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Abstract. The accurate solution of some of the main problems in numerical linear algebra (linear

system solving, eigenvalue computation, singular value computation and the least squares problem)

for a totally positive Bernstein–Vandermonde matrix is considered. Bernstein–Vandermonde ma-

trices are a generalization of Vandermonde matrices arising when considering for the space of the

algebraic polynomials of degree less than or equal to n the Bernstein basis instead of the monomial

basis.

The approach in this paper is based on the computation of the bidiagonal factorization of a

totally positive Bernstein–Vandermonde matrix or of its inverse. The explicit expressions obtained

for the determinants involved in the process make the algorithm both fast and accurate. The error

analysis of this algorithm for computing this bidiagonal factorization and the perturbation theory

for the bidiagonal factorization of totally positive Bernstein–Vandermonde matrices are also carried

out.

Several applications of the computation with this type of matrices are also pointed out.
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1. Introduction. The design of accurate and efficient algorithms for structured

matrices is a relevant field in numerical linear algebra which in recent years has

received a growing attention (see, for instance, the survey paper [12] and references

therein). In particular, in Section 2.3 of [12] several different classes of structured

matrices are considered, among them the class of totally positive matrices.

Recent books on the subject of totally positive matrices are [17, 34] (see also [16]

in connection with Chapter 2 of [17]). These monographs cover many aspects of the

theory and applications of totally positive matrices and, although they do not include

the topic of accurate computations with this type of matrices, they provide useful
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references to the work of Demmel and Koev [14, 28, 29].

In our work, we will consider one special class of totally positive matrices which we

have analyzed in [30] in the context of linear system solving: Bernstein–Vandermonde

matrices. They have also been used in [32] for solving the problem of least squares

fitting in the Bernstein basis.

Bernstein–Vandermonde matrices are a generalization of Vandermonde matrices

arising when considering the Bernstein basis instead of the monomial basis for the

space of the algebraic polynomials of degree less than or equal to n.

As recalled in the recent survey [20], the Bernstein polynomials were originally

introduced one century ago by Sergei Natanovich Bernstein to facilitate a constructive

proof of the Weierstrass approximation theorem. Many years later, in the early 1960s,

the work of Bézier and de Casteljau introduced the Bernstein polynomials in the field

now known as Computer Aided Geometric Design (see [18]).

In connection with the study of the good properties of the Bernstein polynomials,

in [8], it was proved that “the Bernstein basis has optimal shape preserving properties

among all normalized totally positive bases for the space of polynomials of degree less

than or equal to n over a compact interval”.

Other results which are relevant to our work have recently been found for the

Bernstein basis. Firstly, the fact that Bernstein–Vandermonde matrices have optimal

(i.e., lowest) condition number among all the corresponding collocation matrices of

normalized totally positive bases of the space of polynomials of degree less than or

equal to n on [0, 1] has been proved in [10]. In addition, the good properties of the

Bernstein basis for polynomial evaluation when one uses the de Casteljau algorithm

are analyzed in [11]. This last fact is useful, for instance, in regression problems

(see [32]) when the regression polynomial is computed in the Bernstein basis: this

polynomial can be evaluated to compute the residuals without the need to convert it

to the monomial basis.

Other recent applications of the Bernstein basis are shown in Section 9 of [20],

for instance to finite element analysis [1, 26]. The explicit conversion between the

Bernstein basis and the power basis is exponentially ill-conditioned as the polynomial

degree increases [19, 20], and so it is very important that when designing any algorithm

for performing numerical computations with polynomials expressed in Bernstein form,

all the intermediate operations are developed using this form only.

As recalled in [12], a crucial preliminary stage of the algorithms considered there

for the class of totally positive matrices is the decomposition of the matrix as a

product of bidiagonal factors. In this sense, one can learn from [28, 29] that the

problem of performing accurate computations with totally positive matrices is very
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much a representation problem: instead of representing a matrix by its entries, it is

represented as a product of nonnegative bidiagonal matrices. And this is one of our

contributions for the case of Bernstein–Vandermonde matrices: the fast and accurate

computation of this bidiagonal factorization.

Working along this line, in this work in addition to reviewing the problem of linear

system solving considered in [30] and the least squares problem addressed in [32], we

show the application of this approach to the computation of eigenvalues and singular

values of Bernstein–Vandermonde matrices. As we will see in Section 7, our approach

is accurate even for computing the smallest eigenvalues and the smallest singular

values of this type of matrices. The computation of the smallest eigenvalue of a

Bernstein–Vandermonde matrix is essential for determining, when the Bernstein basis

is used, the convergence rate of the iterative method for approximating interpolation

curves based on the progressive iteration approximation property. It must be observed

that the Bernstein basis provides for this procedure the fastest convergence rate among

all normalized totally positive basis of the space of the polynomials of degree less

than or equal to n [9]. As for the singular values, it will be shown how its accurate

computation provides an appropriate procedure for estimating the 2-norm condition

number of a Bernstein–Vandermonde matrix.

The algorithms for solving all these problems are based on the bidiagonal fac-

torization of the Bernstein–Vandermonde matrix or of its inverse. The error analysis

of our algorithm for computing this bidiagonal factorization and the perturbation

theory for the bidiagonal factorization of Bernstein–Vandermonde matrices are also

considered in this work.

Factorizations in terms of bidiagonal matrices are very useful when working with

Vandermonde [5, 25], Cauchy [6], Cauchy-Vandermonde [33] and generalized Vander-

monde matrices [14]. An application of the bidiagonal decomposition to the solving

of linear systems with a different class of matrices (the so-called ǫ-BD matrices) has

recently been presented in [3].

As for the other stages of our algorithms, we will use several algorithms developed

by Plamen Koev [27, 28, 29]. An important condition for an algorithm to be accurate

is the so called NIC (no inaccurate cancellation) condition, which is emphasized in

[12] (see also Section 5 in [13]):

NIC: The algorithm only multiplies, divides, adds (resp., subtracts) real numbers

with like (resp., differing) signs, and otherwise only adds or subtracts input data.

The rest of the paper is organized as follows. Some basic results on Neville elim-

ination and total positivity are recalled in Section 2. In Section 3, the bidiagonal

factorization of a Bernstein–Vandermonde matrix and of its inverse are considered.
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The algorithm for computing the bidiagonal factorization of those matrices is also

included in this section. In Section 4, the algorithms for solving linear systems, com-

puting eigenvalues, computing singular values and solving least squares problems for

the case of totally positive Bernstein–Vandermonde matrices are presented. Section 5

is devoted to the study of the error analysis of the bidiagonal factorization algorithm

presented in Section 3. In Section 6, the perturbation theory is carried out. Finally,

Section 7 is devoted to illustrate the accuracy of the algorithms by means of some

numerical experiments.

2. Basic facts on Neville elimination and total positivity. To make this

paper as self-contained as possible, we will briefly recall in this section some basic

results on Neville elimination and total positivity which will be essential for obtaining

the results presented in Section 3. Our notation follows the notation used in [21] and

[22]. Given k, n ∈ N (1 ≤ k ≤ n), Qk,n will denote the set of all increasing sequences

of k positive integers less than or equal to n.

Let A be an l × n real matrix. For k ≤ l, m ≤ n, and for any α ∈ Qk,l and

β ∈ Qm,n, we will denote by A[α|β] the k × m submatrix of A containing the rows

numbered by α and the columns numbered by β.

The fundamental theoretical tool for obtaining the results presented in this paper

is the Neville elimination [21, 22], a procedure that makes zeros in a matrix adding

to a given row an appropriate multiple of the previous one.

Let A = (ai,j)1≤i≤l;1≤j≤n be a matrix where l ≥ n. The Neville elimination of A

consists of n− 1 steps resulting in a sequence of matrices A1 := A → A2 → · · · → An,

where At = (a
(t)
i,j )1≤i≤l;1≤j≤n has zeros below its main diagonal in the t − 1 first

columns. The matrix At+1 is obtained from At (t = 1, . . . , n − 1) by using the

following formula:

a
(t+1)
i,j :=





a
(t)
i,j , if i ≤ t,

a
(t)
i,j − (a

(t)
i,t /a

(t)
i−1,t)a

(t)
i−1,j , if i ≥ t+ 1 and j ≥ t+ 1,

0 , otherwise.

In this process, the element

pi,j := a
(j)
i,j , 1 ≤ j ≤ n, j ≤ i ≤ l

is called (i, j) pivot of the Neville elimination of A. The process would break down if

any of the pivots pi,j (1 ≤ j ≤ n, j ≤ i ≤ l) is zero. In that case we can move the

corresponding rows to the bottom and proceed with the new matrix, as described in

[21]. The Neville elimination can be done without row exchanges if all the pivots are

nonzero, as it will happen in our situation. The pivots pi,i are called diagonal pivots.
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If all the pivots pi,j are nonzero, then pi,1 = ai,1 ∀i and, by Lemma 2.6 of [21]

pi,j =
detA[i− j + 1, . . . , i|1, . . . , j]

detA[i− j + 1, . . . , i− 1|1, . . . , j − 1]
, 1 < j ≤ n, j ≤ i ≤ l.

The element

mi,j =
pi,j

pi−1,j
, 1 ≤ j ≤ n, j < i ≤ l,

is called multiplier of the Neville elimination of A. The matrix U := An is upper

triangular and has the diagonal pivots on its main diagonal.

The complete Neville elimination of a matrix A consists of performing the Neville

elimination of A for obtaining U and then continue with the Neville elimination of

UT . The (i, j) pivot (respectively, multiplier) of the complete Neville elimination

of A is the (j, i) pivot (respectively, multiplier) of the Neville elimination of UT , if

j ≥ i. When no row exchanges are needed in the Neville elimination of A and UT , we

say that the complete Neville elimination of A can be done without row and column

exchanges, and in this case, the multipliers of the complete Neville elimination of A

are the multipliers of the Neville elimination of A if i ≥ j and the multipliers of the

Neville elimination of AT if j ≥ i.

A detailed error analysis of Neville elimination has been carried out in [2]. How-

ever, our approach uses Neville elimination as a theoretical tool but it does not apply

that algorithm for obtaining the bidiagonal factorization of Bernstein–Vandermonde

matrices.

A matrix is called totally positive (respectively, strictly totally positive) if all its

minors are nonnegative (respectively, positive). The Neville elimination characterizes

the strictly totally positive matrices as follows [21]:

Theorem 2.1. A matrix is strictly totally positive if and only if its complete

Neville elimination can be performed without row and column exchanges, the multi-

pliers of the Neville elimination of A and AT are positive, and the diagonal pivots of

the Neville elimination of A are positive.

It is well known [8] that the Bernstein–Vandermonde matrix is a strictly totally

positive matrix when the nodes satisfy 0 < x1 < x2 < · · · < xl+1 < 1, but this result

is also a consequence of our Theorem 3.2.

3. Bidiagonal factorizations. The Bernstein basis of the space Πn(x) of poly-

nomials of degree less than or equal to n on the interval [0, 1] is:

Bn =

{
b
(n)
i (x) =

(
n

i

)
(1− x)n−ixi, i = 0, . . . , n

}
.
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The matrix

A =




(
n
0

)
(1 − x1)

n
(
n
1

)
x1(1− x1)

n−1 · · ·
(
n
n

)
xn
1(

n
0

)
(1 − x2)

n
(
n
1

)
x2(1− x2)

n−1 · · ·
(
n
n

)
xn
2

...
...

. . .
...(

n
0

)
(1− xl+1)

n
(
n
1

)
xl+1(1− xl+1)

n−1 · · ·
(
n
n

)
xn
l+1




is the (l+1)× (n+1) Bernstein–Vandermonde matrix for the Bernstein basis Bn and

the nodes {xi}1≤i≤l+1. From now on, we will assume 0 < x1 < x2 < · · · < xl+1 < 1.

In this situation, the Bernstein–Vandermonde matrix is a strictly totally positive

matrix [8].

Let us observe that when l = n, the matrix A is the coefficient matrix of the

linear system associated with the following interpolation problem in the Bernstein

basis Bn: given the interpolation nodes {xi : i = 1, . . . , n+ 1}, where 0 < x1 < x2 <

· · · < xn+1 < 1, and the interpolation data {bi : i = 1, . . . , n+1} find the polynomial

p(x) =

n∑

k=0

akb
(n)
k (x)

such that p(xi) = bi for i = 1, . . . , n+ 1.

In the situation we are considering the following two theorems hold:

Theorem 3.1. Let A = (ai,j)1≤i,j≤n+1 be a Bernstein–Vandermonde matrix

whose nodes satisfy 0 < x1 < x2 < · · · < xn < xn+1 < 1. Then A−1 admits a

factorization in the form

A−1 = G1G2 · · ·GnD
−1FnFn−1 · · ·F1,

where Fi (1 ≤ i ≤ n) are (n+ 1)× (n+ 1) bidiagonal matrices of the form

Fi =




1

0 1
. . .

. . .

0 1

−mi+1,i 1

−mi+2,i 1
. . .

. . .

−mn+1,i 1




,
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GT
i (1 ≤ i ≤ n) are (n+ 1)× (n+ 1) bidiagonal matrices of the form

GT
i =




1

0 1
. . .

. . .

0 1

−m̃i+1,i 1

−m̃i+2,i 1
. . .

. . .

−m̃n+1,i 1




,

and D is a diagonal matrix of order n+ 1

D = diag{p1,1, p2,2, . . . , pn+1,n+1}.

The quantities mi,j are the multipliers of the Neville elimination of the Bernstein–

Vandermonde matrix A, and have the expression

mi,j =
(1− xi)

n−j+1(1 − xi−j)
∏j−1

k=1(xi − xi−k)

(1− xi−1)n−j+2
∏j

k=2(xi−1 − xi−k)
,(3.1)

where j = 1, . . . , n and i = j + 1, . . . , n+ 1.

The quantities m̃i,j are the multipliers of the Neville elimination of AT and their

expression is

m̃i,j =
(n− i + 2) · xj

(i− 1)(1− xj)
,(3.2)

where j = 1, . . . , n and i = j + 1, . . . , n+ 1.

Finally, the ith diagonal element of D is the diagonal pivot of the Neville elimi-

nation of A and its expression is

pi,i =

(
n

i−1

)
(1− xi)

n−i+1
∏

k<i(xi − xk)
∏i−1

k=1(1− xk)
(3.3)

for i = 1, . . . , n+ 1.

Proof. It can be found in [30].

Theorem 3.2. Let A = (ai,j)1≤i≤l+1;1≤j≤n+1 be a Bernstein–Vandermonde

matrix for the Bernstein basis Bn whose nodes satisfy 0 < x1 < x2 < · · · < xl <

xl+1 < 1. Then A admits a factorization in the form

A = FlFl−1 · · ·F1DG1 · · ·Gn−1Gn

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 26, pp. 357-380, June 2013



ELA

364 A. Marco and J.J. Mart́ınez

where Fi (1 ≤ i ≤ l) are (l + 1)× (l + 1) bidiagonal matrices of the form

Fi =




1

0 1
. . .

. . .

0 1

mi+1,1 1

mi+2,2 1
. . .

. . .

ml+1,l+1−i 1




,

GT
i (1 ≤ i ≤ n) are (n+ 1)× (n+ 1) bidiagonal matrices of the form

GT
i =




1

0 1
. . .

. . .

0 1

m̃i+1,1 1

m̃i+2,2 1
. . .

. . .

m̃n+1,n+1−i 1




,

and D is the (l + 1)× (n+ 1) diagonal matrix

D = (di,j)1≤i≤l+1;1≤j≤n+1 = diag{p1,1, p2,2, . . . , pn+1,n+1}.

The expressions of the multipliers mi,j (j = 1, . . . , n+ 1; i = j +1, . . . , l+1) of the

Neville elimination of A, the multipliers m̃i,j (j = 1, . . . , n; i = j + 1, . . . , n+ 1) of

the Neville elimination of AT , and the diagonal pivots pi,i (i = 1, . . . , n + 1) of the

Neville elimination of A are also in this case given by Eq. (3.1), Eq. (3.2) and Eq.

(3.3), respectively.

When in the expression of Fi we have some multiplier mk,j which does not exist

(because j > n + 1), then the corresponding entry is equal to zero, and analogously

for the entries in GT
i .

Proof. It can be found in [32].

It must be observed that in the square case, the matrices Fi (i = 1, . . . , l) and

the matrices Gj (j = 1, . . . , n) that appear in the bidiagonal factorization of A are

not the same bidiagonal matrices that appear in the bidiagonal factorization of A−1 ,

nor their inverses (see Theorem 3.1 and Theorem 3.2). The multipliers of the Neville

elimination of A and AT give us the bidiagonal factorization of A and A−1, but
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obtaining the bidiagonal factorization of A from the bidiagonal factorization of A−1

(or vice versa) is not straightforward. The structure of the bidiagonal matrices that

appear in both factorizations is not preserved by the inversion, that is, in general,

F−1
i (i = 1, . . . , l) and G−1

j (j = 1, . . . , n) are not bidiagonal matrices. See [23] for a

more detailed explanation and Example 3.4 below.

A fast and accurate algorithm for computing the bidiagonal factorization of the

totally positive Bernstein–Vandermonde matrix A and of its inverse (when it exists)

has been developed by using the expressions (3.1), (3.2) and (3.3) for the computation

of the multipliers mi,j and m̃i,j , and the diagonal pivots pi,i of its Neville elimination

[30, 32]. Given the nodes {xi}1≤i≤l+1 ∈ (0, 1) and the degree n of the Bernstein basis,

it returns a matrix M ∈ R
(l+1)×(n+1) such that

Mi,i = pi,i i = 1, . . . , n+ 1,

Mi,j = mi,j j = 1, . . . , n+ 1; i = j + 1, . . . , l + 1,

Mi,j = m̃j,i i = 1, . . . , n; j = i+ 1, . . . , n+ 1.

The algorithm, which we have called TNBDBV in the square case (and TNBDBVR in

the rectangular case), does not construct the Bernstein–Vandermonde matrix, it only

works with the nodes {xi}1≤i≤l+1. Its computational cost is of O(ln) arithmetic oper-

ations, and has high relative accuracy because it only involves arithmetic operations

that avoid inaccurate cancellation. The implementation in Matlab of the algorithm

can be taken from [27].

In order to facilitate the understanding of the error analysis presented in Section

5, we include here the pseudocode corresponding to the algorithm TNBDBVR for the

case of a Bernstein–Vandermonde matrix for the Bernstein basis Bn and the nodes

{xi}1≤i≤l+1, where l ≥ n:

Computation of the mi,j given by equation (3.1):

for i = 2 : l + 1

M = (1−xi)
n

(1−xi−1)n+1

mi,1 = (1− xi−1) ·M

k = min(i− 2, n)

for j = 1 : k

M =
(1−xi−1)(xi−xi−j)

(1−xi)(xi−1−xi−j−1)
·M

mi,j+1 = (1− xi−j−1) ·M

end

end
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Computation of the m̃i,j given by equation (3.2):

for j = 1 : n

cj =
xj

1−xj

for i = j + 1 : n+ 1

m̃i,j =
n−i+2
i−1 · cj

end

end

Computation of the pi,i of D given by equation (3.3):

q = 1

p1,1 = (1− x1)
n

for i = 1 : n

q = (n−i+1)
i(1−xi)

· q

aux = 1

for k = 1 : i

aux = (xi+1 − xk) · aux

end

pi+1,i+1 = q · (1 − xi+1)
n−i · aux

end

Remark 3.3. The algorithms TNBDBV and TNBDBVR compute the matrix M ,

denoted as BD(A) in [28], which represents the bidiagonal decomposition of A. But

it is a remarkable fact that in the square case the same matrix BD(A) also serves

to represent the bidiagonal decomposition of A−1. The following example illustrates

this fact.

Example 3.4. Let us consider the Bernstein–Vandermonde matrix A for the

Bernstein basis B2 and the nodes 1
4 < 1

2 < 3
4 :

A =




9/16 3/8 1/16

1/4 1/2 1/4

1/16 3/8 9/16


 .
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The bidiagonal decomposition of A is

A =





1 0 0

0 1 0

0 1/4 1









1 0 0

4/9 1 0

0 3/4 1









9/16 0 0

0 1/3 0

0 0 1/3









1 2/3 0

0 1 1/2

0 0 1









1 0 0

0 1 1/6

0 0 1



 ,

the bidiagonal decomposition of A−1 is





1 −2/3 0

0 1 −1/6

0 0 1









1 0 0

0 1 −1/2

0 0 1









16/9 0 0

0 3 0

0 0 3









1 0 0

0 1 0

0 −3/4 1









1 0 0

−4/9 1 0

0 −1/4 1





and the matrix BD(A) is

BD(A) =




9/16 2/3 1/6

4/9 1/3 1/2

1/4 3/4 1/3


 .

It must be noted that while Neville elimination has been the key theoretical tool

for the analysis of the bidiagonal decomposition of A, it generally fails to provide an

accurate algorithm for computing BD(A) (see [30] and Example 7.1 below). Conse-

quently, the accurate computation of BD(A) is an important task, a task which we

have carried out for the case of Bernstein–Vandermonde matrices.

4. Accurate computations with Bernstein–Vandermonde matrices. In

this section, four fundamental problems in numerical linear algebra (linear system

solving, eigenvalue computation, singular value computation and the least squares

problem) are considered for the case of a totally positive Bernstein–Vandermonde

matrix. The bidiagonal factorization of the Bernstein–Vandermonde matrix (or its

inverse) led us to develop accurate and efficient algorithms for solving each one of

these problems.

Let us observe here that, of course, one could try to solve these problems by

using standard algorithms. However the solution provided by them will generally be

less accurate since Bernstein–Vandermonde matrices are ill conditioned (see [30]) and

these algorithms can suffer from inaccurate cancellation, since they do not take into

account the structure of the matrix, which is crucial in our approach.

Some results concerning the conditioning of the Bernstein-Vandermonde matrices

can be found in [10]. The condition number of other types of interpolation matrices

is also analyzed using singular values, in [7].

4.1. Linear system solving. The fast and accurate solution of structured lin-

ear systems is a problem that has been studied in the field of numerical linear algebra

for different types of structured matrices (see, for example, [5, 6, 14, 33]). Now we
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will consider this problem for the case of totally positive Bernstein–Vandermonde

matrices.

Let Ax = b be a linear system whose coefficient matrix A is a square Bernstein–

Vandermonde matrix of order n+ 1 generated by the nodes {xi}1≤i≤n+1, where 0 <

x1 < · · · < xn+1 < 1. An application which involves the solution of this type of linear

system, in the context of Lagrange bivariate interpolation by using the bivariate

tensor-product Bernstein basis, has been presented in [31].

The following algorithm solves Ax = b accurately with a computational cost of

O(n2) arithmetic operations (see [30] for the details):

INPUT: The nodes {xi}1≤i≤n+1 and the data vector b ∈ R
n+1.

OUTPUT: The solution vector x ∈ R
n+1.

- Step 1: Computation of the bidiagonal decomposition of A−1 by using

TNBDBV.

- Step 2: Computation of

x = A−1b = G1G2 · · ·GnD
−1FnFn−1 · · ·F1b.

Step 2 can be carried out by using the algorithm TNSolve of P. Koev [27]. Given

the bidiagonal factorization of the matrix A, TNSolve solves Ax = b accurately by

using backward substitution.

Several examples illustrating the good behaviour of our algorithm can be found

in [30].

4.2. Eigenvalue computation. Let A be a square Bernstein–Vandermonde

matrix of order n + 1 generated by the nodes {xi}1≤i≤n+1, where 0 < x1 < · · · <

xn+1 < 1. The following algorithm computes accurately the eigenvalues of A.

INPUT: The nodes {xi}1≤i≤n+1.

OUTPUT: A vector x ∈ R
n+1 containing the eigenvalues of A.

- Step 1: Computation of the bidiagonal decomposition of A by using TNBDBV.

- Step 2: Given the result of Step 1, computation of the eigenvalues of A by

using the algorithm TNEigenvalues.

TNEigenvalues is an algorithm of P. Koev [28] which computes accurate eigen-

values of a totally positive matrix starting from its bidiagonal factorization. The

computational cost of TNEigenvalues is of O(n3) arithmetic operations (see [28])

and its implementation in Matlab can be taken from [27]. In this way, as the com-

putational cost of Step 1 is of O(n2) arithmetic operations, the cost of the whole

algorithm is of O(n3) arithmetic operations.
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4.3. The least squares problem. Let A ∈ R
(l+1)×(n+1) be a Bernstein–

Vandermonde matrix generated by the nodes {xi}1≤i≤l+1, where 0 < x1 < · · · <

xl+1 < 1 and l > n. Let b ∈ R
l+1 be a data vector. The least squares problem asso-

ciated to A and b consists of computing a vector x ∈ R
n+1 minimizing ‖ Ax− b ‖2.

Taking into account that in the situation we are considering A is a strictly totally

positive matrix, it has full rank, and the method based on the QR decomposition due

to Golub [24] is adequate [4]. For the sake of completeness, we include the following

result (see Section 1.3.1 in [4]) which will be essential in the construction of our

algorithm.

Theorem 4.1. Let Ac = f a linear system where A ∈ R
(l+1)×(n+1), l ≥ n,

c ∈ R
n+1 and f ∈ R

l+1. Assume that rank(A) = n+1, and let the QR decomposition

of A be given by

A = Q

[
R

0

]
,

where Q ∈ R
(l+1)×(l+1) is an orthogonal matrix and R ∈ R

(n+1)×(n+1) is an upper

triangular matrix with positive diagonal entries. Then the solution of the least squares

problem minc ‖ f −Ac ‖2 is obtained from

[
d1
d2

]
= QT f, Rc = d1, r = Q

[
0

d2

]
,

where d1 ∈ R
n+1, d2 ∈ R

l−n and r = f − Ac. In particular ‖ r ‖2=‖ d2 ‖2.

The following algorithm, which is based on the previous theorem, solves in an

accurate and efficient way our least squares problem:

INPUT: The nodes {xi}1≤i≤l+1, the data vector f , and the degree n of the

Bernstein basis.

OUTPUT: The vector x ∈ R
n+1 minimizing ‖ Ax−b ‖2 and the minimum residual

r = b −Ax.

- Step 1: Computation of the bidiagonal factorization of A by means of TNBDBV.

- Step 2: Given the result of Step 1, computation of the QR decomposition of

A by using TNQR.

- Step 3: Computation of

d =

[
d1
d2

]
= QT f.

- Step 4: Solution of the upper triangular system Rc = d1.
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- Step 5: Computation of

r = Q

[
0

d2

]
.

The algorithm TNQR has been developed by P. Koev, and given the bidiagonal

factorization of A, it computes the matrix Q and the bidiagonal factorization of the

matrix R. Let us point out here that if A is strictly totally positive, then R is strictly

totally positive. TNQR is based on Givens rotations, has a computational cost of O(l2n)

arithmetic operations if the matrix Q is required, and its high relative accuracy comes

from the avoidance of inaccurate cancellation [29]. Its implementation in Matlab

can be obtained from [27].

Steps 3 and 5 are carried out by using the standard matrix multiplication com-

mand of Matlab. As for Step 4, it is done by means of the algorithm TNSolve of

Koev.

The computational cost of the whole algorithm is led by the cost of computing

the QR decomposition of A, and therefore, it is of O(l2n) arithmetic operations.

Some numerical experiments which show the good behaviour of our algorithm

when solving problems of polynomial regression in the Bernstein basis have been

presented in [32].

4.4. Singular value computation. Let A ∈ R
(l+1)×(n+1) be a Bernstein–

Vandermonde matrix generated by the nodes {xi}1≤i≤l+1, where 0 < x1 < · · · <

xl+1 < 1 and l > n. The following algorithm computes in an accurate and efficient

way the singular values of A.

INPUT: The nodes {xi}1≤i≤l+1 and the degree n of the Bernstein basis.

OUTPUT: A vector x ∈ R
n+1 containing the singular values of A.

- Step 1: Computation of the bidiagonal decomposition of A by using TNBDBV.

- Step 2: Given the result of Step 1, computation of the singular values by

using TNSingularValues.

TNSingularValues is an algorithm of P. Koev that computes accurate singular

values of a totally positive matrix starting from its bidiagonal factorization [28]. Its

computational cost is of O(ln2) and its implementation in Matlab can be found in

[27]. Taking this complexity into account, the computational cost of our algorithm for

computing the singular values of a totally positive Bernstein–Vandermonde matrix is

of O(ln2) arithmetic operations.
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5. Error analysis. In this section, the error analysis of the algorithm TNBDBV

(TNBDBVR in the rectangular case) for computing the bidiagonal factorization of a

totally positive Bernstein–Vandermonde matrix (included in Section 3) is carried out.

For our error analysis, we use the standard model of floating point arithmetic (see

Section 2.2 of [25]):

Let x, y be floating point numbers and ǫ be the machine precision,

fl(x⊙ y) = (x⊙ y)(1 + δ)±1, where |δ| ≤ ǫ, ⊙ ∈ {+,−,×, /}.

The following theorem shows that TNBDBVR, and in consequence TNBDBV, com-

pute the bidiagonal decomposition of a Bernstein–Vandermonde matrix accurately in

floating point arithmetic.

Theorem 5.1. Let A be a strictly totally positive Bernstein–Vandermonde ma-

trix for the Bernstein basis Bn and the nodes {xi}1≤i≤l+1. Let BD(A) = (bi,j)1≤i≤l+1;

1≤j≤n+1 be the matrix representing the exact bidiagonal decomposition of A and

(̂bi,j)1≤i≤l+1;1≤j≤n+1 be the matrix representing the computed bidiagonal decomposi-

tion of A by means of the algorithm TNBDBVR in floating point arithmetic with machine

precision ǫ. Then

|̂bi,j − bi,j| ≤
(8nl− 4n2 + 2n)ǫ

1− (8nl − 4n2 + 2n)ǫ
bi,j , i = 1, . . . , l + 1; j = 1, . . . , n+ 1.

Proof. Accumulating the relative errors in the style of Higham (see Chapter 3 of

[25], [15] and [28]) in the computation of the mi,j by means of the algorithm TNBDBVR

included in Section 3, we obtain

|m̂i,j −mi,j | ≤
(8nl − 4n2 + 2n)ǫ

1− (8nl− 4n2 + 2n)ǫ
mi,j ,(5.1)

for j = 1, . . . , n+1 and i = j+1, . . . , l+1, where m̂i,j are the multipliersmi,j computed

in floating point arithmetic. Proceeding in the same way for the computation of the

m̃i,j we derive

| ̂̃mi,j − m̃i,j | ≤
4ǫ

1− 4ǫ
m̃i,j , j = 1, . . . , n; i = j + 1, . . . , n+ 1,(5.2)

where ̂̃mi,j are the multipliers m̃i,j computed in floating point arithmetic. Analogously

|p̂i,i − pi,i| ≤
(8n+ 1)ǫ

1− (8n+ 1)ǫ
pi,i, i = 1, . . . , n+ 1,(5.3)

where p̂i,i are the diagonal pivots pi,i computed in floating point arithmetic. There-

fore, looking at the inequalities given by (5.1), (5.2) and (5.3) and taking into account
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that m̂i,j , ̂̃mi,j and p̂i,i are the entries of (̂bi,j)1≤i≤l+1;1≤j≤n+1, we conclude that

|̂bi,j − bi,j | ≤
(8nl − 4n2 + 2n)ǫ

1− (8nl− 4n2 + 2n)ǫ
bi,j , i = 1, . . . , l + 1; j = 1, . . . , n+ 1.

6. Perturbation theory. In Section 7 of [28] it is proved that if a totally non-

negative matrix A is represented as a product of nonnegative bidiagonal matrices,

then small relative perturbations in the entries of the bidiagonal factors cause only

small relative perturbations in the eigenvalues and singular values of A. More precisely

(see Corollary 7.3 in [28]), BD(A) determines the eigenvalues and the singular values

of A accurately, and the appropriate structured condition number of each eigenvalue

and/or singular value with respect to perturbations in BD(A) is at most 2n2.

These results make clear the importance, in the context of our work, of the study

of the sensitivity of the BD(A) of a Bernstein-Vandermonde matrix with respect to

perturbations in the nodes xi, and so in this section, we prove that small relative

perturbations in the nodes of a Bernstein–Vandermonde matrix A produce only small

relative perturbations in its bidiagonal factorization BD(A).

We begin by defining the quantities which lead to the finding of an appropriate

condition number, in a similar way to the work carried out in [28, 15].

Definition 6.1. Let A be a strictly totally positive Bernstein–Vandermonde

matrix for the Bernstein basis Bn and the nodes {xi}1≤i≤l+1 and let x′
i = xi(1 + δi)

be the perturbed nodes for 1 ≤ i ≤ l + 1, where |δi| << 1. We define:

rel gapx ≡ min
i6=j

|xi − xj |

|xi|+ |xj |
,

rel gap1 ≡ min
i

|1− xi|

|xi|
,

θ ≡ max
i

|xi − x′
i|

|xi|
= max

i
|δi|,

α ≡ min{rel gapx, rel gap1},

κBV ≡
1

α
,

where θ << rel gapx, rel gap1.

Theorem 6.2. Let A and A′ be strictly totally positive Bernstein–Vandermonde

matrices for the Bernstein basis Bn and the nodes {xi}1≤i≤l+1 and x′
i = xi(1 + δi)
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for 1 ≤ i ≤ l + 1, where |δi| ≤ θ << 1. Let BD(A) and BD(A′) be the matrices

representing the bidiagonal decomposition of A and the bidiagonal decomposition of

A′, respectively. Then

|(BD(A′))i,j − (BD(A))i,j | ≤
(2n+ 2)κBV θ

1− (2n+ 2)κBV θ
(BD(A))i,j .

Proof. Taking into account that |δi| ≤ θ, it can be easily shown that

1− x′
i = (1− xi)(1 + δ′i), |δ′i| ≤

θ

rel gap1
(6.1)

and

x′
i − x′

j = (xi − xj)(1 + δi,j), |δi,j | ≤
θ

rel gapx
.(6.2)

Accumulating the perturbations in the style of Higham (see Chapter 3 of [25],

[15] and [28]) using the formula (3.1) for the mi,j , and (6.1) and (6.2) we obtain

m′
i,j = mi,j(1 + δ̄), |δ̄| ≤

(2n+ 2)κBV θ

1− (2n+ 2)κBV θ
,

where m′
i,j are the entries of BD(A′) below the main diagonal. Proceeding in the

same way by using the formula (3.2) we get

m̃′
i,j = m̃i,j(1 + δ̄), |δ̄| ≤

2 θ
rel gap1

1− 2 θ
rel gap1

,

where m̃′
i,j are the entries of BD(A′) above the main diagonal. Analogously, and

using in this case the formula (3.3), we get

p′i,i = pi,i(1 + δ̄), |δ̄| ≤
(n+ i− 1)κBV θ

1− (n+ i− 1)κBV θ
,

where p′i,i are the diagonal elements of BD(A′). Finally, considering the last three

inequalities we conclude that

|(BD(A′))i,j − (BD(A))i,j | ≤
(2n+ 2)κBV θ

1− (2n+ 2)κBV θ
(BD(A))i,j .

So, we see that the quantity (2n+ 2)κBV is an appropriate structured condition

number of A with respect to the relative perturbations in the data xi. These results

are analogous to the results of [28, 15], in the sense that the relevant quantities for the
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determination of an structured condition number are the relative separations between

the nodes (in our case also the relative distances to 1).

Combining this theorem with Corollary 7.3 in [28], which states that small com-

ponentwise relative perturbations of BD(A) cause only small relative perturbation in

the eigenvalues λi and singular values σi of A, we obtain that

|λ′
i − λi| ≤ O(n3κBV θ)λi and |σ′

i − σi| ≤ O(n3κBV θ)σi,

where λ′
i and σ′

i are the eigenvalues and the singular values of A′. That is to say, small

relative perturbation in the nodes of a Bernstein–Vandermonde matrix A produce only

small relative perturbations in its eigenvalues and in its singular values.

7. Numerical experiments. In this last section, we include several numerical

experiments illustrating the high relative accuracy of the algorithms we have pre-

sented for the problems of eigenvalue computation and singular value computation.

Numerical experiments for the cases of linear system solving and of least squares

problems have been included in [30, 32].

As it can be read in [28], the traditional algorithms for computing eigenvalues or

singular values of ill-conditioned totally positive matrices only compute the largest

eigenvalues and the largest singular values with guaranteed relative accuracy, and

the tiny eigenvalues and singular values may be computed with no relative accuracy

at all, even though they may be the only quantities of practical interest. This is the

reason why, for computing with high relative accuracy all the eigenvalues and singular

values of an ill-conditioned totally positive matrix, it is very important to develop

algorithms that exploit the structure of the specific matrix we are considering. This

is what our algorithms for computing the eigenvalues or singular values of a totally

positive Bernstein–Vandermonde matrix does in its two stages: the computation of

the BD(A), that is, the bidiagonal decomposition of A, and the computation of the

eigenvalues or singular values of A starting from BD(A).

Example 7.1. Let B20 be the Bernstein basis of the space of polynomials with de-

gree less than or equal to 20 on [0, 1] and let A be the square Bernstein–Vandermonde

matrix of order 21 generated by the nodes:

1

12
<

1

11
<

1

10
<

1

9
<

1

8
<

1

7
<

1

6
<

1

5
<

1

4
<

1

3
<

1

2

<
7

12
<

13

22
<

3

5
<

11

18
<

5

8
<

9

14
<

2

3
<

7

10
<

3

4
<

5

6
.

The condition number of A is κ2(A) = 1.9e + 12. In Table 7.1, we present the

eigenvalues λi of A and the relative errors obtained when computing them by means

of:
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1. The algorithm presented in Section 4.2 (column labeled by MM).

2. The command eig from Matlab.

The relative error of each computed eigenvalue is obtained by using the eigenvalues

calculated in Maple with 50-digit arithmetic.

λi MM eig

1.0e+ 00 0 4.0e− 15

8.4e− 01 4.0e− 16 1.3e− 16

2.8e− 01 9.9e− 16 3.0e− 15

2.1e− 01 0 3.7e− 15

1.2e− 01 6.0e− 16 3.6e− 15

6.6e− 02 8.5e− 16 5.5e− 15

3.8e− 02 3.7e− 16 1.2e− 14

2.2e− 02 4.8e− 16 2.0e− 14

9.4e− 03 0 4.6e− 14

4.6e− 03 1.9e− 16 9.3e− 14

1.5e− 03 2.9e− 16 6.1e− 14

5.9e− 04 1.8e− 16 2.5e− 13

1.7e− 04 3.2e− 16 1.3e− 12

4.3e− 05 9.4e− 16 3.6e− 12

1.3e− 05 1.1e− 15 6.9e− 12

1.7e− 06 6.1e− 16 5.1e− 11

5.6e− 07 0 1.9e− 10

3.5e− 08 2.8e− 15 1.8e− 09

1.1e− 08 5.9e− 16 5.9e− 09

2.7e− 10 2.1e− 15 6.4e− 08

1.3e− 12 9.0e− 16 1.0e− 05
Table 7.1

Example 7.1: Eigenvalues of a Bernstein–Vandermonde matrix of order 21.

The results appearing in Table 7.1 show that, while the command eig from Mat-

lab only computes the largest eigenvalues with high relative accuracy, our algorithm

computes all the eigenvalues with high relative accuracy. In particular, the smallest

eigenvalue, the one whose accurate computation is crucial, for example, for obtaining

an accurate convergence rate for the progressive iteration approximation method, is

computed by eig with a relative error of 1.0e − 05, while using our procedure it is

computed with a relative error of 9.0e− 16.

As for the first stage of the algorithm, let us observe that in this example the

greatest relative error obtained in the computation of the entries of BD(A) by using

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 26, pp. 357-380, June 2013



ELA

376 A. Marco and J.J. Mart́ınez

our algorithm is 1.7e−14, while the greatest relative error obtained in the computation

of the entries of BD(A) by means of TNBD [27], an algorithm that computes the Neville

elimination of A without taking into account its structure is 1.0e− 5. The advantage

of our algorithm TNBDBV compared with Neville elimination was expected since, as

indicated in [27], algorithm TNBD does not guarantee high relative accuracy.

The example below shows how the situation of computing the singular values

of a totally positive Bernstein–Vandermonde matrix is analogous to the situation of

computing its eigenvalues.

Example 7.2. Let B15 be the Bernstein basis of the space of polynomials with

degree less than or equal to 15 on [0, 1] and let A ∈ R
21×16 be the Bernstein–

Vandermonde matrix generated by the nodes:

1

22
<

1

20
<

1

18
<

1

16
<

1

14
<

1

12
<

1

10
<

1

8
<

1

6
<

1

4
<

1

2

<
23

42
<

21

38
<

19

34
<

17

30
<

15

26
<

13

22
<

11

18
<

9

14
<

7

10
<

5

6
.

The condition number of A is κ2(A) = 5.3e + 08. In Table 7.2, we present the

singular values σi of A and the relative errors obtained when computing them by

means of

1. The algorithm presented in Section 4.4 (column labeled by MM).

2. The command svd from Matlab.

The relative error of each computed singular value is obtained by using the singular

values calculated in Maple with 50-digit arithmetic.

Let us observe that, while the relative error obtained in the computation of the

smallest singular value by means of svd from Matlab is 2.5e− 10, the relative error

obtained by using our approach is 2.9e− 15.

Example 7.3. Let B20 be the Bernstein basis of the space of polynomials with
degree less than or equal to 20 on [0, 1] and let A ∈ R

30×21 be the Bernstein–Vander-
monde matrix generated by the nodes:

1

31
<

1

30
<

1

29
<

1

28
<

1

27
<

1

26
<

1

25
<

1

24
<

1

23
<

1

22
<

1

21
<

1

20
<

1

19
<

1

18

<
1

17
<

1

16
<

1

15
<

1

14
<

1

13
<

1

12
<

1

11
<

1

10
<

1

9
<

1

8
<

1

7
<

1

6
<

1

5
<

1

4
<

1

3
<

1

2
.

In this example, we are interested in estimating the condition number with respect

to the 2-norm of the matrix A, which is

κ2(A) =
σmax(A)

σmin(A)
,
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σi MM svd

1.6e+ 00 1.4e− 16 1.4e− 16

1.2e+ 00 9.4e− 16 9.4e− 16

5.8e− 01 5.8e− 16 3.8e− 16

4.8e− 01 5.8e− 16 2.3e− 16

2.5e− 01 2.2e− 16 0

1.8e− 01 6.0e− 16 4.5e− 16

6.3e− 02 2.2e− 16 0

3.5e− 02 0 1.0e− 15

7.6e− 03 1.1e− 16 9.8e− 15

3.4e− 03 1.1e− 15 2.0e− 15

3.9e− 04 1.4e− 16 1.5e− 14

1.3e− 04 2.0e− 16 8.4e− 15

7.5e− 06 9.0e− 16 1.6e− 12

1.6e− 06 1.3e− 16 4.3e− 12

4.8e− 08 1.8e− 15 3.9e− 10

3.0e− 09 2.9e− 15 2.5e− 10
Table 7.2

Example 7.2: Singular values of a Bernstein–Vandermonde matrix 21 × 16.

where σmax(A) is the largest singular value of A and σmin(A) is the smallest singular

value of A.

In Table 7.3, we show the condition number κ2(A) obtained in Maple by dividing

the greatest by the smallest singular value of A (computed by using 50-digit arith-

metic) and the relative errors obtained when computing it by means of

1. The ratio of the largest by the smallest singular value of A obtained by means

of the algorithm presented in Section 4.4 (column labeled by MM).

2. The command cond(A,2) from Matlab.

κ2(A) MM cond(A,2)

2.0879e+ 27 3.8e− 15 1
Table 7.3

Example 7.3: Condition number of a Bernstein–Vandermonde matrix 30× 21.

The relative error is obtained by using the value of κ2(A) presented in the first

column of Table 7.3.

It must be observed that, taking into account that the Bernstein–Vandermonde

matrices we are considering are totally positive, their rank is maximum and therefore
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all their singular values are nonzero. In this way, the condition number with respect

to the 2-norm of A is obtained by simply dividing the first singular value of A by the

last one, if we consider them in descending order.

In conclusion, the experiments show our algorithm is adequate for estimating the

condition number of totally positive Bernstein–Vandermonde matrices with respect

to the 2-norm.

In the following example, we test the results concerning the perturbation theory

developed in Section 6.

Example 7.4. Let A be the same Bernstein–Vandermonde matrix as in Example

7.1. In this case, the minimum relative gap between the {xi}1≤i≤21 is rel gapx =

6.5e− 3, and the minimum relative gap between the {xi}1≤i≤21 and 1 is rel gap1 =

2.0e − 1. We introduce random perturbation in the 10th digit of the {xi}1≤i≤21

resulting in θ = 7.2e− 9.

We then compute the exact bidiagonal factorization B of A and the exact bidi-

agonal factorization B′ of the perturbed matrix A′ in Maple, obtaining that the

maximum relative componentwise distance between the entries of B and the entries

of B′ is 1.7e− 7, while the bound we get when using our Theorem 6.2 is 4.7e− 5.

As for the eigenvalues, we compute the eigenvalues of A and of A′ in in Maple

by using 50-digit arithmetic. The maximum of the relative distance between the

eigenvalues of A and of A′ is 2.2e − 8, while the bound obtained for this example

when applying Corollary 7.3 in [28] with the value δ = 1.7e− 7 is 1.5e− 4.

Finally, we include an example in which we show the sensitivity of the bidi-

agonal decomposition of a Bernstein–Vandermonde matrix to perturbations in the

{xi}1≤i≤l+1 when xl+1 is very close to 1 (in this case, the value of κBV in Theorem

6.2 will be large since rel gap1 is small), and the sensitivity to perturbations in the

{xi}1≤i≤l+1 when x1 is very close to 0 (in this case, the value of θ in Theorem 6.2

will be large since |x1| is small).

Example 7.5. First, let A be the Bernstein–Vandermonde matrix of order 21

generated by the first twenty nodes in Example 7.1 and x21 = 9999
10000 . The minimum

relative gap between the {xi}1≤i≤21 is rel gapx = 6.5e − 3, the same as in Example

7.4, while the minimum relative gap between the {xi}1≤i≤21 and 1 is in this case

rel gap1 = 1.0e − 4. We introduce the same perturbation as in Example 7.4 in the

10th digit of the {xi}1≤i≤21 resulting in θ = 7.2e−9, the same value as in the previous

example.

When computing the exact bidiagonal factorization B of A and the exact bidiag-

onal factorization B′ of the perturbed matrix A′ in Maple, we get that the maximum
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relative componentwise distance between the entries of B and the entries of B′ is

1.4e− 4, while the bound we get when using Theorem 6.2 is 3.0e− 3.

Now let A be the Bernstein–Vandermonde matrix of order 21 generated by x1 =
1

10000 and the last twenty nodes in Example 7.1. The minimum relative gap between

the {xi}1≤i≤21 is rel gapx = 6.5e− 3, the same as in Example 7.4, and the minimum

relative gap between the {xi}1≤i≤21 and 1 is rel gap1 = 2.0e− 1, also the same value

as in Example 7.4. We introduce the same perturbation as in Example 7.4 in the 10th

digit of the {xi}1≤i≤21, resulting in this case θ = 6.0e− 6.

When we compute the exact bidiagonal factorization B of A and the exact bidiag-

onal factorization B′ of the perturbed matrix A′ in Maple, the bound we obtain when

using Theorem 6.2 is 4.0e − 2, and the maximum relative componentwise distance

between the entries of B and the entries of B′ is 6.0e− 6.
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