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ADDITIONAL RESULTS ON INDEX SPLITTINGS FOR DRAZIN
INVERSE SOLUTIONS OF SINGULAR LINEAR SYSTEMS ∗

YIMIN WEI † AND HEBING WU ‡

Abstract. Given an n × n singular matrix A with Ind(A) = k, an index splitting of A is one
of the form A = U − V , where R(U) = R(Ak) and N(U) = N(Ak). This splitting, introduced by
the first author, generalizes the proper splitting proposed by Berman and Plemmons. Regarding
singular systems Au = f , the first author has shown that the iterations u(i+1) = U#V u(i) + U#f
converge to ADf , the Drazin inverse solution to the system, if and only if the spectral radius of
U#V is less than one. The aim of this paper is to further study index splittings in order to extend
some previous results by replacing the Moore-Penrose inverse A+ and A−1 with the Drazin inverse
AD. The characteristics of the Drazin inverse solution ADf are established. Some criteria are given

for comparing convergence rates of U#
i Vi, where A = U1 − V1 = U2 − V2. Results of Collatz, Marek

and Szyld on monotone-type iterations are extended. A characterization of the iteration matrix of
an index splitting is also presented.

Key words. Index, Drazin inverse, group inverse, Moore-Penrose inverse, index splitting, proper
splitting, comparison theorem, monotone iteration.
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1. Introduction. It is well known that a necessary and sufficient condition for
a matrix to be convergent is that all of its eigenvalues are less than one in magnitude.
For linear systems with nonsingular coefficient matrices the convergence of an iterative
scheme based on a splitting is equivalent to the corresponding iteration matrix being
convergent. However, this is not the case for linear systems with singular coefficient
matrices. This is due to fact that when we split A into A = U − V , we often assume
that U is nonsingular.

Consider a general system of linear equations

Au = f,(1.1)

where A ∈ R
n×n, possibly singular, and u, f are the vectors in Rn. Berman and

Plemmons [3] consider the so-called proper splitting A = U − V with

R(U) = R(A) and N(U) = N(A),

where R(A) denotes the range of A and N(A) denotes the null space of A. This is the
case, for example, when U and A are nonsingular. It is shown in [3] that if U+V is
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convergent, i.e., its spectral radius ρ(U+V ) is less than one, then the iterative scheme

u(i+1) = U+V u(i) + U+f(1.2)

converges to the vector u = (I − U+V )−1U+f = A+f, which is the least squares
solution of (1.1). Here U+ denotes the Moore-Penrose inverse of U . This iterative
scheme does not involve the normal equations ATAu = AT f and avoids the problem
of ATA being frequently ill-conditioned and influenced greatly by roundoff errors, as
pointed out in [12]. Similar results have been extended to various types of generalized
inverses and the corresponding solutions of (1.1); see [4].

Iterations of the type (1.2), where the system (1.1) is consistent and U is nonsin-
gular, were studied by Keller in [17] and extended to rectangular (but still consistent)
systems by Joshi [16]. In both cases the splitting is not proper.

In some situations, however, people pay more attention to the Drazin inverse
solution ADf of (1.1) ([6, 23, 24, 26, 28]), where AD is the Drazin inverse of A.
The Drazin inverse has various applications in the theory of finite Markov chains [5,
Chapter 8], the study of singular differential and difference equations [5, Chapter 9],
the investigation of Cesaro-Neumann iterations [13], cryptography [14], and iterative
methods in numerical analysis [7, 9, 11, 15, 20, 27, 28]. Chen and Chen [6] presented
a new splitting for singular linear systems and the computation of the Drazin inverse:
Let A = U − V be such that

R(Uk) = R(Ak) and N(Uk) = N(Ak).(1.3)

It was proven in [6] that AD = (I −UDV )−1UD, where k = Ind(A) is the index of A,
that is, the smallest nonnegative integer such that R(Ak+1) = R(Ak).

For computing the Drazin inverse solution ADf , Wei [26] proposed an index
splitting of A = U − V such that

R(U) = R(Ak) and N(U) = N(Ak).(1.4)

Then the iterative scheme (1.2) is modified into

u(i+1) = U#V u(i) + U#f.(1.5)

Clearly, if A and U are nonsingular, a typical splitting is an index splitting; and if
Ind(A) = 1, the index splitting reduces to a proper splitting. Note that the splitting
(1.4) is easier to construct than that of (1.3); cf. Theorem 6.1.

It was shown in [26] that the iterates in (1.5) converge to ADf if and only if
ρ(U#V ) < 1, and some sufficient conditions were given to ensure ρ(U#V ) < 1.
Partial results for proper splittings were also extended to index splittings, especially
when Ind(A) = 1.

In this paper we shall further study index splittings to establish some new results
that are analogous to well-known results on regular splittings when A is nonsingular,
and to proper splittings when A is singular.

The outline of this paper is as follows: In §2, we present notation used later
and review briefly some preliminary results. In §3, first we give the characteristics
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of the Drazin inverse solution ADf , and then present equivalent conditions for the
convergence of the iterations. In §4, we discuss monotone-type iterations based on
the index splitting. In §5, comparison theorems under regularity assumptions are
established; a characterization of the iteration matrix of an index splitting is also
developed in the last section.

2. Notation and preliminaries. Throughout the paper the following notation
and definitions are used. Rn denotes the n-dimensional real space. Rn

+ denotes the
nonnegative orthant in Rn. Rn×n denotes the n × n real matrices. For x, y ∈ R

n,
(x, y) denotes their inner product. For L and M complementary subspaces of Rn,
PL,M denotes the projector on L along M .

A nonempty subsetK of Rn is a cone if λ ≥ 0 implies λK ⊆ K. A coneK is convex
if K +K ⊆ K, and pointed if K

⋂
(−K) = {0}. The polar of a cone K is the closed

convex cone K∗ = {y ∈ R
n|x ∈ K implies (x, y) ≥ 0}. The interior Kd of a closed

convex cone K is given algebraically by Kd = {x ∈ K|0 
= y ∈ K∗ implies (x, y) > 0}.
A cone K is solid if Kd is nonempty. A closed convex cone K of Rn is reproducing,
that is, K + (−K) = R

n, if and only if K is solid (due to the finite-dimensionality of
the space). By a full cone we mean a pointed, solid, closed convex cone.

Definition 2.1. ([5]) Let A ∈ R
n×n with Ind(A) = k. The matrix X ∈ R

n×n

satisfying

AX = XA, Ak+1X = Ak, AX2 = X(2.1)

is called the Drazin inverse of A and is denoted by X = AD. In particular, when
Ind(A) = 1, the matrix X in (2.1) is called the group inverse of A and is denoted by
X = A#.

The Drazin inverse can be represented explicitly by the Jordan canonical form as
follows. If

A = P
[
C 0
0 N

]
P−1,(2.2)

where C is nonsingular and rank(C) = rank(Ak), and N is nilpotent of order k, then

AD = P
[
C−1 0
0 0

]
P−1.(2.3)

In particular, if Ind(A) = 1, then N = 0 in (2.2).
The matrix M ∈ R

n×n is called K-positive if MK ⊆ K; see [4]. When K = R
n
+,

MK ⊆ K is equivalent to M having nonnegative elements and denoted byM ≥ 0. In
the sequel, we denoteMK ⊆ K byM

K≥ 0 and (M−N)K ⊆ K byM
K≥ N . Similarly,

we denote M(K\{0}) ⊆ Kd by M
K
> 0 and (M −N)(K\{0}) ⊆ Kd by M

K
> N . For

x, y ∈ R
n, y

K≥ x means y − x ∈ K. A sequence {xi} in Rn is called K-monotone

nondecreasing (nonincreasing) if xi

K≥ xi−1 (xi−1

K≥ xi) for i = 1, 2, . . .
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Definition 2.2. ([4]) LetK be a full cone of Rn. Let A ∈ R
n×n with Ind(A) = k.

A is called Drazin
K− monotone if AD

K≥ 0. In particular A is called group
K− monotone

if A# exists and A#
K≥ 0.

Lemma 2.3. Let K be a full cone of Rn. Let A ∈ R
n×n with Ind(A) = k. Then

AD
K≥ 0 if and only if

Ax ∈ K +N(Ak), x ∈ R(Ak)⇒ x ∈ K.

Proof. The proof of this lemma is analogous to that of Theorem 1 in [22].
For the index splitting (1.4) and the corresponding iterative scheme (1.5), Wei

proved the following results.
Lemma 2.4. ([26]) Let A = U − V be an index splitting of A ∈ R

n×n with
Ind(A) = k. Then
(a) Ind(U) = 1;
(b) I − U#V is nonsingular;
(c) AD = (I − U#V )−1U# = U#(I − V U#)−1;
(d) ADf is the unique the solution of the system x = U#V x+U#f for any f ∈ R

n.
Remark 1. It is easy to prove that I + ADV is nonsingular and U# = (I +

ADV )−1AD = AD(I + V AD)−1.
Theorem 2.5. ([26]) Let K be a full cone of Rn, and let A = U −V be an index

splitting of A with Ind(A) = k such that U#V
K≥ 0. Then

ρ(U#V ) =
ρ(ADV )

1 + ρ(ADV )
< 1(2.4)

if and only if ADV
K≥ 0.

Remark 2. Analogously to Theorem 2.5, we can see that if V U#
K≥ 0, then

ρ(V U#) =
ρ(V AD)

1 + ρ(V AD)
< 1(2.5)

if and only if V AD
K≥ 0.

3. New convergence conditions. As aforementioned, A+f is the minimal
normal solution of (1.1) if the system is consistent, and is the minimal normal least
squares solution of (1.1) if the system is not consistent (i.e., A+f is the unique solution
of the normal equations ATAu = AT f in R(AT )). Next we present two characteristics
of the Drazin inverse solution ADf .

Theorem 3.1. Let A ∈ R
n×n with Ind(A) = k. Then ADf is the unique solution

in R(Ak) of

Ak+1u = Akf.(3.1)
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Proof. It is clear that the system (3.1) is always consistent and ADf is a solution
of it. Assume that there is another solution u ∈ R(Ak) of (3.1). On one hand,
u − ADf ∈ R(Ak). On the other hand, u − ADf ∈ N(Ak+1) since these are all the
solutions of (3.1) and u − ADf ∈ R(Ak)

⋂
N(Ak). Recall that if R(Ak)

⋂
N(Ak) =

{0}, then u = ADf .
Since (3.1) is analogous to ATAu = AT f , we shall call (3.1) the generalized

normal equations of (1.1). The next theorem provides a better understanding of the
solution ADf . The P -norm is defined as ‖x‖P = ‖P−1x‖2 for x ∈ R

n, where P is a
nonsingular matrix that transforms A into its Jordan canonical form (2.2).

Theorem 3.2. Let A ∈ R
n×n with Ind(A) = k. Then u∗ satisfies

‖f −Au∗‖P = min
u∈N(A)+R(Ak−1)

‖f −Au‖P

if and only if u∗ is the solution of

Ak+1u = Akf, u ∈ N(A) +R(Ak−1).(3.2)

Moreover, the Drazin inverse solution u = ADf is the unique minimal P -norm solu-
tion ([26]) of the generalized normal equations (3.1).

Proof. Write f = AADf + (I −AAD)f
�
= f1 + f2. It follows that

‖f −Au‖2
P = ‖AADf −Au‖2

P + ‖(I −AAD)f‖2
P

+ 2(AADf −Au)TP−TP−1(I −AAD)f.(3.3)

For any u ∈ N(A) +R(Ak−1), it can be easily deduced from (2.2) and (2.3) that the
third term in (3.3) vanishes. Hence,

‖f −Au‖2
P = ‖AADf −Au‖2

P + ‖(I − AAD)f‖2
P

≥ ‖(I −AAD)f‖2
P ,(3.4)

whenever u ∈ N(A) +R(Ak−1). The equality in (3.4) holds if and only if

Au = AADf, u ∈ N(A) +R(Ak−1).(3.5)

We are now in a position to prove the equivalence between (3.2) and (3.5). Multiplying
both sides of (3.5) by Ak leads immediately to (3.2). Conversely, since (AD)k+1Ak =
AD, we can deduce that (3.2) is equivalent to

ADAu = ADf, u ∈ N(A) +R(Ak−1).(3.6)

Assume that u∗ is the solution of (3.6). Then

ADAu∗ = ADf1.(3.7)

It follows from (3.7) that f1 −Au∗ ∈ N(AD) = N(Ak). Note that f1 −Au∗ ∈ R(Ak)
since u∗ ∈ N(A) +R(Ak−1); therefore, f1 −Au∗ ∈ R(Ak)

⋂
N(Ak) = {0}. Hence,

Au∗ = f1 = AADf,
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showing that (3.2) implies (3.5).
Clearly, the general solution of the generalized normal equations (3.1) is

u = ADf + z, ∀z ∈ N(Ak).

It is easy to show that

‖u‖2
P = ‖ADf‖2

P + ‖z‖2
P ≥ ‖ADf‖2

P .

Equality in the above relation holds if and only if z = 0, i.e., u = ADf .
Remark 3. In general, unlike A+f , the Drazin inverse solution ADf is not a true

solution of a singular system (1.1), even if the system is consistent. However, Theorem
3.2 means that u = ADf is the unique minimal P -norm least squares solution of (1.1).

The following corollaries are obvious.
Corollary 3.3. ([26]) Under the assumptions of Theorem 3.2, if f ∈ R(Ak),

then u = ADf is the unique minimal P-norm solution of (1.1).
Corollary 3.4. ([27]) Let A ∈ R

n×n with Ind(A) = 1. Then, if f ∈ R(A),
u = A#f is the unique minimal P-norm solution of (1.1); if f 
∈ R(A), u = A#f is
the unique minimal P -norm least squares solution of (1.1).

We now give the main results of this section.
Theorem 3.5. Let A ∈ R

n×n with Ind(A) = k. Let A = U − V be an index

splitting of A. Let L and K be full cones of Rn. If U#L ⊆ K and U#V
K≥ 0, then

the following statements are equivalent:
(a) ADL ⊆ K;

(b) ADV
K≥ 0;

(c) ρ(U#V ) = ρ(ADV )
1+ρ(ADV )

< 1.
Proof. The proof of this theorem is similar to that of Theorem 3 in [3].
Similarly, we have the following result.
Theorem 3.6. Let A ∈ R

n×n with Ind(A) = k and A = U − V be an index

splitting of A. Let L and K be full cones of Rn. If U#L ⊆ K and V U#
L≥ 0, then

the following statements are equivalent:
(a) ADL ⊆ K;

(b) V AD
L≥ 0;

(c) ρ(U#V ) = ρ(V AD)
1+ρ(V AD) < 1.

As a result of Theorem 3.5 and Theorem 3.6, we have the following.
Corollary 3.7. Let A ∈ R

n×n with Ind(A) = k and A = U − V be an index

splitting of A. Let K be a full cone of Rn. If U#
K≥ 0 and either U#V

K≥ 0 or

V U#
K≥ 0, then ρ(U#V ) < 1 if and only if AD

K≥ 0.
Remark 4. Clearly, Corollary 3.7 extends the well-known results of Varga [25]

and Ortega and Rheiboldt [21] for regular and weak regular splittings of a nonsingular
matrix. When Ind(A) = 1, Theorem 3.5 reduces to Theorem 4.2 in [26].
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4. Monotone-type iterations. Conditions under which iterations resulting
from a proper splitting of a nonsingular matrix A are monotone were given by Col-
latz [8]. More research on monotone iterations of proper splittings is accomplished in
[3, 19]. In this section these results are partially extended and generalized to index
splittings; the requirement that A be nonsingular is removed and monotonicity is
replaced by K-monotonicity.

Theorem 4.1. Let K be a full cone of Rn and let A = U−V be an index splitting

of A ∈ R
n×n with Ind(A) = k. Assume that U#V

K≥ 0.
(a) If there exist u(0), w(0) such that u(1)

K≥ u(0), w(0)
K≥ u(0) and w(0)

K≥ w(1), where
u(i) and w(i) are computed by

u(i+1) = U#V u(i) + U#f, w(i+1) = U#V w(i) + U#f,(4.1)

for i = 0, 1, 2, . . ., then

u(0)
K≤ u(1)

K≤ · · · K≤ u(i)
K≤ · · · K≤ ADf

K≤ · · · K≤ w(i)
K≤ · · · K≤ w(1)

K≤ w(0),

and for each real λ satisfying 0 ≤ λ ≤ 1,
ADf = λ lim

i→∞
u(i) + (1− λ) lim

i→∞
w(i).

(b) If ρ(U#V ) < 1, then the existence of u(0) and w(0) satisfying the assumptions of
clause (a) is assured.

Proof. The proof of this theorem is analogous to that of Theorem 4 in [3].

Remark 5. Clearly, if ADV
K≥ 0, then there exist u(0) and w(0) such that

the sequences {u(i)} and {w(i)} are K-monotone and converge to the Drazin inverse
solution ADf .

Theorem 4.2. Let A = U−V be an index splitting of A ∈ R
n×n with Ind(A) = k.

Let L and K be full cones of Rn. Assume that U#L ⊆ K and U#V
K≥ 0. Let u(0),

w(0) ∈ R(Ak) satisfy

u(0)
K≤ w(0) and Au(0)

L≤ f L≤ Aw(0).

Then the sequences {u(i)} and {w(i)} computed by (4.1) converge to ADf and

u(0)
K≤ u(1)

K≤ · · · K≤ u(i)
K≤ · · · K≤ ADf

K≤ · · · K≤ w(i)
K≤ · · · K≤ w(1)

K≤ w(0).

Proof. In accordance with Theorem 4.1, it suffices to show that u(0)
K≤ u(1) and

w(1)
K≤ w(0). It follows form u(1) = U#V u(0) + U#f and u(0) ∈ R(Ak) = R(U) that

u(1) − u(0) = U#V u(0) − U#Uu(0) + U#f

= U#(f −Au(0)).

Hence u(1) − u(0) ∈ K, because U#L ⊆ K and Au(0)
L≤ f . The proof of w(1)

K≤ w(0)

is analogous.
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5. Comparison theorems. In this section we present some comparison theo-
rems on index splittings of the same matrix. These comparison theorems are gen-
eralizations of some well-known comparison theorems for nonsingular matrices. For
simplicity we consider only the case K = R

n
+.

Theorem 5.1. Let A ∈ R
n×n with Ind(A) = k and AD ≥ 0. Let A = U1 − V1 =

U2 − V2 be index splittings of A such that U#
i ≥ 0, Vi ≥ 0 for i = 1, 2. If V2 ≥ V1,

then

ρ(U#
1 V1) ≤ ρ(U#

2 V2) < 1.

In particular, if V2 ≥ V1 ≥ 0, equality excluded, and AD > 0, then

ρ(U#
1 V1) < ρ(U

#
2 V2) < 1.

Proof. The proof is analogous to that of Theorems 12 and 13 in [29].
Theorem 5.2. Let A = U1 − V1 = U2 − V2 be index splittings of A ∈ R

n×n with
Ind(A) = k. Let AD ≥ 0 and no column or row vanish. Let U#

i ≥ 0, U#
i Vi ≥ 0 and

ViU
#
i ≥ 0 for i = 1, 2. If U#

1 ≥ U#
2 , then

ρ(U#
1 V1) ≤ ρ(U#

2 V2) < 1.

Moreover, if U#
1 > U#

2 and AD > 0, then

ρ(U#
1 V1) < ρ(U

#
2 V2) < 1.

Proof. The proof is similar to that of Theorems 3.5 and 3.6 in [30].
Theorem 5.3. Let A = U1 − V1 = U2 − V2 be convergent index splittings of

A ∈ R
n×n with Ind(A) = k, where AD ≥ 0. Assume that U#

i Vi ≥ 0 for i = 1, 2. Let
y1 ≥ 0, y2 ≥ 0 be such that U#

1 V1y1 = ρ(U
#
1 V1)y1, U

#
2 V2y2 = ρ(U

#
2 V2)y2. If either

V2y1 ≥ V1y1 or V2y2 ≥ V1y2,

with y2 > 0, then

ρ(U#
1 V1) ≤ ρ(U#

2 V2).

Moreover, if AD > 0 and either V2y1 ≥ V1y1, equality excluded, or V2y2 ≥ V1y2 with
y2 > 0 and V2 
= V1, then

ρ(U#
1 V1) < ρ(U

#
2 V2).

Proof. The proof is similar to that of Corollary 6.3 in [30].
Remark 6. The hypothesis y2 > 0 is immediately satisfied if U

#
2 V2 is irreducible.

Other comparison theorems of proper splittings for a nonsingular matrix can be
similarly extended to our index splitting case; cf. [10, 18, 19].
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6. Characterization of the iteration matrix. Let A = B − C, where B
is nonsingular, and let T = B−1C. If A is nonsingular, then I − T is nonsingular.
When A is singular, a necessary and sufficient condition for the existence of a splitting
A = B − C such that T = B−1C is N(A) = N(I − T ). Furthermore, in the latter
case, if a proper splitting exists, then there are infinitely many proper splittings such
that T = B−1C; see [1]. Now it is of interest to enquire about index splittings.

An n× n matrix with Ind(A) = k and rank(Ak) = r may be factored as

A = P
[
A11 0
0 Q

]
P−1,(6.1)

where A11 is an r× r nonsingular matrix and Q is nilpotent of order k. The following
theorem gives a sufficient and necessary condition under which an index splitting of
A can be found.

Theorem 6.1. Let A ∈ R
n×n with Ind(A) = k having the form (6.1). Then

R(U) = R(Ak) and N(U) = N(Ak)

if and only if

U = P
[
U11 0
0 0

]
P−1,(6.2)

where U11 is an arbitrary nonsingular matrix of order r.
Proof. From (6.1) it follows that

Ak = P
[
Ak

11 0
0 0

]
P−1.

The remaining proof is analogous to that of Theorem 1 in [2].
Theorem 6.1 indicates that in order to obtain an index splitting, one should find

a factorization (6.1) of A, then split A11 into

A11 = U11 − V11,(6.3)

where U11 is nonsingular and form U as in (6.2).
Theorem 6.2. Let A ∈ R

n×n with Ind(A) = k having the form (6.1). Let U ,
U11 and V11 be as given in (6.2) and (6.3). Then

ρ(U#V ) = ρ(U−1
11 V11).

Proof. The group inverse of U is

U# = P
[
U−1

11 0
0 0

]
P−1.

Since

V = P
[
V11 0
0 −Q

]
P−1,
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then

U#V = P
[
U−1

11 V11 0
0 0

]
P−1.

Hence ρ(U#V ) = ρ(U−1
11 V11).

Finally, we present a characterization of the iteration matrix of an index splitting.
Theorem 6.3. Let A ∈ R

n×n with Ind(A) = k having the form (6.1). Let
T ∈ R

n×n be such that I − T is nonsingular. Then there exists an index splitting
A = U − V such that T = U#V if and only if T has the form

T = P
[
G 0
0 0

]
P−1, G ∈ R

r×r.(6.4)

Furthermore, if (6.4) holds, then the index splitting A = U − V with T = U#V is
unique.

Proof. (⇐) Assume that there is an index splitting A = U − V such that T =
U#V . By Theorem 6.1 we have

U = P
[
U11 0
0 0

]
P−1, V = P

[
V11 0
0 −Q

]
P−1,

where U11 ∈ R
r×r is nonsingular, and V11 = U11 −A11. So

T = P
[
U−1

11 V11 0
0 0

]
P−1 �

= P
[
G 0
0 0

]
P−1.

(⇒) Since I−T is nonsingular, I−G is also nonsingular. By Lemma 2.3 in [18] there
exists a unique proper splitting A11 = U11 − V11 such that G = U−1

11 V11. Setting

U = P
[
U11 0
0 0

]
P−1, V = P

[
V11 0
0 −Q

]
P−1,

one obtains the unique index splitting A = U − V such that T = U#V .
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