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Abstract. Let U(n, k) be the set of non-bipartite unicyclic graphs with n vertices and k pendant

vertices, where n ≥ 4. In this paper, the unique graph with the minimal least eigenvalue of the signless

Laplacian among all graphs in U(n, k) is determined. Furthermore, it is proved that the minimal

least eigenvalue of the signless Laplacian is an increasing function in k. Let Un denote the set of

non-bipartite unicyclic graphs on n vertices. As an application of the above results, the unique graph

with the minimal least eigenvalue of the signless Laplacian among all graphs in Un is characterized,

which has recently been proved by Cardoso, Cvetković, Rowlinson, and Simić.
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1. Introduction. All graphs considered are simple, undirected, and connected.

The vertex set and edge set of the graph G are denoted by V (G) and E(G), respec-

tively. The distance between vertices u and v of a graph G is denoted by dG(u, v).

The degree of a vertex v, written by dG(v) or d(v), is the number of edges incident

with v. A pendant vertex is a vertex of degree 1. The set of the neighbors of a vertex

v is denoted by NG(v) or N(v). The girth g(G) of a graph G is the length of the

shortest cycle in G, with the girth of an acyclic graph being infinite. Denote by Cn

and Pn the cycle and the path, respectively, on n vertices.

The adjacency matrix of G is defined to be the matrix A(G) = (aij), where aij = 1

if vi is adjacent to vj , and aij = 0 otherwise. The degree matrix of G is denoted

by D(G) = diag(dG(v1), dG(v2), . . . , dG(vn)). The matrix Q(G) = D(G) + A(G) is

called the signless Laplacian or the Q−matrix of G. Note that Q(G) is nonnegative,

symmetric and positive semidefinite, so its eigenvalues are real and can be arranged
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in non-increasing order as follows:

q1(G) ≥ q2(G) ≥ · · · ≥ qn(G) ≥ 0,

where q1(G) is the signless Laplacian spectral radius of graph G, and the least eigen-

value qn(G), denoted by q(G) or q for short, is called the least eigenvalue of the

signless Laplacian or the least Q-eigenvalue of G. It is well known [3] that q(G) = 0

of a connected graph G if and only if G is bipartite.

Recently, the signless Laplacian matrix of G has received much attention. As

pointed out by Haemers and Spence [7], sometimes the matrix Q is more informative

about G than the adjacency matrix A or the Laplacian matrix L(G) = D − A.

Computer investigations of graphs with up to 11 vertices [4] suggest that the spectrum

of D + A performs better than the spectrum of A or D − A in distinguishing non-

isomorphic graphs.

There has been a lot of work on the signless Laplacian spectral radius of a graph

in recent years, however relatively few results on the least eigenvalue of the signless

Laplacian q(G) have appeared in the literature. In [8], Li and Wang proposed the

following problem concerning the least eigenvalue of the signless Laplacian:

Given a set of graphs G, find a lower bound for the least eigenvalue of the signless

Laplacian and characterize the graphs in which the minimal least eigenvalue of the

signless Laplacian is attained.

The above problem is actually one of the signless Laplacian version of the classical

Brualdi-Solheid problem [1] for the adjacency matrix. Cardoso et al. [2] determined

the unique graph with the minimum value of the least eigenvalue of the signless

Laplacian of a connected non-bipartite graph with a prescribed number of vertices.

Fan et al. [6] minimized the least eigenvalue among all nonsingular unicyclic mixed

graphs in the setting of Laplacian of mixed graphs. Their result can be applied to

signless Laplacian of graphs directly. Li and Wang [8] characterized the unique graph

whose least eigenvalue of the signless Laplacian attains the minimum among all graphs

in the complements of trees on n vertices. In [9], Wang and Fan minimized the least

eigenvalue of the signless Laplacian among the class of connected graphs with fixed

order which contains a given non-bipartite graph as an induced subgraph. In this

paper, we focus on the same question for U(n, k), the set of non-bipartite unicyclic

graphs with n vertices and k pendant vertices.

A connected graph is said to be non-bipartite unicyclic, if it has a unique odd

cycle, and the same number of vertices and edges. Let △k
n be the non-bipartite

unicyclic graph obtained from C3 and a star K1,k by joining the center of K1,k and a

vertex of C3 by the path of length n − k − 3 (see Fig. 1.1). The main result of this
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paper is as follows:

Theorem 1.1. Let U∗ have the minimal least eigenvalue of the signless Laplacian

among all graphs in U(n, k). Then U∗ is isomorphic to △k
n for 1 ≤ k ≤ n−3. Further-

more, the minimal least eigenvalue of the signless Laplacian q(△k
n) is an increasing

function on k, i.e., q(△k
n) < q(△k+1

n ) for 1 ≤ k ≤ n− 4.
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Fig. 1.1. Graph △k
n.

2. Preliminaries. Denote the least eigenvalue of Q(G) by q(G). The corre-

sponding eigenvectors are called the least Q-eigenvectors of graph G. Let X =

(x1, x2, . . . , xn)
T ∈ R

n, and G be a graph on vertices v1, v2, . . . , vn. Then X can be

considered as a function defined on G, that is, each vertex vi is mapped to xi = xvi .

If X is an eigenvector of Q(G), then it is naturally defined on V (G), where xv is the

entry of X corresponding to vertex v. One can find that

XTQ(G)X =
∑

uv∈E(G)

(xu + xv)
2.

Then q is a signless Laplacian eigenvalue of G corresponding to the eigenvector X if

and only if X 6= 0 and for each vertex v ∈ V (G),

(q − dG(v))xv =
∑

u∈NG(v)

xu.(2.1)

In addition, by the Rayleigh-Ritz Theorem, for an arbitrary unit vector X ∈ R
n,

q(G) = min(XTQ(G)X) ≤ XTQ(G)X

with equality if and only if X is an eigenvector corresponding to the least Q-eigenvalue

q(G).
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Before giving the proof of Theorem 1.1, we introduce some lemmas in this section.

Lemma 2.1. ([5]) Let G be a connected non-bipartite graph with minimal degree δ,

then 0 < q(G) < δ. In particular, if G contains a pendant vertex, then 0 < q(G) < 1.

Let G1, G2 be two vertex-disjoint nontrivial connected graphs with v1 ∈ V (G1)

and u ∈ V (G2). The coalescence of G1 and G2, denoted by G1v1uG2, is obtained

from G1 and G2 by identifying v1 with u (see Fig. 2.1), where G1 and G2 are called

branches of G1v1uG2 with roots v1 and u, respectively. Let X be a vector defined on

V (G). A branch H of G is called a zero branch with respect to X if xv = 0 for all

v ∈ V (H), otherwise it is called a nonzero branch with respect to X .
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G1r G2
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v2 ur

Fig. 2.1. G1v1uG2 and G1v2uG2.

Lemma 2.2. ([9]) Let G1, G2 be two vertex-disjoint nontrivial connected graphs

with v1, v2 ∈ V (G1) and u ∈ V (G2). Let X be a least Q-eigenvector of G1v1uG2. If

|xv1 | ≤ |xv2 |, then

q(G1v1uG2) ≥ q(G1v2uG2)

with equality only if |xv1 | = |xv2 | and dG2
(u)xu = −

∑

v∈NG2
(u) xv.

Lemma 2.3. ([9]) Let G be a nontrivial non-bipartite connected graph, and let

Gk,l be the graph obtained by coalescing G with two paths Pk+1 and Pl+1 by identifying

an end vertex of Pk+1 and an end vertex of Pl+1 both with the same vertex v of G. If

k ≥ l ≥ 1, then

q(Gk,l) ≥ q(Gk+1,l−1),

with strict inequality if xv 6= 0, where X is a least Q-eigenvector of Gk,l.

Lemma 2.4. ([9]) Let G be a connected graph which contains a bipartite branch

H with root w. Let X be a least Q-eigenvector of G.

(i) If xw = 0, then H is a zero branch of G with respect to X.

(ii) If xw 6= 0, then xv 6= 0 for every vertex v ∈ V (H). Furthermore, for every vertex

v ∈ V (H), xvxw is either positive or negative, depending on whether v is or is not in

the same part of the bipartite graph H as w; consequently, xuxv < 0 for each edge
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uv ∈ E(H).

Lemma 2.5. ([9]) Let G be a connected non-bipartite graph, and let X be a least

Q-eigenvector of G. Let T be a tree, which is a nonzero branch of G with respect to

X and with root w. Then |xu| < |xv| whenever u, v are vertices of T such that u lies

on the unique path from w to v.

Let Un denote the set of non-bipartite unicyclic graphs on n vertices. For any

U ∈ Un, let Cg be the unique odd cycle in U, where g is the girth of U . In [2], Cardoso

et al. obtained the following important result.

Lemma 2.6. ([2]) Let U be a non-bipartite unicyclic graph on n vertices. Let X

be a least Q-eigenvector of U . Then

(i) xsxt ≥ 0 for some edge st of Cg;

(ii) xuxv ≤ 0 for any other edge uv of U ;

(iii) if xsxt = 0, then either xs or xt is nonzero;

(iv) if u is a vertex of U other that s or t, then |xu| > |xs| or |xu| > |xt|.

3. Characterization of the extremal graph. Let U(n, k) be the set of non-

bipartite unicyclic graphs with n vertices and k pendant vertices, where n ≥ 4. Let U∗

have the minimal least Q-eigenvalue in U(n, k). By Lemma 2.1, clearly 0 < q(U∗) < 1.

Let △k
n ∈ U(n, k) be the non-bipartite unicyclic graph obtained from C3 and a star

K1,k by joining the center of K1,k and a vertex of C3 by the path of length n− k− 3.

First, we consider the case of k = n− 3.

Theorem 3.1. Let U∗ have the minimal least Q-eigenvalue in U(n, n− 3). Then

U∗ is isomorphic to △n−3
n .

Proof. For U∗ ∈ U(n, n−3), then the non-bipartite unicyclic graph U∗ is obtained

from C3 by adding some pendant edges to its vertices. Suppose that U∗ is not

isomorphic to △n−3
n , then there exist two vertices u, v on C3 in U∗, which have k1, k2

pendant edges, respectively. Let w be a vertex of C3 other than u or v. Let X be a

unit Q-eigenvector of U∗ corresponding to q(U∗), without loss of generality, we can

assume that |xu| ≥ |xv|. Then by Lemma 2.2, q(U∗) ≥ q(U), where U is obtained

from U∗ by shifting k2 pendant edges from vertex v to vertex u. If the equality holds,

by Lemma 2.2, |xu| = |xv| and k2xv = −k2xs, where s ∈ NU∗(v) \ {u,w}. The

eigenvalue equations at v and w of U∗ yield

(q − k2 − 2)xv = k2xs + xu + xw,(3.1)

(q − 2)xw = xu + xv,(3.2)
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where q = q(U∗). Since k2xv = −k2xs, (3.1) implies that

(q − 2)xv = xu + xw.(3.3)

Note that xv 6= 0 (otherwise X = 0 by Lemma 2.2 and the eigenvalue equation (2.1)).

If xu = xv, then we can deduce that q(U∗) = 1 or q(U∗) = 4 from (3.2) and (3.3), a

contradiction. If xu = −xv, then we can obtain that q(U∗) = 1 from(3.2) and (3.3),

a contradiction. Thus, there exists U ∈ U(n, n − 3) such that q(U∗) > q(U). This

contradicts the minimality of U∗.

Next we focus on the case of 1 ≤ k ≤ n− 4.

Let U1(n, k) be the subset of U(n, k) in which the unicyclic graphs are obtained

from Cg by attaching k paths at vertex v0. Let U2(n, k) be the subset of U(n, k) in

which the unicyclic graphs are obtained from Pl+1 : v0u1 · · ·ul (l ≥ 1) by attaching

Cg to one end vertex v0 and k paths to the other end vertex ul (see Fig. 3.1).
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Fig. 3.1. Two classes of graphs in U(n, k) with girth g.

Let Ũ be the non-bipartite unicyclic graph obtained from Cg by attaching k

pendant edges at vertex v0. Clearly Ũ ∈ U1(n, k).

Lemma 3.2. For each non-bipartite unicyclic graph U ∈ U(n, k), either q(U) ≥

q(Ũ) or there exists a graph U1 ∈ U2(n, k) such that q(U) ≥ q(U1).

Proof. Let Cg be the unique odd cycle in U , where V (Cg) = {v0, v1, . . . , vg−1}.

The unicyclic graph U can be viewed as planting some tree Ti at vertex vi, where

0 ≤ i ≤ g − 1. Let X be a unit Q-eigenvector of U corresponding to q(U). Without

loss of generality, let |xv0 | = max{|xvi | : 0 ≤ i ≤ g−1}. Let U0 be the graph obtained

from Cg by planting T0, T1, . . . , Tg−1 (possibly trivial) at vertex v0 to form a new

big tree T with root v0, where d(v0) ≥ 3. From a repeated use of Lemma 2.2, we

have q(U) ≥ q(U0). Consider the graph U0. Let t be the cardinality of the vertices

whose degrees are no less than 3 in V (T ) \ {v0} and X ′ be a unit Q-eigenvector of U0
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corresponding to q(U0), and now we distinguish the following three cases:

Case 1. t = 0. In this case, U0 ∈ U1(n, k).

Case 1.1. U0 is isomorphic to Ũ , then q(U0) = q(Ũ).

Case 1.2. U0 is not isomorphic to Ũ , then there exists a vertex v ∈ V (T ) \

{v0} with degree 2 in U0. By Lemmas 2.4 and 2.5, |x
′

v| ≥ |x
′

v0
|. Denote N(v0) =

{v1, vg−1, w1, w2, . . . , wp}. Assume that w1 (possibly v) belongs to the unique path

joining v0 and v. Define U1 = U0 − {v0w2, v0w3, . . . , v0wp} + {vw2, vw3, . . . , vwp},

clearly U1 ∈ U2(n, k) and by Lemma 2.2, q(U0) ≥ q(U1).

Case 2. t = 1. We can assume that there exists one vertex v ∈ V (T ) \ {v0} with

d(v) ≥ 3 in U0, then there is a unique path with length at least 1 joining v0 and v.

By Lemmas 2.4 and 2.5, |x
′

v| ≥ |x
′

v0
|.

Case 2.1. d(v0) ≥ 4. Denote N(v0) = {v1, vg−1, w1, w2, . . . , wp}. Assume

that vertex w1 belongs to the unique path joining v0 and v. Define U1 = U0 −

{v0w2, v0w3, . . . , v0wp} + {vw2, vw3, . . . , vwp}, clearly U1 ∈ U2(n, k) and by Lemma

2.2, q(U0) ≥ q(U1).

Case 2.2. d(v0) = 3. In this case, U1 = U0 ∈ U2(n, k), and q(U0) = q(U1).

Case 3. t > 1. Suppose that u, v ∈ V (T ) \ {v0} are two vertices of U0 whose

degrees are 3 or greater, and |x
′

u| ≥ |x
′

v|. Since T is a tree, there is a path be-

tween u and v and only one neighbor of v, say w, is on the path. Assume that

{v1, v2, . . . , vdv−2} ⊂ N(v) \ {w}. Delete the edges (v, vi) and insert the edges

(u, vi) (i = 1, 2, . . . , dv − 2), then we get a new unicycle graph U
′

1. Obviously U
′

1

still has k pendant vertices. By Lemma 2.2, we have q(U0) ≥ q(U
′

1) and the cardinal-

ity of the vertices of degree 3 or greater decreases to t− 1.

If t− 1 > 1, to U
′

1 repeat the above step until the cardinality is reduced to one.

So we get non-bipartite unicyclic graphs

U
′

2, U
′

3, . . . , U
′

t−1

and

q(U
′

1) ≥ q(U
′

2) ≥ · · · ≥ q(U
′

t−1).

Moreover, each U
′

i has k pendant vertices. Refering to case 2, we always have

U1 ∈ U2(n, k) and q(U
′

t−1) ≥ q(U1).

Lemma 3.3. Let U∗ have the minimal least Q−eigenvalue in U(n, k), where

1 ≤ k ≤ n− 4. Then g(U∗) = 3.
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Proof. According to Lemma 3.2, we may assume that U∗ ∈ U2(n, k) or U∗ is

isomorphic to Ũ .

First consider the case of U∗ ∈ U2(n, k). Let Cg be the unique odd cycle in U∗.

Suppose that g(U∗) ≥ 5, and there must exist at least four vertices vi−1, vi, vi+1, vi+2

of Cg in U∗.

Let X be a unit Q−eigenvector of U∗ corresponding to q(U∗). Since |xv0 | =

max{|xvi | : 0 ≤ i ≤ g − 1}, Lemma 2.4 implies xv0 6= 0. According to Lemma

2.6 (i), there must exist an edge vivi+1 ∈ Cg such that xvixvi+1
≥ 0. Since |xv0 | =

max{|xvi | : 0 ≤ i ≤ g − 1}, by Lemma 2.6 (iv), vivi+1 6= v0v1 and vivi+1 6= vg−1v0,

i.e., 1 ≤ i ≤ g − 2. Without loss of generality, we can assume that |xvi | ≤ |xvi+1
|, by

Lemma 2.6 (iii), then xvi+1
6= 0. Now we distinguish the following three cases:

Case 1. (xvi−1
− xvi+2

)(2xvi + xvi−1
+ xvi+2

) ≥ 0.

Case 1.1. i = 1. That is to say, (xv0 − xv3)(2xv1 + xv0 + xv3 ) ≥ 0. Deleting the

edge v1v0 and inserting the edge v1v3, we can get a new graph U ∈ U2(n, k), and

q(U∗)− q(U) ≥ XTQ(U∗)X −XTQ(U)X

= (xv0 + xv1 )
2 − (xv1 + xv3)

2

= (xv0 − xv3 )(2xv1 + xv0 + xv3)

≥ 0.

The equality q(U∗) = q(U) = q holds only if X is also a unit least Q−eigenvector of

U and (xv0 −xv3)(2xv1 +xv0 +xv3) = 0. By the eigenvalue equations (2.1) of vertices

v0 and v1 in both U∗ and U, we have

(q − 3)xv0 = xu1
+ xv1 + xvg−1

, (q − 2)xv1 = xv0 + xv2 ,

(q − 2)xv0 = xu1
+ xvg−1

, (q − 2)xv1 = xv2 + xv3 .

Hence, xv1 = −xv0 = −xv3 . By Lemma 2.6 (iv), |xv3 | > |xv1 |, a contradiction.

Hence, we find a graph U ∈ U2(n, k) such that q(U∗) > q(U). This contradicts the

minimality of U∗.

Case 1.2. 2 ≤ i ≤ g − 2. Define Û = U∗ − vivi−1 + vivi+2, and

q(U∗)− q(Û ) ≥ XTQ(U∗)X −XTQ(Û)X

= (xvi + xvi−1
)2 − (xvi + xvi+2

)2

= (xvi−1
− xvi+2

)(2xvi + xvi−1
+ xvi+2

)

≥ 0.
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At this time, vertex vi−1 is a new pendant vertex in Û . Note that k ≥ 1, there exists

an old pendant vertex v in Û . Let U = Û − v1v0 + v1v, clearly U ∈ U2(n, k). Since

|xv0 | < |xv|, by Lemma 2.2, q(Û) > q(U). This contradicts the minimality of U∗.

Case 2. (xvi+2
− xvi−1

)(2xvi+1
+ xvi−1

+ xvi+2
) ≥ 0.

Case 2.1. i = g − 2. That is, (xv0 − xvg−3
)(2xvg−1

+ xv0 + xvg−3
) ≥ 0. Deleting

the edge vg−1v0 and inserting the edge vg−1vg−3, we get a new graph U ∈ U2(n, k),

and

q(U∗)− q(U) ≥ XTQ(U∗)X −XTQ(U)X

= (xv0 + xvg−1
)2 − (xvg−1

+ xvg−3
)2

= (xv0 − xvg−3
)(2xvg−1

+ xv0 + xvg−3
)

≥ 0.

The equality q(U∗) = q(U) = q holds only if X is also a unit least Q−eigenvector of

U and (xv0 − xvg−3
)(2xvg−1

+ xv0 + xvg−3
) = 0. By the eigenvalue equations (2.1) of

vertices v0 and vg−1 in both U∗ and U, we have

(q − 3)xv0 = xu1
+ xv1 + xg−1, (q − 2)xvg−1

= xv0 + xvg−2
,

(q − 2)xv0 = xu1
+ xv1 , (q − 2)xvg−1

= xvg−3
+ xvg−2

.

Hence, xvg−1
= −xv0 = −xvg−3

. By Lemma 2.6 (iv), |xvg−3
| > |xvg−1

|, a contradic-

tion. Hence, we find a graph U ∈ U2(n, k) such that q(U∗) > q(U). This contradicts

the minimality of U∗.

Case 2.2. 1 ≤ i ≤ g − 3. Define Û = U∗ − vi+1vi+2 + vi+1vi−1, and

q(U∗)− q(Û) ≥ XTQ(U∗)X −XTQ(Û)X

= (xvi+1
+ xvi+2

)2 − (xvi+1
+ xvi−1

)2

= (xvi+2
− xvi−1

)(2xvi+1
+ xvi−1

+ xvi+2
)

≥ 0.

At this time, vertex vi+2 is a new pendant vertex in Û . Note that k ≥ 1, there exists

an old pendant vertex v in Û . Let U = Û − vg−1v0 + vg−1v, clearly U ∈ U2(n, k).

Since |xv0 | < |xv|, by Lemma 2.2, q(Û) > q(U). Hence, we find a graph U ∈ U2(n, k)

such that q(U∗) > q(U). This contradicts the minimality of U∗.

Case 3. (xvi−1
−xvi+2

)(2xvi +xvi−1
+xvi+2

) < 0, (xvi+2
−xvi−1

)(2xvi+1
+xvi−1

+

xvi+2
) < 0. Hence, 2xvi +xvi−1

+xvi+2
and 2xvi+1

+xvi−1
+xvi+2

are of opposite sign.

Since we assume that |xvi | ≤ |xvi+1
|, we have the following two cases:
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Case 3.1. xvi+1
≥ xvi ≥ 0. Hence, 2xvi+1

+ xvi−1
+ xvi+2

> 0, by Lemma 2.6

(ii), xvi−1
, xvi+2

≤ 0, and xvi+1
> 1

2 (|xvi−1
|+ |xvi+2

|) ≥ min{|xvi−1
|, |xvi+2

|}, which is

a contradiction to Lemma 2.6 (iv).

Case 3.2. xvi+1
≤ xvi ≤ 0. It follows that 2xvi+1

+xvi−1
+ xvi+2

< 0, by Lemma

2.6 (ii), xvi−1
, xvi+2

≥ 0, and |xvi+1
| > 1

2 (xvi−1
+ xvi+2

) ≥ min{xvi−1
, xvi+2

}, which is

a contradiction to Lemma 2.6 (iv).

At last, we consider the case of U∗ is isomorphic to Ũ .

If U∗ is isomorphic to Ũ , we have g(U∗) ≥ 5, since k+g(U∗) = n ≥ k+4. Similar

to the above proof with U∗ ∈ U2(n, k), we can always find at least four vertices

vi−1, vi, vi+1, vi+2 of Cg in U∗ and obtain a contradiction in each case. Hence, it is

impossible that U∗ is isomorphic to Ũ .

Let U∗(n, k) be the set of non-bipartite unicyclic graphs in U2(n, k) which have

girth 3 (see Fig. 3.2).

ru rv�
�
�

@
@

@
r
v0

rrr@
@@

A
A
AA · · ·

�
�
��

k paths
︷ ︸︸ ︷

ul

u1

U∗(n, k)

Fig. 3.2. The class of graphs in U2(n, k) with girth 3.

Theorem 3.4. Let U∗ have the minimal least Q-eigenvalue in U(n, k), where

1 ≤ k ≤ n− 4. Then U∗ is isomorphic to △k
n.

Proof. According to Lemma 3.3, we can assume without loss of generality that

U∗ ∈ U∗(n, k). If U∗ is not isomorphic to △k
n, then k ≥ 2 and there exists at

least a pendant path with length 2 or greater at vertex ul in U∗. Let X be a unit

Q−eigenvector of U∗ corresponding to q(U∗). From a repeated use of Lemma 2.3,

we obtain a new graph U
′

∈ U∗(n, k) which has one pendant path: ulz1z2 · · · zp−1zp

with length p = n− k − l − 2 and k − 1 pendant paths with length 1 at vertex ul in

U
′

. Note that xul
6= 0, by Lemma 2.3, q(U∗) > q(U

′

).

Consider unicyclic graph U
′

, let X
′

be a unit Q−eigenvector of U
′

corresponding

to q(U
′

). Denote N(ul) \ {ul−1, z1} = {w1, w2, , . . . , wk−1}. Then △k
n = U

′

− wiul +
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wizp−1, where 1 ≤ i ≤ k − 1. Note that |x
′

ul
| < |x

′

zp−1
|, by Lemma 2.2, then q(U

′

) >

q(△k
n). Hence, we get q(U

∗) > q(△k
n). By the definition of U∗, then U∗ is isomorphic

to △k
n.

Theorem 3.5. Let 1 ≤ k ≤ n− 4. Then q(△k
n) < q(△k+1

n ).

Proof. Consider the unicyclic graph △k+1
n . Let X be a unit Q−eigenvector of

△k+1
n corresponding to q(△k+1

n ). Denote k+1 pendant vertices by v1, v2, . . . , vk, vk+1

and their common neighbor ul. Then △k
n = △k+1

n − viul + vivk+1, where 1 ≤ i ≤ k.

Note that |xul
| < |xvk+1

|, by Lemma 2.2, we have q(△k+1
n ) > q(△k

n).

Theorem 1.1 follows naturally from Theorems 3.1, 3.4 and 3.5.

Let Un be the set of non-bipartite unicyclic graphs on n vertices, where n ≥ 4.

Then Un = {Cn} ∪ U(n, 1) ∪ U(n, 2) ∪ · · · ∪ U(n, n− 3).

Lemma 3.6. Let U∗∗ have the minimal least Q−eigenvalue in Un, where n ≥ 4.

Then U∗∗ is not isomorphic to Cn.

Proof. By way of contradiction, suppose that U∗∗ is isomorphic to Cn, then we

have n ≥ 5 is odd. Let X be a unit Q−eigenvector of U∗∗ corresponding to q(U∗∗).

Using the same techniques as the proof of Lemma 3.3, we can always find at least

four vertices vi−1, vi, vi+1, vi+2 of Cn and obtain a contradiction in each case, since

|xvi | 6= |xvi−1
| and |xvi+1

| 6= |xvi+2
|. Hence, U∗∗ is not isomorphic to Cn.

According to Lemma 3.6, then U∗∗ ∈ U(n, 1) ∪ U(n, 2) ∪ · · · ∪ U(n, n− 3). As an

immediate consequence of Theorems 1.1, we have the following Corollary 3.7, which

is one of the main results in [2].

Corollary 3.7. ([2]) Let Un be the set of non-bipartite unicyclic graphs on n

vertices, where n ≥ 4. For any U ∈ Un, we have

q(U) ≥ q(△1
n)

with equality if and only if U is isomorphic to △1
n.
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