Let β, γ ⊆ {1, 2, . . . , n} and A ∈ R
n×n. Denote by Aβ,γ a submatrix of A obtained

by taking rows of A indexed by β and columns of A indexed by γ. Also denote by

βc = {1, 2, . . . , n} \ β and Aβ = Aβ,β. The following theorem is well-known and its

statement can be found, for example in [25] (p. 112, Th. 4.8 and Th. 4.9), restated

here as Proposition 2.3:

Proposition 2.3. Let A ∈ R
n×n and β ⊆ {1, 2, . . . , n}. If the matrix A is

invertible, then

detA−1
βc =

detAβ

detA
, A−1

βc = (A/Aβ)
−1 = (Aβc −Aβc,β A

−1
β Aβ,βc)−1.

The following lemmas are direct corollaries of Proposition 2.3.

Lemma 2.4. If both A and A11 are invertible, then the same holds for X22 and

S = (A/A11). In addition, we have X22 = S−1.

Lemma 2.5. If both A and A22 are invertible, then the same holds for X11 and

(A/A22).

Lemma 2.6. If all principal submatrices A{1,...,l} (l = 1, 2, . . . , n) of an invertible

matrix A are invertible, then the same holds for the principal submatrices of the Schur

complement S = (A/A11).

Proof. Consider an arbitrary principal submatrix S{1,...,l}. Since A{1,...,k+l} is

invertible, Lemma 2.4 implies that X{k+l+1,...,n} is invertible. Since X{k+l+1,...,n} =

(X22){l+1,...,n−k}, according to Lemma 2.5, we directly obtain that S{1,...,l} is invert-

ible.

Lemma 2.7. If both A and S = (A/A11) are invertible and A{1,...,l} is singular

for l > k, then S{1,...,l−k} is singular.
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Proof. If we assume that X{l+1,...,n} is invertible, by applying Lemma 2.5 on the

matrix X and its decomposition

X =

[

X ′
11 X ′

12

X ′
21 X ′

22

]

, X ′
11 = X{1,...,l},

we obtain that A′
11 = A{1,...,l} is invertible, which is contradiction. Hence, X{l+1,...,n}

is singular. Since X22 = S−1 and (X22){l−k+1,...,n−k} = X{l+1,...,n}, from Lemma

2.4 (applied on matrices S, S{1,...,l−k} and (X22){l−k+1,...,n−k}) we conclude that

S{1,...,l−k} is singular.

Now we are ready to prove the following main theorem.

Theorem 2.8. Algorithm 2.2 works correctly for an input matrix A (indepen-

dently of the choice of the parameter k), if and only if all principal submatrices

A{1,...,l} (l = 1, 2, . . . , n) are invertible.

Proof. We use the mathematical induction. For n = 1, 2 the statement of the

theorem trivially holds. Assume that it is valid for each matrix of the size less than

n and consider A ∈ R
n×n.

If all principal submatrices A{1,...,l} (l = 1, 2, . . . , n) are invertible, according

to Lemma 2.4 we have that S = (A/A11) is invertible. Furthermore, according to

Lemma 2.6, all S{1,...,l} (l = 1, 2, . . . , n− k) are invertible. Now, since both A11 and

S satisfy the conditions of the theorem, induction hypothesis yields that Algorithm

2.2 correctly computes A−1
11 and S−1, and hence, it also correctly computes X .

If A11 = A{1,...,k} is singular, then Algorithm 2.2 will fail obviously. Assume that

A11 is invertible, but A{1,...,l} is singular for some l 6= k. If l < k then (A11){1,...,l} =

A{1,...,l} is singular and according to the induction hypothesis, Algorithm 2.2 will fail

on the computation of A−1
11 . Otherwise, if l > k, then according to Lemma 2.7 we

have that S{1,...,l−k} is singular. Again, according to induction hypothesis, Algorithm

2.2 will fail on the computation of S−1.

Remark 2.9. If any algorithm for matrix-matrix multiplication with complexity

O(n2+ǫ) is used to perform all the matrix multiplications in relations 2, 3, 4, 7, 8 and

9 of Lemma 2.1, then Algorithm 2.2 also works with complexity O(n2+ǫ), 0 < ǫ < 1.

Especially, if the Strassen’s matrix-matrix multiplication algorithm and full recursion

is applied, Algorithm 2.2 requires 6nlog
2
7/5− n/5 = Θ(n2.807) multiplications [8, 14,

21]. Otherwise if the usual matrix-matrix multiplication algorithm with ordinary time

complexity O(n3) is used, then complexity of Algorithm 2.2 is O(n3).

3. Strassen-type algorithm for generalized inversion. Let us mention that

some of principal submatrices A{1,...,l} can be singular even for an invertible matrix A.

Some authors, for example [1], agree that the stated problem cannot be encountered
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in practice. One counterexample can be found in [23].

In this section, we assume that matrix A does not satisfy the conditions of The-

orem 2.8. Moreover, we may even suppose that complete A is singular. A natural

extension of Algorithm 2.2 would be to avoid the crushing in the case a11 = 0. Recall

that a generalized inverse (Moore-Penrose, Drazin, or any other unique inverse) of the

zero matrix 0n×n is equal to that zero matrix itself. Based on that idea, we provide

Algorithm 3.1.

Algorithm 3.1. Strassen generalized matrix inversion for singular ma-

trices.

Require: Arbitrary n× n matrix A.

1: If n = 1 then return X = [a
(α)
11 ], where a

(α)
11 =

{

a−1
11 , a11 6= 0

0, a11 = 0.

Else decompose matrix A as in (1.1) with k = ⌊n
2 ⌋ and continue.

2: Apply formulas (2.2) where A−1
11 and R−1

5 are replaced by A
(α)
11 and R

(α)
5 , which

are computed recursively.

3: Return matrix X = A(α) of the form (2.1).

Algorithm 3.1 returns the matrix

(3.1) X =

[

A
(α)
11 +A

(α)
11 A12S

(α)A21A
(α)
11 −A

(α)
11 A12S

(α)

−S(α)A21A
(α)
11 S(α)

]

,

which is well-known Banachiewicz-Schur form of the generalized inverse X . Here, by

S = (A/A11)(α) = A22 − A21A
(α)
11 A12 we denoted the generalized Schur complement.

Also, by S(α) we denote the {α}-generalized inverse of S.

Generalized inverses of the form (3.1) are investigated by many authors. Bak-

salary and Styan in [2] gave the necessary and sufficient conditions such that the outer

inverses, least-squares generalized inverses and minimum norm generalized inverses

can be represented in the Banachiewicz-Schur form. Similarly, Y. Wei [24] found the

sufficient conditions for the Drazin inverse to be represented in the form (3.1). In

the paper [9] these results are generalized to the weighted Moore-Penrose inverse and

the weighted Drazin inverse of A. Burns et al. [5] investigated {1}, {2}, {1, 3}, {1, 4}

inverses as well as the Moore-Penrose inverse of A in the form (3.1). In [19] these

results are extended to the set of polynomial matrices.

Some of the equations (1), (2), (3) and (4) as well as the equations (1k) and (5)

for square matrices are satisfied by the matrix X = A(α), if A and input matrices in

recursive calls of Algorithm 3.1 satisfy conditions imposed in [2, 5, 19, 24]. However,

this assumption is prohibitive. Only the equation (2) holds in general [5]. In this way,
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we proved the following theorem.

Theorem 3.2. Let A be arbitrary n × n matrix and let X = A(α) be the result

given by Algorithm 3.1. The matrix X is {2}-inverse of the matrix A, i.e., holds

XAX = X.

4. Non-recursive and partially recursive algorithm for generalized in-

version. Vast majority of matrix multiplication algorithms of complexity below

O(n3) are impractical for reasonable sized matrices [11]. The Strassen method for

fast matrix inversion has been regarded as being fundamentally unstable [15]. Nu-

merical experiments show that Strassen’s inversion method do not always produce a

small left or right residual even in the case when A is symmetric positive definite and

conventional matrix multiplication is used [15] .

Moreover, Algorithm 3.1 returns only {2} inverse in the general case, we need a

different approach for computing other classes of generalized inverses. Furthermore,

divide and conquer algorithms that are time efficient, often have relatively small recur-

sion depth. Also, efficiency of these algorithms is usually improved if the recursion is

stopped at relatively larger number of basic cases which can be solved non-recursively.

In our case, our idea is to use equations (2.2), where A−1
11 and S−1 are replaced by

some of known generalized inverses A−
11 and S−. In such a way, we obtain Algorithm

4.1.

Algorithm 4.1. Non-recursive matrix generalized inversion.

Require: Arbitrary n× n matrix A.

1: Apply formulas (2.2) where we take particular generalized inverses A−
11 and S−

(computed outright by some other method) instead of A−1
11 and S−1.

2: Return the matrix X of the form (2.1).

The following relations are of interest in determining the type of generalized

inverse X computed by means of Algorithm 4.1. Those relations are given in various

forms in [2, 3, 5, 9, 23, 24].

N (A11) ⊆ N (A21) ⇔ A21 = A21A
(1)
11 A11, for every A

(1)
11(4.1)

N (A∗
11) ⊆ N (A∗

12) ⇔ A12 = A11A
(1)
11 A12, for every A

(1)
11(4.2)

N (S∗) ⊆ N (A∗
21) ⇔ A21 = SS(1)A21, for every S(1)(4.3)

N (S) ⊆ N (A12) ⇔ A12 = A12S
(1)S, for every S(1)(4.4)

R(A21) ⊆ R(AD), N (AD) ⊆ N (A21), A12 = A12S
DS, A21 = SDSA21.(4.5)

In these relations, N (A) is the nullspace of A and R(A) is the range of A.

Following notations from [5], we use conditions (N1), (N3), (N4), (N) with the

following meaning. Condition (N1) is equivalent with (4.1) and (4.2), condition (N3)
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with (4.2) and (4.3), (N4) assumes (4.1) and (4.4), while (N) is equivalent with (N3)

and (N4).

Theorem 4.2. Algorithm 4.1 computes the following generalized inverses of A

in the case when it is terminated in Step 2:

1. If A−
11 = A

(1)
11 , S

− = S(1) then X = A(1) if A satisfies (N1) or (N3) or (N4).

2. If A−
11 = A

(2)
11 , S

− = S(2) then X = A(2).

3. If A−
11 = A

(j)
11 , S

− = S(j) then X = A(j) if A satisfies (Nj), j = 3, 4.

4. If A−
11 = A

(1,j)
11 , S− = S(1,j) then X = A(1,j) if A satisfies (Nj), j = 3, 4.

5. If A−
11 = A†

11, S
− = S† then X = A† if A satisfies (N).

6. If A−
11 = AD

11, S
− = SD and A satisfies (4.5), then X = AD.

Note that some practical implementations of Algorithm 2.2 do not use a full

recursion. Instead, one switches to some other algorithm for matrix inversion at an

appropriate block size [14]. In other words, it performs the recursion to some depth,

but after that use another method to compute appropriate matrix inverses. We call

such method a partially recursive method.

Partially recursive method (Algorithm 4.3) represent a balance between Algo-

rithm 3.1, which is fully recursive, and Algorithm 4.1, which takes only one matrix

decomposition. However, Algorithm 4.3 requires that appropriate conditions of the

Theorem 4.2 are satisfied by an input matrix on each recursive call. Recursion depth

d means that algorithm uses d recursive calls and after that produces selected gener-

alized inverses A−
11 and S− in order to obtain the inverse A−.

Algorithm 4.3. PartRecInv(A, d): Partially recursive method for generalized

inversion.

Require: Arbitrary n× n matrix A and recursion depth d < n.

1: If d = 1 then apply Algorithm 4.1. Otherwise continue.

2: Compute A−
11 = PartRecInv(A11, d− 1) and S− = PartRecInv(S, d− 1).

3: Apply formulas (2.2) where A−
11 and S− are taken instead of A−1

11 and S−1, re-

spectively.

4: Return the matrix X of the form (2.1).

At the end of this section, note that the time complexity of both Algorithm 4.1

and Algorithm 4.3 is Θ(n3) (under the assumption that d ≪ n). That is true even in

the case when Θ(n2+ǫ) algorithm is used for matrix-matrix multiplications. However,

as it will be seen in the next section, both algorithms are practically efficient.

5. Numerical examples. We implement Algorithm 4.1 in the package

Mathematica 8.0 and test it on numerous randomly generated test matrices. For this

test, we compute the Moore-Penrose (MP) inverse of a test matrix A which satisfies
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condition (N) (i.e., conditions (4.1)–(4.4)).

For the sake of simplicity, we used randomly generated test matrices satisfying

(4.1)–(4.4), rather than some classes of test-matrices. To ensure that required condi-

tions are satisfied, we used the procedure described in Algorithm 5.1.

Algorithm 5.1. Creating a random matrix satisfying eq. (4.1)–(4.4).

Require: Matrix of dimension n, with dimension of the first block k.

1: Randomly generate a k × k matrix A11 and (n− k)× (n− k) matrix S.

2: Randomly generate k× (n− k) and (n− k)× k matrices C1 and C2 respectively.

3: Return the matrix A =

[

A11 A12

A21 A22

]

=

[

A11 A11C1S

SC2A11 S + SC2A11C1S

]

.

Lemma 5.2. Random matrix A generated by Algorithm 5.1 satisfies conditions

(4.1)–(4.4).

Proof. By putting expressions for A21 and A12 into (4.1)–(4.4) we obtain

A21A
(1)
11 A11 = SC2(A11A

(1)
11 A11) = SC2A11 = A21

A11A
(1)
11 A12 = (A11A

(1)
11 A11)C1S = A11C1S = A12

SS(1)A21 = (SS(1)S)C2A11 = SC2A11 = A21

A12S
(1)S = A11C1(SS

(1)S) = A11C1S = A12

Since the previous equations are satisfied for every A
(1)
11 and S(1), we conclude that A

satisfies (4.1)–(4.4).

Procedure described by Algorithm 5.1 can be generalized such that all generated

input matrices in each recursion call (up to the depth d) of Algorithm 4.3 satisfy

required conditions. Idea is to generate matrices A11 and S recursively, using the

same method for d − 1. That extension is used for generating a second set of test

matrices.

We compared running times of Algorithm 4.1 versus the built-in Mathematica

function Pseudoinversewhich computes the Moore-Penrose inverse of a given matrix.

The testing was done on Intel Core-i5 processor on 2.66 GHz (without multi-core

optimizations) with 4 GB of RAM. Elements of all test matrices A ∈ R
n×n are real

numbers from the interval (0, 1) and the value of the parameter k was k = ⌊n/2⌋. All

running times (in seconds) are averaged from 20 generated test matrices and showed

in Table 5.1.

We see that Algorithm 4.1 clearly outperforms Mathematica build-in function

Pseudoinverse, although the time complexity of both implementations is Θ(n3).

Note that matrix-matrix multiplications in Mathematica are also Θ(n3) operations.

We can give one simplified explanation of this fact. Assume that the running time of
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n Pseudoinverse Alg. 4.1

500 0.078 0.049

600 0.109 0.094

700 0.180 0.125

800 0.250 0.156

900 0.359 0.203

1000 0.484 0.250

n Pseudoinverse Alg. 4.1

500 0.110 0.078

600 0.156 0.093

700 0.234 0.125

800 0.344 0.187

900 0.438 0.218

1000 0.578 0.266

rankA11 = rankS = ⌊k/2⌋ rankA11 = rankS = ⌊7k/8⌋
Table 5.1

Average running times of the implementation of Algorithm 4.1 and Mathematica build-in func-

tion Pseudoinverse.

the function Pseudoinverse on n × n matrix is equal to pinv(n) ≈ C · n3, for some

constant C > 0. Also, assume that the matrix-matrix multiplication is performed

in time mul(n) ≈ c · n3, where c > 0 is another constant. We may also assume

that c < C, since the Moore-Penrose inverse computation is (computationally) more

difficult job than the matrix multiplication. Under these assumptions, we estimate

running time of Algorithm 4.1:

2 · pinv(n/2) + 6 ·mul(n/2) ≈
(C + 3c)

4
· n3,

which is definitely less than pinv(n) ≈ C ·n3. Of course, the ratio between individual

running times may vary significantly, depending on the matrix dimension n, rank r

and the entire structure of the input matrix as well.

We also compared running times of Algorithm 4.1, Algorithm 4.3 (for various

values of the recursion depth d) and Mathematica build-in function Pseudoinverse.

Note that, for this purpose, we needed test matrices A such that Algorithm 4.3 works

correctly for a given value of d. Results (in seconds) obtained on different randomly

generated test matrices are shown in Table 5.2.

n Pseudoinverse Alg. 4.1 Alg. 4.3 Alg. 4.3 Alg. 4.3

d = 2 d = 4 d = 8

600 0.166 0.097 0.070 0.054 0.098

700 0.239 0.131 0.091 0.075 0.121

800 0.333 0.177 0.122 0.091 0.141

900 0.434 0.233 0.180 0.137 0.176

1000 0.575 0.293 0.219 0.175 0.204

1100 0.760 0.373 0.284 0.216 0.247

Table 5.2

Average running times of Algorithms 4.1 and 4.3, versus Mathematica function Pseudoinverse.
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We see that best running time comes from Algorithm 4.3 in the case d = 4. Per-

formances are degraded by further increase of the depth d. In that case, the overhead

coming from handling of the recursive calls becomes significant and comparable to

the time spent on generalized inverses computation. Note that an optimal value of d

may vary for different values of the matrix dimension n. It is also further limited by

a maximal depth such that all required conditions from Theorem 4.2 are satisfied for

an input matrix in each recursive call.

Finally, let us note that the application of Algorithms 4.1 and 4.3 did not destroy

the accuracy of the obtained result. Residual norms ‖AXA − A‖, ‖XAX − X‖,

‖AX− (AX)T ‖ and ‖XA− (XA)T ‖ were the same order of magnitude as in the case

of PseudoInverse.

6. Conclusion. In the present paper, we follow the main idea of the paper [20],

expressed in its title: construction of algorithms for generalized inversion having the

same complexity as the matrix multiplication. Guided by the same result for inverting

nonsingular matrices (see for example [8], we tend to use Strassen algorithm for fast

matrix multiplication and completely block recursive algorithms.

We show that if all principal submatrices of A are invertible, then the same

holds for its inverse matrix X and for the Schur complements of A, and describe

corresponding purely recursive algorithm for computing the usual inverse of A. We

also extended this method in the case when some principal submatrices of A are

singular or complete A is singular, and define a recursive algorithm for computing {2}-

inverses in purely block recursive form which complexity is also Θ(mul(n)). Therefore,

by using any method for matrix multiplication with cost O(n2+ǫ), 0 < ǫ < 1, we

generate algorithm for computing outer inverses of computational cost below O(n3).

The lack of such an algorithm is that it generates only outer inverses. We also

develop partially recursive algorithm for computing various classes of generalized in-

verses. This algorithm uses in advance prescribed recursive depth d. The efficiency

of the algorithm depending on the value d is investigated.
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