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Abstract. Let F be a field, let G be a simple graph on n vertices, and let SF (G) be the class

of all F -valued symmetric n × n matrices whose nonzero off-diagonal entries occur in exactly the

positions corresponding to the edges of G. For each graph G, there is an associated minimum rank

class, M R
F (G) consisting of all matrices A ∈ SF (G) with rankA = mrF (G), the minimum rank

among all matrices in SF (G). Although no restrictions are applied to the diagonal entries of matrices

in SF (G), this work explores when the diagonal entries corresponding to specific vertices of G must

be zero or nonzero for all matrices A ∈ M R
F (G). These vertices are denoted as nil or nonzero,

respectively. Vertices whose corresponding diagonal entries are not similarily restricted for all ma-

trices in M R
F (G) are called neutral. The minimum rank of a graph following an edge-subdivision

is determined by the existence of a nil vertex, and several relations between diagonal restrictions

and the rank-spread parameter are found. This is followed by the rather different approach of using

the graph parameter Ẑ to identify nil and nonzero vertices. The nil, nonzero and neutral vertices

of trees are classified in terms of rank-spread. Finally, it is shown that except for K3, 2-connected

graphs with maximum nullity 2 have all neutral vertices and, moreover, the graphs with maximum

nullity 2 that have nil or nonzero vertices are completely classified.

Key words. Combinatorial matrix theory, Edge subdivision, Graph, Minimum positive semi-

definite rank, Minimum rank, Nil vertex, Rank-spread, Symmetric.
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1. Introduction. One area of combinatorial matrix theory uses graphs to study

rank and spectral properties of symmetric n × n matrices. Given a graph G on n

vertices and a field F , we define SF (G) to be the set of all symmetric n× n matrices

A = [aij ] such that aij ∈ F and aij 6= 0, i 6= j if and only if ij is an edge of G.

In this definition, no restrictions are placed on the diagonal entries. The minimum

rank of a graph G is defined as the minimum rank among all matrices in SF (G) and

is denoted as mrF (G). Much work has been done on finding the minimum rank of

specific graphs. In [7] and [8], we began studying the structure of minimum rank

matrices. In this paper, we continue our investigation and present results that specify

when diagonal entries of minimum rank matrices must be zero, nonzero, or neither.
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Even though matrices in SF (G) have no restrictions placed on the diagonal en-

tries, for some graphs a particular diagonal entry must be zero or nonzero in order for

the matrix to achieve the minimum rank of the graph. Given a vertex v of G, if every

minimum rank matrix corresponding to G has a zero diagonal entry corresponding

to v, v is called a nil vertex. Similarly, if every minimum rank matrix has a nonzero

diagonal entry corresponding to v, v is called a nonzero vertex. If minimum rank

matrices exist where the diagonal entry for v is zero and nonzero, then we call v a

neutral vertex. Nil, nonzero, and neutral vertices are completely classified for graphs

whose minimum rank is two in [8]. We present futher results about nil, nonzero, and

neutral vertices and present several methods that can determine when a vertex is nil

or nonzero. We note that classifying the nil, nonzero, and neutral vertices of a graph

has applications to determining the possible inertias of the graph. For example, if G

is a connected graph that has a nil vertex, the inertia of G is not trapezoidal (see

[5] for definition) since in a positive semi-definite matrix, the entire row and column

corresponding to the nil vertex would have to be zero, contradicting the fact that G

is connected.

We also present results that relate nil, nonzero, and neutral vertices to rank-

spreads. In particular, we completely classify the nil, nonzero, and neutral vertices of

trees by means of rank-spreads. We also offer one solution to the following question

which was posed in [6]: Suppose e is an edge in a graph G and Ge is the graph

obtained from G by subdividing e. When does mrF (Ge) = mrF (G)? We prove that

mrF (Ge) = mrF (G) if and only if the new vertex created by the edge subdivision is

a nil vertex.

2. Definitions.

Definition 2.1. If G is a graph and e = vw ∈ E(G), subdividing e is the action

of creating a new graph Ge from G by adding a new vertex u, and adjusting the edge

set as shown:

Ge = (V (G) ∪ {u}, (E(G) \ {vw}) ∪ {uv, uw}).

Definition 2.2.

• We denote the complete graph on n vertices by Kn.

• The diamond is the graph obtained from K4 by deleting one edge.

• The paw is the graph obtained from K4 by deleting two incident edges.

• A double cycle is a graph obtained through successive edge subdivisions of

exterior edges of the diamond graph.

• We denote the complete bipartite graph with independent vertex sets of size

m and size n by Km,n; i.e., Km,n = (Km ∪Kn)
c, where c denotes the graph
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complement.

• We denote the complete tripartite graph with independent vertex sets of size

m, size n, and size ℓ by Km,n,ℓ; i.e., Km,n,ℓ = (Km ∪Kn ∪Kℓ)
c.

• The star on n ≥ 3 vertices, K1,n−1, is denoted Sn.

Definition 2.3. Let G and H be graphs with at least two vertices, each with

a vertex labeled v. The vertex-sum at v of G and H is the graph on |G| + |H | − 1

vertices obtained by identifying the vertex v in G with the vertex v in H .

Definition 2.4. A 2-tree is a graph that can be built up from a K2 by adding

one vertex at a time adjacent to exactly the vertices in an existing K2. A 2-path is a

2-tree which is either K3 or has exactly two vertices of degree 2. A partial 2-path is

a subgraph of a 2-path.

Definition 2.5. Given a proper subgraph H of a graph G, let H̃ be the graph

with vertex set V (G) and edge set E(H).

Definition 2.6. For a graph G the path cover number, denoted P (G), is the

minimum number of vertex-disjoint paths, occuring as induced subgraphs of G, that

cover all the vertices of G.

Definition 2.7. Given a graph G on n vertices and a field F , let SF (G) be the

set of all symmetric n× n matrices A = [aij ] such that aij ∈ F and aij 6= 0, i 6= j, if

and only if ij is an edge of G. Then the minimum rank of G over F is

mrF (G) = min
A∈SF (G)

{rankA}.

The maximum nullity of G over F is

MF (G) = max
A∈SF (G)

{nullityA}.

Definition 2.8. Given a graph G on n vertices, let S+(G) be the set of all real

n× n positive semidefinite matrices A = [aij ] such that aij 6= 0, i 6= j, if and only if

ij is an edge of G. Then the positive semidefinite minimum rank of G is

mr+(G) = min
A∈S+(G)

{rankA}.

The positive semidefinite maximum nullity of G is

M+(G) = max
A∈S+(G)

{nullityA}.
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Note that for any graph G and field F , mrF (G) + MF (G) = |G|. Similarly,

mr+(G) +M+(G) = |G|.

Definition 2.9. Given a graph G and a field F , let

MR
F (G) = {A ∈ SF (G) | 4 rankA = mrF (G)},

MR+(G) = {A ∈ S+(G) | rankA = mr+(G)}.

Definition 2.10. Let F be a field. The rank-spread of a vertex v of a graph G,

denoted rFv (G), is the difference between the minimum rank over F of G and G− v

(the graph obtained from G by deleting the vertex v and all edges incident to v); i.e.,

rFv (G) = mrF (G)−mrF (G− v).

Remark 2.11. Recall (see [13],[3]) that 0 ≤ rFv (G) ≤ 2 for any vertex v of G.

Also, by taking G2 as defined in Theorem 2.6 of [3] to be an isolated vertex we have

that if v is pendant, 0 ≤ rFv (G) ≤ 1.

Most of our results and arguments do not depend on the field F , so we often

suppress it in later use of these definitions. We adopt the convention of including the

F in statements of theorems to emphasize field independence while excluding it from

proofs unless the particular field is important.

Definition 2.12. Given a field F and a graph G, a vertex v in G is a

• nil vertex if its corresponding diagonal entry dv is zero in every matrix in

MR
F (G).

• nonzero vertex if its corresponding diagonal entry dv is nonzero in every

matrix in MR
F (G).

• neutral vertex if it is neither a nil vertex nor a nonzero vertex.

It is somewhat unexpected that a particular diagonal entry must be zero in order

to achieve minimum rank. The same can be said of nonzero vertices. Therefore, we

provide the following examples.

Example 2.13. Let F be a field and let S4 be the star on 4 vertices with

V = {1, 2, 3, 4} and E = {12, 13, 14}. Every matrix in MR
F (S4) is of the form

A =




d1 a b c

a d2 0 0

b 0 d3 0

c 0 0 d4


 ,
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where a, b and c are not zero and d2, d3, d4 correspond to the pendant vertices of S4.

Since mrF (S4) = 2, rankA = 2. If any of d2, d3, or d4 is not 0, then rankA is greater

than 2. Hence, every pendant vertex of S4 is a nil vertex.

Further, both




1 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0


 and




0 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0


 are in MR

F (S4), and thus,

vertex 1 is a neutral vertex.

Similarly, any star Sn with n ≥ 4 has the property that all its pendant vertices

are nil and its central vertex is neutral.

Example 2.14. Let F be a field and consider Kn, n ≥ 2. Let A ∈ MR
F (Kn).

Since mrF (Kn) = 1, rankA = 1. If any diagonal entry of A were zero, then the rank

of A would be at least two. Therefore, every diagonal entry of A is nonzero, and thus,

every vertex of Kn is a nonzero vertex. We note that this classifies the vertices of

connected minimum rank one graphs since every such graph is a complete graph on

two or more vertices.

Definition 2.15. Let G be a graph. A cover of G is a set of subgraphs of G

such that the union of the edge sets is equal to E(G).

Remark 2.16. In this paper we only use covers for which each pair of subgraphs

in the cover is edge-disjoint.

Definition 2.17. A K2-star cover of G is a cover of G consisting of only K2’s

and stars.

Definition 2.18. Given a graph G and a cover C of G, we say a vertex (edge)

of G is covered by an element of the cover H ∈ C if the vertex (edge) is in the vertex

(edge) set of H .

Definition 2.19. The rank sum of a cover C over a field F , denoted rsF (C ), is

the sum of the minimum ranks over F of the graphs in C .

Remark 2.20. Given a field F and a graph G, the rank sum of any edge-

disjoint cover C = {H1, . . . , Hm} of G is an upper bound on mrF (G). To see this,

let Ãi ∈ MR
F (H̃i) for i = 1, . . . ,m and let A = Ã1 + c · · · + Ãm. Then since C is

edge-disjoint, A ∈ SF (G) and

mrF (G) ≤ rankA ≤

m∑

i=1

rank(Ãi) =

m∑

i=1

mrF (H̃i) =

m∑

i=1

mrF (Hi) = rsF (C ).

Definition 2.21. A minimum rank cover of a graph G over a field F is a cover
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C of G such that rsF (C ) = mrF (G).

Example 2.22. Let G be the following graph:

2 631

4

5

The minimum rank of G over any field F is 4. Consider the cover of G consisting

of the two K2’s formed by vertices 1 and 2 and vertices 5 and 6, which we denote

as H1 and H2 respectively, and the star consisting of vertices 2, 3, 4 and 5, which

we denote as S. We construct a matrix in SF (G) by taking a matrix from each of

MR
F (H̃1),MR

F (H̃2), and MR
F (S̃) and summing them together. For example,

we can take the matrices


1 1 0 0 0 0

1 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




∈ MR
F (H̃1),




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 1

0 0 0 0 1 1




∈ MR
F (H̃2),

and




0 0 0 0 0 0

0 0 1 0 0 0

0 1 1 1 1 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0




∈ MR
F (S̃).

Then rsF ({H1, H2, S}) = mrF (H1) + mrF (H2) + mrF (S) = 1 + 1 + 2 = mrF (G),

so {H1, H2, S} is a minimum rank cover of G and the sum of these three matrices

belongs to MR
F (G).

3. Previous results. The following theorem was published by Johnson and

Duarte in [10]. Van der Holst proved a field independent version in Theorem 8 of [15].

Theorem 3.1. If a graph T is a tree then P (T ) = MF (T ).

The following theorem was published by Hsieh in [9], and independently by Bar-

ioli, Fallat, and Hogben (see Theorem 2.3 in [3]). Van der Holst in [15] and Barrett,

Grout, and Loewy in [4] proved field independent versions.

Theorem 3.2. Let G1 and G2 be graphs on at least two vertices each with a

vertex labeled v and let G be the vertex-sum at v of G1 and G2. Let F be any field.
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Then

mrF (G) = min{mrF (G1) + mrF (G2),mrF (G1 − v) + mrF (G2 − v) + 2}.

Equivalently,

rFv (G) = min{rFv (G1) + rFv (G2), 2}.

The following is Lemma 8 from [6], which is a field independent version of a

lemma due to Johnson, Loewy, and Smith in [11].

Lemma 3.3. Let F be any field, let G be any graph, and let e be an edge of G.

Then mrF (G) ≤ mrF (Ge) ≤ mrF (G) + 1.

The following is Theorem 4.1 of [16].

Theorem 3.4. Let G be a graph. Then M+(G) ≤ 1 if and only if G is a tree.

The following result appears in [7].

Theorem 3.5. Let F be any field and let G be the vertex-sum at v of G1 and

G2, and let Sk+1 be the star subgraph of G formed by the degree k vertex v and all of

its neighbors.

1. If rFv (G1) + rFv (G2) < 2, then

MR
F (G) = MR

F (G̃1) + MR
F (G̃2).

2. If rFv (G1) + rFv (G2) > 2, then

MR
F (G) = MR

F (G̃1 − v) + MR
F (G̃2 − v) + MR

F (S̃k+1).

3. If rFv (G1) + rFv (G2) = 2, then

MR
F (G) =

(
MR

F (G̃1) + MR
F (G̃2)

)

∪
(
MR

F (G̃1 − v) + MR
F (G̃2 − v) + MR

F (S̃k+1)
)
.

The following two results are Theorems 5.2 and 5.6 in [8], respectively, and rep-

resent what has been previously known about nil, nonzero, and neutral vertices. The

former shows that nil and nonzero vertices ascend to G from induced subgraphs with

the same minimum rank. The latter completely classifies nil, nonzero and neutral

vertices for graphs with minimum rank equal to 2 over the real field. In the sections

following we classify the nil, nonzero and neutral vertices of some other families of
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graphs and present various techniques for identifying these vertices in more general

graphs.

Theorem 3.6. Let F be a field. If H is an induced subgraph of a graph G with

mrF (H) = mrF (G) and v is a nil (nonzero) vertex in H, then v is also a nil (nonzero)

vertex in G.

Consequently, if v is neutral in G, then v is neutral in H .

Theorem 3.7. Let G be a connected graph with mrR(G) = 2 and v be a vertex

of G. Then

• v is a nonzero vertex if and only if v is either a non-dominating vertex of an

induced paw of G or else is the dominating vertex of an induced K3,3,1.

• v is a nil vertex if and only if v is in an independent set of size three or

greater.

• v is a neutral vertex if and only if it does not meet either of the previous two

conditions.

Remark 3.8. The minimum rank of the diamond over any field is 2. Over the

real field, Theorem 3.7 implies that the degree 2 vertices of the diamond are neutral.

However, over the field of two elements, the vertices of degree 2 in the diamond are

nil vertices. This is seen by assuming to the contrary that an entry corresponding to

a degree 2 vertex in a minimum rank matrix A is nonzero. Let

A =




1 1 1 0

1 a 1 1

1 1 b 1

0 1 1 c


 ∈ SF2(diamond).

Considering the 3×3 submatrix obtained by deleting the second row and third column

A(2, 3) =



1 1 0

1 1 1

0 1 c


 ,

we note det A(2, 3) = 1, so that A cannot be a minimum rank matrix for the diamond.

We now show the diamond’s degree 3 vertices are neutral over F2. Let

B =




0 1 1 0

1 a 1 1

1 1 a 1

0 1 1 0


 ∈ SF2(diamond).

If a = 0 or 1, rankB = 2 = mrF2(diamond).
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4. Edge subdivision. One of the questions posed in [6] asked if it were possible

to characterize when the minimum rank increases after subdividing an edge. Here we

show that the minimum rank stays the same after subdividing an edge if and only if

the newly created vertex is a nil vertex.

Theorem 4.1. Let F be a field, G be a connected graph, and Ge be the graph

obtained from G by subdividing an edge e ∈ E(G). Let v be the vertex created by

subdividing the edge e. Then mrF (Ge) = mrF (G) if and only if v is a nil vertex.

Proof. We prove the contrapositive of the reverse implication. Let

A =



d1 a xT

a d2 yT

x y B


 ∈ S(G)

and mr(G) = rankA. The vertices corresponding to e have been labeled one and two,

and thus, a 6= 0. In the following matrix, Ae, the labeling of the vertices of G has

been increased by one, and the new vertex v created by the subdivision of e has been

labeled one.

Then, Ae =




0 0 0 0T

0 d1 a xT

0 a d2 yT

0 x y B


 −




a a a 0T

a a a 0T

a a a 0T

0 0 0 0


 ∈ S(Ge). Now mr(Ge) ≤

rankAe ≤ rankA + 1 = mr(G) + 1. By hypothesis, mr(Ge) 6= mr(G) so by Lemma

3.3, mr(Ge) = mr(G)+1. Thus, rankAe = mr(Ge). Since a 6= 0, v is not a nil vertex.

We now prove the contrapositive of the forward implication. Suppose v is not a

nil vertex so that there exists a matrix C ∈ S(Ge) such that the diagonal entry of C

corresponding to v is nonzero and rankC = mr(Ge). Without loss of generality, label

v one and the neighbors of v two and three. Then we have

C =




d1 a b 0T

a d2 0 xT

b 0 d3 yT

0 x y D




with a, b, d1 6= 0. Since d1 6= 0, we can consider the Schur complement C/[d1].

C/[d1] =



d2 0 xT

0 d3 yT

x y D


−



a

b

0


 1

d1

[
a b 0T

]
=



d4 c xT

c d5 yT

x y D


 ,

where d4 = d2 −
a2

d1
, d5 = d3 −

b2

d1
, and c = −

ab

d1
. Note that C/[d1] ∈ S(G), since
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c 6= 0. Since Schur complements are nullity preserving, rankC/[d1] + 1 = rankC. So

mr(G) + 1 ≤ rankC/[d1] + 1 = rankC = mr(Ge).

Thus, mr(G) < mr(Ge) which completes the proof.

5. Rank-spread. We now investigate the relationship between rank-spread and

nil, nonzero and neutral vertices. For a tree it will be shown that the vertices which

are nil are exactly those that have rank-spread zero. We begin with some results that

hold for graphs in general.

Lemma 5.1. Let F be a field and v be a vertex of a graph G. If rFv (G) = 2, then

v is neutral in G.

Proof. Assume the degree of v is k. By Remark 2.11, k ≥ 2. Recall that the

central vertex of a star is neutral. Choose B ∈ MR(S̃k+1) and C ∈ MR(G̃− v)

such that B + C = A ∈ S(G). Notice that mr(G) ≤ rankA ≤ rankB + rankC =

2 + mr(G − v) = mr(G). Therefore, A ∈ MR(G). Since the central vertex of a star

is neutral, we may choose B such that the diagonal entry corresponding to dv in A is

either zero or nonzero. We conclude that v is neutral in G.

Thus, we see that a nil vertex or nonzero vertex must either be rank-spread 0

or 1. The vertices of the graph K2 are examples of rank-spread 1 vertices which are

nonzero, while the vertices of Kn for n ≥ 3 are examples of rank-spread 0 vertices

which are nonzero. The pendant vertices of Sn for n ≥ 4 are all vertices which have

rank-spread 0 and are nil. We also point out that although rank-spread 2 implies a

vertex is neutral, the converse is not true. The pendant vertices of P3 are neutral

with rank-spread 1 and the vertices of degree 3 in K2,3 are neutral with rank-spread

0.

Finding an example of a nil vertex with rank-spread 1 is not as simple. Let H5

be the 5-sun:

wu

It is well known that mrF (H5) = 8 for any field F . Let G be the graph obtained by
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subdividing the edge uw:

vu w

To determine mrF (G), we consider the graph G−u. The graph G−u is the union of a

tree T on 9 vertices and an isolated vertex. The minimum rank of an isolated vertex is

zero, and thus, mrF (G−u) = mrF (T ). Since T has 5 pendant vertices, P (T ) ≥ 3. By

Theorem 3.1, mrF (T ) = 9−MF (T ) = 9 − P (T ) ≤ 6. As noted after Definition 2.10

mrF (G)−mrF (G−u) ≤ 2 for all u. Thus, mrF (G) ≤ mrF (G−u)+2 = mrF (T )+2 ≤ 8.

By Lemma 3.3, 8 = mrF (H5) ≤ mrF (G) ≤ 8. Thus, mrF (G) = 8. By Theorem 4.1, v

is a nil vertex of G. The graph G− v is a tree on 10 vertices, 5 of which are pendant.

Thus, P (G− v) ≥ 3. Note that a path cover of size three exists and so P (G− v) = 3.

By Theorem 3.1, mrF (G− v) = 10−MF (G− v) = 10− P (G− v) = 7 so rFv (G) = 1.

We now examine several situations where the existence of a nil vertex implies the

rank-spread of said vertex is 0.

A vertex v is simplicial if its neighborhood N(v) induces a complete subgraph.

Lemma 5.2. Let v be a simplicial vertex of a graph G and let F be an infinite

field. If v is a nil vertex, then rFv (G) = 0.

Proof. We prove the contrapositive, that if rFv (G) ≥ 1, v is not a nil vertex.

Let A ∈ MR
F (G̃− v). Since v is simplicial its neighborhood induces a complete

graph. Let H = Km be the complete graph induced by v and its neighbors. Let B

be the matrix formed by appropriately embedding the m×m all ones matrix into a

|G|×|G| matrix so that B ∈ MR
F (H̃). Since F is infinite there exists a k ∈ F× such

that kB + A ∈ SF (G). Using the fact that rFv (G) ≥ 1, mrF (G) ≤ rank(kB + A) ≤

rankA + rank(kB) = rankA + 1 = mrF (G − v) + 1 ≤ mrF (G). Thus, kB + A is in

MR
F (G). Since the diagonal entry of A corresponding to vertex v is zero and the

diagonal entry of kB corresponding to v is k, v is not a nil vertex of G.

Remark 5.3. Although in Lemma 5.2 we require F to be infinite, the field

need only have a sufficient number of elements to ensure the existence of the k in

the proof. The minimum size of the field is determined by the order of the complete

graph. From Remark 3.8, a degree 2 vertex v in a diamond is simplicial and over F2
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is nil but rF2
v (diamond) = 1.

From the proof of Lemma 5.2, we have:

Corollary 5.4. Let p be a pendant vertex of a graph G and F a field. If p is a

nil vertex, then rFp (G) = 0

Corollary 5.5. Let v be a simplicial vertex of degree 2 and F 6= F2 a field. If

v is a nil vertex, then rFv (G) = 0.

Lemma 5.6. Let p be a pendant vertex of a graph G and F a field. Then

rFp (G) = 0 if and only if p is a nil vertex.

Proof. By Corollary 5.4, we need only prove the contrapositive of the forward

implication. Suppose that p is not a nil vertex. Label vertex p as 1 and its neighbor

as 2. Then there exists a matrix A ∈ MR(G) of the form



d1 a 0

a d2 xT

0 x C


, where

d1, a 6= 0. Since d1 6= 0 we may consider the Schur complement

A/[d1] =

[
d2 xT

x C

]
−

[
a

0

]
1

d1

[
a 0

]
=

[
d3 xT

x C

]
where d3 = d2 −

a2

d1
.

Thus, rankA = rankA/[d1] + 1. Since A/[d1] ∈ S(G − p), mr(G) = rankA =

rankA/[d1] + 1 ≥ mr(G− p) + 1 and rp(G) ≥ 1.

Lemma 5.7. Let F be a field and G be the vertex-sum at v of G1, G2, . . . , Gk. If

v is a nil vertex in each Gi and rFv (G) ≤ 1, then v is a nil vertex in G.

Proof. We proceed by induction on k, the number of graphs in the vertex-sum.

Let k = 2. Since rv(G) ≤ 1, Theorems 3.2 and 3.5 imply that, MR(G) =

MR(G̃1) + MR(G̃2) so any A ∈ MR(G) can be written as a sum of matrices

Ai ∈ MR(G̃i). Since v is a nil vertex in each Gi, then the diagonal entry of Ai cor-

responding to v must be zero for both i. Thus, the diagonal entry of A corresponding

to v must be zero as well. Therefore, v is nil in G.

Assume the claim is true for k ≤ m and let G be the vertex-sum at v of m + 1

graphs. LetH be the vertex-sum at v ofG1, . . . , Gm. By Theorem 3.2, rv(G) ≥ rv(H).

Thus, rv(H) ≤ 1. By the inductive hypothesis v is nil in H . Now G is the vertex-sum

at v of H and Gm+1. By the case k = 2, v is nil in G.

Theorem 5.8. Let G be a graph and F a field. Let v be a vertex of G which is

not in any cycle of G. Then v is a nil vertex of G if and only if rFv (G) = 0.

Proof. Since v does not belong to any cycle of G, v is either a pendant vertex or

a cut-vertex. If v is pendant, then by Lemma 5.6, rv(G) = 0 if and only if it is a nil
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vertex.

If v is a cut-vertex not on a cycle then G is the vertex-sum at v of G1, . . . , Gk

such that v is pendant in each Gi. By Theorem 3.2, if rv(G) = 0 then rv(Gi) = 0 for

all i. Thus, by Lemma 5.6, v is a nil vertex in each Gi. Then by Lemma 5.7, v is nil

in G. Hence, rv(G) = 0 implies that v is nil in G.

So it remains to show that if v is nil in G, then rv(G) = 0. By Lemma 5.1,

rv(G) 6= 2. Suppose by way of contradiction that rv(G) = 1. By Theorem 3.2, there

exists exactly one Gi such that rv(Gi) = 1. Renaming if necessary let rv(G1) = 1.

Let H be the vertex-sum at v of G2, . . . , Gk. Thus, G is the vertex-sum at v of G1

and H where rv(G1) = 1 and rv(H) = 0. Since rv(H) = 0, by Lemma 5.7 v is nil

in H . Since v is pendant in G1 and rv(G1) = 1, by Lemma 5.6, v is not nil. Thus,

there exists A ∈ MR(G̃1) such that avv 6= 0. Also there exists B ∈ MR(H̃) such

that bvv = 0. Then A + B ∈ S(G). Since rv(G) = 1, mr(G) = mr(G1) + mr(H).

Thus, mr(G) ≤ rank(A+ B) ≤ rankA+ rankB = mr(G1) + mr(H) = mr(G). Thus,

A+B ∈ MR(G), and the diagonal entry corresponding to v is equal to avv+bvv 6= 0.

Thus, v is not nil, a contradiction.

Corollary 5.9. Let F be a field, T be a tree, and v be a vertex of T . Then

rFv (T ) = 0 if and only if v is a nil vertex.

Proof. Since T is a tree, it is acyclic. Thus, the result follows by Theorem 5.8.

Rank-spread zero vertices in graphs other than trees do not necessarily have to

be nil vertices as we have seen with complete graphs with as least three vertices. The

following theorem and corollary somewhat generalize the graph structure sufficient

to determine whether a rank-spread zero vertex is nil. We note that the forward

implication of Corollary 5.9 follows from Theorem 5.10.

Theorem 5.10. Let F be a field. Let G be a graph with mrF (G) = r and let

H be a proper induced subgraph of G with mrF (H) = r. Let v /∈ V (H) be a vertex

adjacent to exactly one vertex of each component of H. Then v is a nil vertex.

Proof. Let H1, H2, . . . , Hk denote the disjoint components of H . Let Hv be

the induced subgraph containing H and v. Similarly, let Hiv, i = 1, 2, . . . , k denote

the induced subgraph of Hv containing Hi and v. Since mr(H) = mr(G) it follows

that mr(Hv) = mr(H), and thus, rv(Hv) = 0. Since v is adjacent to exactly one

vertex of each component of H , Hv is a vertex-sum of Hiv, i = 1, 2, . . . , k. It follows

from Theorem 3.2 that 0 = rv(Hv) = min{(rv(H1v) + rv(H2v) + · · · + rv(Hkv)), 2}.

Therefore, rv(Hiv) = 0, i = 1, 2, . . . , k. We note that v is pendant in each Hiv and

thus by Lemma 5.6 v is a nil vertex in each Hiv. Now by Lemma 5.7 v is a nil vertex
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in Hv, and thus, by Theorem 3.6, v is a nil vertex in G.

Corollary 5.11. Let F be a field. Let G be a graph with mrF (G) = r and let

H be a connected induced subgraph of G with mrF (H) = r. Let v /∈ V (H) be a vertex

adjacent to exactly one vertex of H. Then v is a nil vertex.

Proof. This is a special case of Theorem 5.10.

Example 5.12. Let G be the following graph:

1

3

2

6 5

4

We show that vertex 3 is a nil vertex using Corollary 5.11. Note G is a subdivision

of K2,3 which has minimum rank 2 over every field F . By Lemma 3.3, mrF (G) ≤ 3.

Since P4 is induced and mrF (P4) = 3, mrF (G) ≥ 3. Thus, mrF (G) = 3. Let H be

the path induced by vertex set {1, 4, 5, 6}. Then mrF (G) = 3 = mrF (P4) = mrF (H).

Vertex 3 is not in H , is adjacent to exactly one vertex of H , and thus is nil.

Another method which can be used to determine both nil and nonzero vertices

uses the graph parameter Ẑ. This is the subject of the following section.

6. The Ẑ method. We now introduce two graph parameters, the zero forcing

number Z and the enhanced zero forcing number Ẑ, which we use to develop another

method to determine nil and nonzero vertices. The parameter Z first appeared in

[1] and was used to put an upper bound on the maximum nullity of a graph. The

parameter Ẑ, which appears in [2] is a modification of Z and is also used to put an

upper bound on the maximum nullity of a graph. The following definitions from [1]

and [2] define Z and Ẑ.

Definition 6.1.

• Color-change rule for a simple graph: If G is a graph with each vertex colored

either white or black, u is a black vertex of G, and exactly one neighbor v of u is

white, then change the color of v to black.

• Given a coloring of G, the derived coloring is the result of applying the color-

change rule for a simple graph until no more changes are possible.

• A zero forcing set for a graph G is a subset of vertices Z such that if initially

the vertices in Z are colored black and the remaining vertices are colored white, the

derived coloring of G is all black.
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• The zero forcing number of a graph G, Z(G) is the minimum of |Z | over all

zero forcing sets Z ⊂ V (G).

The following two results are Propositions 2.4 and 4.2 in [1].

Theorem 6.2. For any graph G and any field F , MF (G) ≤ Z(G).

Theorem 6.3. For any tree T and any field F , MF (T ) = Z(T ).

Remark 6.4. It has been verified that MR(G) = Z(G) for all graphs G on fewer

than 7 vertices.

We briefly review how to determine Z for a graph.

Example 6.5. Consider the graph G from Example 5.12. We show that one

zero forcing set consists of vertices 1, 2 and 6. We first color 1, 2 and 6 black (see the

illustration below). Since 2 has exactly one white neighbor, 3, it can force 3 black by

the color-change rule for a simple graph. Since 6 has exactly one white neighbor, 5,

it can force 5 black. Lastly since 5 has exactly one white neighbor, 4, it can force 4

black.

1

3

2

6 5

4

1

3

2

6 5

4

1

3

2

6 5

4

1

3

2

6 5

4

We note that the zero forcing set 1, 2 and 6 is not unique nor is the order in which

we forced vertices black in the above example. Also, there are no two vertices in G

that if colored black can force the rest of the graph black. Thus, Z(G) = 3.

Definition 6.6. A loop graph is a graph that allows single loops at vertices, i.e.,

Ĝ = (V
Ĝ
, E

Ĝ
) where V

Ĝ
is the set of vertices of Ĝ and the set of edges E

Ĝ
is a set of

two-element multisets. Vertex u is a neighbor of vertex v in Ĝ if {u, v} ∈ E
Ĝ
; note

that u is a neighbor of itself if and only if the loop {u, u} is an edge. The underlying

simple graph of a loop graph Ĝ is the graph G obtained from Ĝ by deleting all loops.

Note that if we ever write Ĝ we think of the graph as coming with extra infor-

mation, namely that the graph is a loop graph, even if there are no loops. In a loop

graph, every vertex is specified as being looped or unlooped.

Definition 6.7. The set of symmetric matrices with entries in a field F described

by a loop graph Ĝ is

SF (Ĝ) = {A = [aij ] | A
T = A, aij ∈ F, and aij 6= 0 if and only if {i, j} ∈ E

Ĝ
}.
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and the maximum nullity of Ĝ over F is

MF (Ĝ) = max{nullityA | A ∈ SF (Ĝ)}

Definition 6.8 (Color-change rule for a loop graph). Let Ĝ be a loop graph

with each vertex colored white or black. If exactly one neighbor u of v is white, then

change the color of u to black.

Note that the color-change rule for a loop graph is quite similar to the color-

change rule for a simple graph. The only difference is that when using a loop graph,

two additional coloring forces are valid. First, a looped white vertex that has no other

white neighbors may be colored black. Second if an unlooped white vertex has only

one white neighbor u, u may be colored black. By Z(Ĝ), we mean the same thing as in

Definition 6.1, except we use the color-change rule for a loop graph. (We distinguish

the two cases by whether or not the graph is a loop graph.)

The following results are from [2]. We note that the results were stated without

reference to a field but the proofs hold for any field.

Theorem 6.9. For any loop graph Ĝ and any field F , MF (Ĝ) ≤ Z(Ĝ).

Definition 6.10. The enhanced zero forcing number of a graph G denoted by

Ẑ(G), is the maximum of Z(Ĝ) over all loop graphs Ĝ such that the underlying simple

graph of Ĝ is G.

Corollary 6.11. For any graph G and any field F , MF (G) ≤ Ẑ(G) ≤ Z(G).

The following example illustrates the coloring rules defined above.

Example 6.12. Let Ĝ1 and Ĝ2 be the following loop graphs:

Ĝ1 :

1

3

4

5

2

Ĝ2 :

1

3

4

5

2

First consider Ĝ1. Color vertex 3 black (see illustration below). Since 1 is an

unlooped vertex and only has one white neighbor 2, 2 can be colored black. Then 3

forces 4, 4 forces 5, and 2 forces 1. Thus, Z(Ĝ1) ≤ 1. It is straightforward to see that

Z(Ĝ1) ≥ 1. Hence, Z(Ĝ1) = 1.
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1

3

4

5

2

1

3

4

5

2

1

3

4

5

2

1

3

4

5

2

1

3

4

5

2

1

3

4

5

2

Now consider Ĝ2. Color vertices 2 and 4 black (see illustration below). Since 1

is a looped vertex that has no white neighbors, it may be colored black. Similarly,

3 and 5 may be colored black. Thus, Z(Ĝ2) ≤ 2. It is straightforward to see that

Z(Ĝ2) ≥ 2. Hence, Z(Ĝ2) = 2.

1

3

4

5

2

1

3

4

5

2

1

3

4

5

2

Since Ẑ(G) is the maximum of Z(Ĝ) over all loop graphs Ĝ, Ẑ(G) ≥ Z(Ĝ2) = 2.

It is straightforward to verify Z(G) = 2. By Corollary 6.11, Ẑ(G) ≤ Z(G) = 2, and

thus, Ẑ(G) = 2.

The ideas and results that have been given for the zero forcing number and the

enhanced zero forcing number can be combined in a way that can determine nil and

nonzero vertices.

Theorem 6.13 (The Ẑ Method: Nil). Let G be a graph, v be a vertex of G, and

F a field. Let Gv be the set of all loop graphs with underlying simple graph G such

that v is looped. If Z(Ĝ) < MF (G) for all Ĝ ∈ Gv then v is a nil vertex.

Proof. Let Ĝ be an arbitrary graph in Gv. By hypothesis, Z(Ĝ) < M(G) and

thus by Theorem 6.9, M(Ĝ) ≤ Z(Ĝ) < M(G). Thus, no matrix in S(Ĝ) has nullity

equal to M(G). Note that by the definition of S(Ĝ), the condition that v is looped

corresponds to the condition that the diagonal entry corresponding to v in every

matrix in S(Ĝ) is nonzero. Since Ĝ was an arbitrary loop graph with the condition

that v is looped, no matrix with a nonzero diagonal entry corresponding to v achieves

M(G) (or equivalently mr(G)). Therefore v is a nil vertex.

Theorem 6.14 (The Ẑ Method: Nonzero). Let G be a graph, v be a vertex of

G, and F a field. Let Gv be the set of all loop graphs with underlying simple graph G

such that v is unlooped. If Z(Ĝ) < MF (G) for all Ĝ ∈ Gv then v is a nonzero vertex.

Proof. The proof is similar to the proof of Theorem 6.13.

For some graphs the following corollaries can be used to determine nil and nonzero

vertices. Note that they reduce the number of loop graphs to consider to one.
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Corollary 6.15. Let G be a graph. Let
y

G be the graph G where a vertex v is

looped and no other vertices are specified looped or unlooped. Let F be a field. If there

exists a set of less than MF (G) vertices of
y

G such that starting with these vertices

colored black, every vertex in
y

G can be colored black by following the color-change rule

for a simple graph (see Definition 6.1) and the additional rule that the looped vertex

v may be colored black if it has no white neighbors, then v is a nil vertex of G.

Proof. Let Ĝ be an arbitrary loop graph with underlying simple graph G such

that v has a loop. Since there exists a set of less than M(G) vertices such that staring

with these vertices colored black, every vertex in
y

G can be colored black by following

the color-change rule for a simple graph and the rule that the looped vertex v may be

colored black if it has no white neighbors, these same forcing moves will color every

vertex of Ĝ black. Thus, Z(Ĝ) ≤ |Z| < M(G). By Theorem 6.13, v is a nil vertex.

Corollary 6.16. Let G be a graph. Let
y

G be the graph G where a vertex v

is unlooped and no other vertices are specified looped or unlooped. Let F be a field.

If there exists a set of less than MF (G) vertices of
y

G such that starting with these

vertices colored black, every vertex in
y

G can be colored black by following the color-

change rule for a simple graph and the additional rule that if v has only one white

neighbor u, u may be colored black, then v is a nonzero vertex of G.

Proof. The proof is similar to the proof of Corollary 6.15.

Example 6.17. We consider the graph G used in Examples 5.12 and 6.5. We will

show that vertices 1 and 3 are nil and vertices 5 and 6 are nonzero. From Example

5.12, MF (G) = 3 for any field F . We begin by placing a loop on 1 and coloring 2 and

6 black.

1

3

2

6 5

4

Using the color-change rule for a simple graph, 6 can force 5 and then 5 can force 4.

1

3

2

6 5

4
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Now the looped vertex has no white neighbors and thus can be colored black.

1

3

2

6 5

4

Lastly, 4 can force 3. We used a set of fewer than M(G) = 3 vertices to color the

entire graph black. Hence, by Corollary 6.15, vertex 1 is a nil vertex. By symmetry,

vertex 3 is a nil vertex.

We now mark 5 as an unlooped vertex by labeling it with a U . We also color 1

and 2 black.

1

3

2

6 U

4

Using the color-change rule for a simple graph 1 can force 4.

1

3

2

6 U

4

Now the unlooped white vertex has only one white neighbor 6, and thus, 6 may be

colored black.

1

3

2

6 U

4

Now by the color-change rule for a simple graph, 6 can force 5 black and 2 can force

3 black. We used a set of less than 3 vertices to color the entire graph black. Hence,

by Corollary 6.16, vertex 5 is nonzero. By symmetry, vertex 6 is nonzero.

The above method of using the concepts of zero forcing and enhanced zero forcing

can also be used to make conclusions about the rank-spread of certain vertices.

Theorem 6.18. Let F be a field and assume that for a graph G on n vertices,
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Ẑ(G) = MF (G). Let
y

G be the graph where a vertex v is looped and no other vertices

are specified looped or unlooped. If there exists a set Z of less than MF (G) vertices

of
y

G such that every vertex in
y

G can be colored black by following the color-change

rule for a simple graph and the additional rule that the looped vertex v may by colored

black if it has no white neighbors, then rFv (G) = 0.

Proof. We claim that during the forcing process that started with Z and ended

with all vertices black, the additional rule that v may be colored black if it has no white

neighbors was used. When this additional forcing rule is used to color v black we say

v “died alone”. Thus, we claim that v died alone in the forcing process. Suppose by

way of contradiction that in the zero forcing process, the vertex v did not die alone.

Thus, only the color-change rule for a simple graph was used and so Z is a zero

forcing set for G. Hence, by Corollary 6.11, M(G) ≤ Ẑ(G) ≤ Z(G) ≤ |Z| < M(G), a

contradiction.

Since v died alone, Z is a zero forcing set for G− v. Thus,

Z(G− v) ≤ |Z| < Ẑ(G).

By Theorem 6.2, M(G − v) ≤ Z(G − v) < Ẑ(G) = M(G). This fact along with the

facts that mr(G− v) ≤ mr(G) (by Remark 2.11), mr(G− v)+M(G− v) = n− 1 and

mr(G) +M(G) = n imply mr(G) = mr(G− v). As a consequence, rv(G) = 0.

Example 6.19. Consider the graph G in Example 6.17. As seen in this example,

for any field F , MF (G) = Z(G). By Corollary 6.11, MF (G) = Ẑ(G). Thus, by

Theorem 6.18, Example 6.17 shows that vertices 1 and 3 in G have rank-spread 0.

7. Tree classification. We begin by classifying the vertices of the simplest type

of tree–the path.

Proposition 7.1. For any field, Pn has all neutral vertices if n > 2.

Proof. Let n = 3. Consider



1 1 1

1 0 0

1 0 0


, and




0 1 −1

1 1 0

−1 0 −1


 ∈ S(P3). Each

matrix has rank 2, hence each is in MR(P3). Thus, P3 has all neutral vertices.

Assume n > 3, and label the vertices of Pn consecutively. By Lemma 5.1, the

interior vertices of Pn are neutral since they have rank-spread two. Take the minimum

rank cover {H1, H2} of G where H1 is the subgraph of G induced on vertices 1, 2, 3,

and H2 is the subgraph of G induced on vertices 3, 4, . . . , n. Let Ãi ∈ MR(H̃i) for

i = 1, 2. Then M = Ã1 + Ã2 ∈ MR(Pn) and m11 could have been chosen to be zero

or nonzero since P3 has all neutral vertices. Thus, the pendant vertices of Pn are
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neutral.

Remark 7.2. For paths on fewer than 3 vertices we note P2 = K2 has all nonzero

vertices and that K1 is an isolated vertex and hence is nil.

Recall the following facts, which will be used extensively throughout the remain-

der of this section.

• mrF (Kn) = 1 for n ≥ 2.

• mrF (Sn) = 2 for n ≥ 3.

• Pendant vertices of stars on n ≥ 4 vertices are nil. (See Lemma 5.6 or

Example 2.13.)

• The dominating vertex of a star on n ≥ 3 vertices is neutral. (See Lemma

5.1 or Example 2.13.)

• All vertices of S3 = P3 are neutral. (See Proposition 7.1.)

The following result appears as Corollary 3.15 in [12].

Theorem 7.3. If T is a tree and F is any field, then there is a K2-star cover of

T whose rank sum is mrF (T ).

Note that given a minimum rank K2-star cover of T that is not edge-disjoint, the

only way two elements could overlap would be two stars overlapping on a single edge.

Replacing one of those stars in the cover with a star on one less vertex that covers

the same edges as previously except for the edge that was covered by both stars will

result in a new minimum rank cover of T with one less overlap. In this manner, we

can always obtain an edge-disjoint minimum rank K2-star cover of T .

Lemma 7.4. Let F be a field and let v be a vertex of a tree T such that rFv (T ) = 2.

There exists a minimum rank K2-star cover where v is the center vertex of a star.

Proof. Since rv(T ) = 2, mr(T − v) = mr(T ) − 2. By Theorem 7.3, there is a

minimum rank K2-star cover for T − v with rank sum mr(T ) − 2. Adding a star

centered at v to this cover results in a minimum rank K2-star cover of T .

Lemma 7.5. Let F be a field, T be a tree, and v a vertex of T with rFv (T ) = 0.

Then, for any vertex w adjacent to v, rFw (T ) = 2.

Proof. By Theorem 7.3, there exists a minimum rank K2-star cover C . In C ,

the edge vw is covered by a K2 or a star. If K2 covers vw, then deleting v (and the

edges adjacent to v) removes the K2, resulting in a cover of T − v with rank sum at

most mr(T ) − 1, contradicting rv(T ) = 0. Thus, a star covers vw. This star is not

centered at v since if so, deleting v and the star would result in a cover of T − v with

rank sum at most mr(T ) − 2. Thus, w is the center of the star. Deleting w and the

star centered at w gives a cover for T − w with rank sum at most mr(T )− 2. Thus,
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rw(T ) ≥ 2. By Remark 2.11, rw(T ) = 2.

Lemma 7.6. Let v be a pendant vertex of a tree T . Then for any field, v is a

nonzero vertex if and only if it is adjacent to a rank-spread 1 vertex.

Proof. Assume that v is a nonzero vertex. Since v is a pendant vertex, by Remark

2.11 rv(T ) = 0 or 1. By Lemma 5.6, rv(T ) = 1. Let w be the vertex adjacent to v. By

Lemma 7.5, rw(T ) 6= 0. Suppose that rw(T ) = 2. By Lemma 7.4, there is a minimum

rank cover of T with a star centered at w. Let T1, . . . , Tm be the elements in the

cover and let T1 be the star centered at w. Let Ãi ∈ MR(T̃i), i = 1, . . . ,m. Since

pendant vertices of stars are nil or neutral, the diagonal entry in Ã1 corresponding

to v may be chosen to be zero. Thus, the diagonal entry corresponding to v in

A =
∑m

i=1 Ãi ∈ MR(T ) is zero, contradicting that v is a nonzero vertex. Therefore

rw(T ) = 1.

Assume that v is adjacent to a rank-spread 1 vertex; call it w. Since v is a

pendant vertex, rv(T ) = 0 or 1. By Lemma 7.5, rv(T ) = 1. Let H be K2 with vertex

set {v, w}. Since rw(H) = 1, Theorem 3.2 implies that rw(T − v) = 0. By Theorem

3.5, MR(T ) = MR(H̃) +MR(T̃ − v). Since H is a complete graph, v is a nonzero

vertex in H . It follows that v is a nonzero vertex in T .

We now give the result that classifies the vertices of trees.

Theorem 7.7. Let F be a field and let v be a vertex of a tree T . Then

• v is a nil vertex if and only if rFv (T ) = 0.

• v is a nonzero vertex if and only if rFv (T ) = 1 and a vertex adjacent to v has

rank-spread 1.

• v is a neutral vertex if and only if rFv (T ) = 2, or rFv (T ) = 1 and no vertex

adjacent to v has rank-spread 1.

Proof. The first statement that v is a nil vertex if and only if the rank-spread of

v is 0 is exactly Corollary 5.9.

By Lemma 5.1, rank-spread 2 vertices are always neutral. Thus, for trees, nonzero

vertices have rank-spread 1. To prove the second statement it suffices to show that a

rank-spread 1 vertex is nonzero if and only if it’s adjacent to a rank-spread 1 vertex.

Let T be a tree and v be a vertex such that rv(T ) = 1. If v is a pendant vertex,

then the proof is complete by Lemma 7.6. Otherwise T is a vertex-sum of T1, . . . , Tm

at v where v is a pendant vertex in each Ti. By Theorem 3.2, rv(Ti) = 1 for exactly

one i ∈ {1, 2, . . . ,m} and rv(Ti) = 0 otherwise. Without loss of generality, rv(T1) = 1.

For each i ∈ {1, . . . ,m} let the neighbor of v in Ti be labeled wi. By Lemma 7.5,

rwi
(Ti) = 2 for all i ∈ {2, . . . ,m}. By Lemma 27 of [14], rwi

(Ti) = rwi
(T ). Thus,

rwi
(T ) = 2 for all i ∈ {2, . . . ,m}. Having accounted for all the neighbors of v except
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w1 it follows that v is adjacent to a vertex with rank-spread 1 if and only if rw1
(T ) = 1.

Lemma 27 of [14] also implies rw1
(T ) = 1 if and only if rw1

(T1) = 1. By Lemma 7.6,

rw1
(T1) = 1 if and only if v is nonzero in T1. Since rv(Ti) = 0 for all i ∈ {2, . . . ,m},

the first statement implies that v is nil in Ti for i ∈ {2, . . . ,m}. By Theorem 3.5,

MR(T ) = MR(T̃1) + · · · + MR(T̃m). Thus, v is nonzero in T1 if and only if v is

nonzero in T .

The third statement follows logically having proven the first two statements.

Remark 7.8. The second and third statements in Theorem 7.7 could have been

written as:

• v is a nonzero vertex if and only if rFv (T ) = 1 and exactly one vertex adjacent

to v has rank-spread 1.

• v is a neutral vertex if and only if rFv (T ) = 2 or rFv (T ) = 1 and every vertex

adjacent to v has rank-spread 2.

The second statement follows from the proof given above and the third follows

from Lemma 7.5 which implies that if rv(T ) = 1 then no vertex adjacent to v has

rank-spread 0.

Example 7.9. Consider the following tree T :

1

2

3

5

4

7

6 8 9 10

It is straightforward to calculate the rank spreads of each vertex and they are listed

below.

0

0

2

1

1

0

2 1 2 1

By Theorem 7.7, vertices 1, 2 and 7 are nil vertices, vertices 4 and 5 are nonzero

vertices, and the remaining vertices are are neutral vertices.

8. Nullity two classification. Theorem 3.7 classifies the vertices of minimum

rank two graphs over the real field, and Example 2.14 classifies the vertices of con-

nected graphs with minimum rank one. It is well known that a graph has maximum
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nullity one if and only if it is a path. Thus, Proposition 7.1 and Remark 7.2 clas-

sify the vertices of maximum nullity one graphs. We now proceed to classify the nil,

nonzero and neutral vertices of graphs with maximum nullity equal to 2 over the real

field.

Some results hold for more fields than R and their statements indicate so. Oth-

erwise, we assume the field is R.

Lemma 8.1. Let F be a field.

1. Each vertex of Cn, n > 3, is neutral.

2. For F 6= F2, each vertex of a double cycle is neutral.

Proof.

1. Let n = 4. Consider




1 1 1 0

1 0 0 −1

1 0 0 −1

0 −1 −1 −1


 ∈ S(C4). Since the matrix has

rank 2, it is in MR(C4). Since the vertices of a cycle are indistinguishable, C4 has

all neutral vertices.

Let n > 4 and assume the statement is true for all 4 ≤ k < n. We use the

standard labeling: E(Cn−1) = {1 2, 2 3, . . . , n − 1 1}. Let A ∈ MR(Cn−1) and let

B = A
⊕

[0]. Then M = B+(0n−3

⊕
−bn−2,n−1J3) ∈ MR(Cn). Since for i < n− 2,

bii could have been chosen to be either zero or nonzero and since mii = bii, vertex i

is neutral in Cn. Thus, all vertices of Cn are neutral.

2. We first show that each vertex of the diamond is neutral. Throughout the

proof we will label the vertices of the diamond as

1

2 3

4

. Note that unlike cycles,

we must consider both degree 2 and degree 3 vertices when showing each vertex of a

double cycle is neutral. Since F is a field with at least 3 elements, we may let a 6= 0, 1.

Consider the matrices




0 1 1 0

1 1 1 1

1 1 1 1

0 1 1 0


, and




1 a 1 0

a a2 − 1 a− 1 −1

1 a− 1 0 −1

0 −1 −1 −1


 both of which

are in S(diamond). Each has rank 2, hence each is in MR(diamond). Thus, the

vertices of the diamond are neutral.

We now consider the case of a double cycle G formed by overlapping Cr and Cs
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on an edge, r, s > 3, n = r + s− 2. Label the vertices as in

r 2

r 1

r

12 r + 1 r + 2

n

By Statement 1, each vertex of both Cr and Cs is neutral. Let A ∈ MR(Cr) and

B ∈ MR(Cs) such that ar−1,r 6= −b1,2. This is possible since F 6= F2. Consider the

matrix M = (A
⊕

0s−2) + (0r−2

⊕
B) ∈ S(G). Since rankM ≤ rankA + rankB =

r−2+s−2 = (r+s−2)−2 = n−2 = mr(G), M ∈ MR(G). Since the vertices of Cr

and Cs are neutral, each diagonal entry of M corresponding to a degree two vertex

of G can be either zero or nonzero. Since each diagonal entry of M corresponding

to a degree three vertex of G is a sum of diagonal entries corresponding to neutral

vertices, the summands can be chosen to obtain a zero or nonzero sum. Thus, each

vertex of G is neutral in this case.

Lastly, we consider the case of a double cycle G formed by overlapping Cr and

K3 on an edge, r > 3, n = r + 1. The proof of the case for r, s > 3 is sufficient

both to construct an M ∈ MR(G) and to prove that the degree two vertices of

G corresponding to Cr are neutral. In the construction of M , each diagonal entry

corresponding to a degree three vertex of G is a sum of diagonal entries corresponding

to a neutral vertex and a nonzero vertex. The diagonal entry corresponding to the

neutral vertex can be chosen to be the negative of the diagonal entry corresponding to

the nonzero vertex. Hence, even in this case the proof shows the degree three vertices

of G are neutral and the degree two vertex corresponding to the K3 is not nil.

To show that the degree two vertex of G corresponding to the K3 is neutral, we

use a different construction. Let A ∈ MR(Cr−1). (Since r > 3, Cr−1 is a proper

cycle.) We use the standard labeling as previously. Let B ∈ MR(diamond) such

that b1,2 = −ar−2,r−1 and b4,4 = 0. Then M = (A
⊕

02) + (0r−3

⊕
B) ∈ S(G) and

since rankM ≤ rankA + rankB = (r − 1) − 2 + 2 = (r + 1) − 2 = n − 2 = mr(G),

M ∈ MR(G). Thus, the degree two vertex corresponding to the K3 is not nonzero.

Thus, all vertices of G are neutral.

Example 8.2. The house is the double cycle formed by overlapping K3 and

C4 on an edge. Over F2, this minimum rank 3 graph has nil, nonzero, and neutral
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vertices. We label the vertices of the house as
4

2

5

3

1

. Let

A =




d1 1 1 0 0

1 d2 1 1 0

1 1 d3 0 1

0 1 0 d4 1

0 0 1 1 d5



∈ SF2(house),

where for i ∈ {1, 2, 3, 4, 5}, each di is the entry corresponding to vertex i. First, we

show vertex 1 is nil. Suppose d1 = 1 and consider the submatrix

A(3, 2) =




1 1 0 0

1 1 1 0

0 0 d4 1

0 1 1 d5




formed by deleting the third row and second column. Since detA(3, 2) = 1, A cannot

be a minimum rank matrix unless d1 = 0. We show vertices 2 and 3 are neutral by

considering

B =




0 1 1 0 0

1 d2 1 1 0

1 1 d3 0 1

0 1 0 1 1

0 0 1 1 1



∈ SF2(house).

If d2 = 0 and d3 = 1, then rankB = 3 = mrF2(house). Also if d2 = 1 and d3 = 0,

rankB = 3 = mrF2(house). Lastly, we show vertices 4 and 5 are nonzero. Suppose

d4 = 0 and again consider the submatrix

A(3, 2) =




0 1 0 0

1 1 1 0

0 0 0 1

0 1 1 d5


 .

Then detA(3, 2) = 1 so A cannot be a minimum rank matrix unless d4 6= 0. Similarily,

d5 6= 0.

Theorem 8.3. Let G be a 2-connected graph with M(G) = 2. Then G has no

nil vertices, and if G 6= K3, G has no nonzero vertices.

Proof. Since G is 2-connected and M(G) = 2, Lemma 4.8 of [11] implies that G

is a chain of induced cycles C1, C2, . . . , Ck with consecutive cycles overlapping on a
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single edge. While such graphs have been given many names, i.e., linear 2-trees and

LSEAC graphs, we shall refer to them as 2-connected partial 2-paths. Proceed by

induction on k, the number of induced cycles. If k ≤ 2, then G is a cycle or double

cycle. By Lemma 8.1, all the vertices of G are neutral unless G is K3 in which case

they are all nonzero. Thus, we will assume that k ≥ 3 and that for all 2-connected

partial 2-paths G with less than k induced cycles, every vertex is neutral, unless G is

K3.

Since G has at least 3 induced cycles, it is possible to consider G as the union

of two smaller 2-connected partial 2-paths. The simplest example is decomposing a

double cycle as the union of two cycles. Let v be a vertex of G.

Assume first that there exists an induced cycle Ci such that v does not belong to

the vertex set of Ci. Then G is the union of two smaller 2-connected partial 2-paths,

G1 = (V1, E1) and G2 = (V2, E2), such that v /∈ V1 ∩ V2. Note that since there are at

least 3 induced cycles, it is possible to stipulate that if v is in Vi, the number of induced

cycles in Gi is at least 2. Without loss of generality, renaming if necessary, let v ∈ V1.

Since G1 has at least 2 induced cycles it is not K3. Thus, by the inductive hypothesis

v is neutral in G1. Let Ai ∈ MR(G̃i). Since M(Gi) = 2, rankAi = mr(Gi) = |Vi|−2.

Then rank(A1 + A2) ≤ rankA1 + rankA2 = |V1| − 2 + |V2| − 2 = |V | − 2 = mr(G).

The second equality follows from the fact that V1 ∩ V2 consists of the two vertices of

the overlapping edge. Since v was neutral in G1, the diagonal entry a
(1)
vv in A1 can be

chosen to be zero or nonzero. Also since v /∈ V2, a
(2)
vv = 0. If necessary, we multiply

A2 by a nonzero constant to ensure that the sum of the nonzero off-diagonal entries

corresponding to the overlapping edge is not zero. Note that this does not affect a
(2)
vv

since it is zero. Thus, A1 +A2 = A ∈ S(G), rankA = mr(G), and the diagonal entry

corresponding to v may be zero or nonzero. Thus, v is neutral in G.

Assume now that v belongs to every induced cycle in G. We consider the cases

where k = 3 and k ≥ 4 separately. First, if k ≥ 4. then we may split G into two

2-connected partial 2-paths, G1 and G2, where each has at least 2 induced cycles.

Then by the inductive hypothesis v is neutral in both G1 and G2. Let Ai ∈ MR(G̃i)

again noting that rankAi = mr(Gi) = |Vi| − 2. Let a
(1)
vv 6= 0 and a

(2)
vv = 0. Then,

multiplying A2 by a constant if necessary, A1+A2 = A ∈ S(G), with rankA = mr(G),

and avv 6= 0. Similarly, we may choose a
(1)
vv = 0, and construct a minimum rank matrix

A for G, where avv = 0. Thus, v is neutral in G. Now consider the case where k = 3.

This case is similar to the case above, where k ≥ 4, except if G1 or G2 is K3. Without

loss of generality, let G1 = K3. Since G2 has two induced cycles, v is neutral in G2 by

the inductive hypothesis. Thus, it is possible to choose a
(2)
vv = 0 in a minimum rank

matrix for G̃2. Since G1 = K3, a
(1)
vv 6= 0. Thus, it is possible to construct a minimum
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rank matrix for G with avv 6= 0. Notice that

A =



−1 a a

a −a2 −a2

a −a2 −a2


 ∈ MR(K3),

where K3 is labeled so that v corresponds to the first row and column of A. Appro-

priately embed A in a |G| × |G| matrix and call it A1. There exists A2 ∈ MR(G̃2)

such that a
(2)
vv = 1. Choosing an appropriate value for a so that the sum of the en-

tries corresponding to the overlapping edge is not zero, A1 + A2 ∈ S(G). Further,

rank(A1 + A2) ≤ rankA1 + rankA2 = mr(K3) + mr(G2) = 1 + |V2| − 2 = |V | − 2.

Thus, A1 + A2 is a minimum rank matrix for G, where avv = 0. Thus. v is neutral

in G.

Lemma 8.4. M+(G) ≥ 1 for all graphs G.

Proof. The Laplacian matrix of a graph G is by construction a matrix in S+(G)

with nullity at least one.

Theorem 8.5. Let G be a connected graph with M(G) = 2. Then G has a nil

vertex v if and only if G is a subdivision of S4 and v is a pendant vertex adjacent to

the degree three vertex.

Proof. The reverse implication is clear, because by Corollary 5.9, the nil vertices

of a tree are exactly the rank-spread zero vertices. Since G is a tree, M(G) = P (G)

by Theorem 3.1. Deleting v decreases P (G) and |G| by one each. Thus, rv(G) = 0.

For the forward implication, assume G has a nil vertex. Then mr(G) < mr+(G),

or M(G) > M+(G). Since M(G) = 2, by Lemma 8.4 M+(G) = 1. By Theorem 3.4,

G is a tree. By Theorem 3.1, P (G) = M(G) = 2. Then G must have 4 or fewer

pendant vertices.

If G has 4 pendant vertices and P (G) = 2, then the 4 pendant vertices must form

the endpoints of the two paths in any minimal path cover. Then, since G is a tree,

G consists of two paths with exactly one edge joining the two (not incident to any of

the endpoints of the paths, in which case G would have less than 4 pendant vertices).

By Corollary 5.9, the nil vertices of a tree are the rank-spread zero vertices. However,

if G is a tree of this form, G has no rank-spread zero vertices. If it did, deleting such

a vertex would result in obtaining a path. Since G has 4 pendant vertices this is

impossible. Thus, G must have 3 or fewer pendant vertices.

If G has 2 pendant vertices, then G is a path, in which case G has no nil vertices.

Thus, G has exactly 3 pendant vertices. Since G is a tree, G must be a subdivision

of S4. By Corollary 5.9, the nil vertices of G are the rank-spread zero vertices, which

are exactly those pendant vertices that are adjacent to the degree three vertex.
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The following theorem categorizes the nonzero vertices of connected graphs with

maximum nullity 2. This completes our classification of nil, neutral, and nonzero

vertices of “extreme” graphs, those with low or high minimum rank. The following

proof shows that all nonzero vertices of these graphs come from subgraphs which

are complete graphs on 2 or 3 vertices, and illustrates the utility and versatility of

Theorem 3.5, the decomposition theorem for matrices of graphs with a cut-vertex.

Theorem 8.6. Let G be a connected graph on n vertices with M(G) = 2. Then

v is a nonzero vertex of G if and only if one of the following is true:

• v is a pendant vertex with neighbor u such that G− u = Pn−2 ∪K1;

• v is a degree 2 vertex such that G− v = Pn−2 ∪K1;

• v is a degree 2 simplicial vertex such that G− v = Pn−1;

• v and u are adjacent degree 2 simplicial vertices such that G− v− u = Pn−2.

Proof. We denote the vertex-sum of G1 and G2 at a common vertex u by G1⊕
u
G2.

We first prove the reverse implication, beginning with a general technique. If v is a

pendant vertex with neighbor u, we may write G = (G− v)⊕
u
K2, where the vertices

of K2 are u and v. If u is such that ru(G) < 2, then ru(G − v) + ru(K2) < 2 by

Theorem 3.2. Thus, by Theorem 3.5, every minimum rank matrix for G comes from

a minimum rank matrix for G− v and a minimum rank matrix for K2, implying v is

nonzero in G. Further, u is nonzero in G exactly when u is nil in G − v. Thus, to

show a pendant vertex v is nonzero, it suffices to show the rank-spread of its neighbor

is less than 2, and to show the neighbor u of a pendant vertex v is nonzero it suffices

to show ru(G) < 2 and that u is nil in G− v.

We now show that each of the four conditions of the Theorem imply that v is

nonzero.

If v is a pendant vertex with neighbor u such that G − u = Pn−2 ∪ K1, then

ru(G) = mr(G)−mr(Pn−2 ∪K1) = (n− 2)− (n− 2− 1) = 1. Thus, v is nonzero.

If v is a degree 2 vertex such that G− v = Pn−2 ∪K1, then G is a subdivision of

S4 such that one edge of S4 was subdivided exactly once, creating the vertex v. Let

w be the pendant vertex adjacent to v. Then G − w is exactly the tree described in

Theorem 8.5 that has a nil vertex, and the nil vertex is v. Just as in the last case,

rv(G) = 1. Hence, v is nonzero in G.

Now suppose v is a degree 2 simplicial vertex such that G − v = Pn−1. Let u

and w be the neighbors of v so that {u, v, w} induces K3. Then either G = K3,

G = K3 ⊕
u
Pn−2, or G = Pi ⊕

u
(K3 ⊕

w
Pn−i−1) (where u and w are pendant in the

corresponding paths). In the first case v is obviously nonzero. In the second case,

ru(G) = mr(G)−mr(Pn−3 ∪K2) = (n− 2)− (n− 4 + 1) = 1 implies minimum rank
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matrices for G come from minimum rank matrices for Pn−2 and K3, and hence, v is

nonzero. In the third case, applying the method of the second case twice we see v is

nonzero.

Lastly, suppose that v and u are adjacent degree 2 simplicial vertices such that

G−v−u = Pn−2. Let w be the common neighbor of v and u, so that {u, v, w} induces

K3. Then either G = K3, or G = K3 ⊕
w
Pn−2 (where w may be pendant or interior

in Pn−2). If G = K3, v is nonzero. If G = K3 ⊕
w
Pn−2, by Theorem 3.5, matrices for

G come from either matrices for K3 and Pn−2 or matrices for K2, a star, and one or

two paths. In all cases v must be nonzero. This completes the proof of the reverse

implication.

We prove the forward implication by showing that every vertex v of G meets one

of the conditions listed in the theorem if v is nonzero.

First suppose G is a tree. From Theorem 3.1 either G is a subdivision of S4

(allowing the set of all subdivisions of S4 to contain S4) or G is obtained by inserting

one edge between an interior vertex of Pi and an interior vertex of Pj where i+ j = n

and i, j ≥ 3.

Assume G is a subdivision of S4. The central vertex has rank-spread 2, and

hence is neutral. First consider a non-central vertex v of G that lies on a branch

of G corresponding to an edge of S4 that was not subdivided. By Theorem 8.5 v is

nil. Now consider a non-central vertex v of G that lies on a branch of G created by

subdividing an edge of S4 at least once. Let u be the vertex of that branch adjacent

to the central vertex. Then ru(G) = 1. Thus, G decomposes into a path on 2 or more

vertices and a subdivision of S4, where at least one branch has not been subdivided.

If the path is on 2 vertices, then either v = u or v is a pendant vertex adjacent to u.

In either case v meets one of the conditions. If the path is on 3 or more vertices, since

all vertices of a path on 3 or more vertices are neutral, by summing minimum rank

matrices for the path and for the subdivision of S4 we may obtain minimum rank

matrices for G with zero and nonzero entries corresponding to both v and u. Thus, v

and u are neutral in G, and so we have shown that if G is a subdivision of S4, every

vertex either meets one of the conditions or is not nonzero.

Now assume G is obtained by inserting one edge between an interior vertex of

Pi and an interior vertex of Pj where i + j = n. Since every non-pendant vertex

has rank-spread 2, by Lemma 5.1 these vertices are neutral. Since the neighbor of

each pendant vertex has rank-spread 2, by Lemma 7.6 the pendant vertices are not

nonzero.

Now suppose G is not a tree. By Theorem 5.1 of [11], since M(G) = 2, either G

has path cover number 2 or is an exceptional graph. If P (G) = 2, then G has exactly
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one 2-connected block, since a 2-connected block requires two paths to cover it and

any two separate 2-connected blocks could share at most one path in the path cover.

So, G consists of a single 2-connected block with at most four paths extending from

the block. If G is an exceptional graph, G consists of a single 2-connected block with

at most five paths extending from the block (See Table B1 of [11]). Let H be the

induced subgraph of the 2-connected block.

We will consider each vertex of G in four cases: vertices of H 6= K3, cut-vertices,

pendant vertices, and simplicial vertices of degree 2 where P (G) = 2 and H = K3.

These cases are exhaustive since the vertices of G that are not vertices of H are either

cut-vertices or pendants, and if H = K3 then the vertices of H are either cut-vertices

or simplicial vertices of degree 2. Note that if G is an exceptional graph H 6= K3 ( see

Table B1 of [11]). Thus, we need only consider simplicial vertices of degree 2 when

P (G) = 2.

Case 1. Assume H 6= K3 and let v be a vertex of H . Then by Theorem 8.3, all

vertices of H are neutral in H . The set of H and the paths of appropriate lengths is

a minimum rank cover for G. Thus, regardless of whether or not the individual paths

contain nonzero vertices, every vertex of H is neutral in G.

Case 2. Assume v is a cut-vertex. Then we may write G = G1 ⊕
v
G2. Note that

G1 and G2 are connected. If v is nonzero, then the decomposition with the star given

in Theorem 3.5 cannot occur. The only way for v to be nonzero in G then is for,

without loss of generality, v to be nil in G1 and nonzero in G2. Since nil vertices do

not occur in paths, M(G1) ≥ 2. In terms of maximum nullity, Theorem 3.2 states

2 = M(G) = max{M(G1) +M(G2)− 1,M(G1 − w) +M(G2 − w)− 1}.

Since maximum nullity is always positive, we must have M(G1) = 2 and M(G2) = 1.

Thus, G2 is a path. But the only paths that have nonzero vertices are P2 = K2. And

by Theorem 8.5 the only connected maximum nullity 2 graphs that have nil vertices

are subdivisions of S4, and the nil vertex must be a pendant vertex adjacent to to the

degree 3 vertex. Thus, v is a degree 2 vertex such that G− v = Pn−2 ∪K1.

Case 3. Assume v is a pendant vertex. Then its neighbor u is a cut-vertex, and

we may write G = G1 ⊕
u
K2. By Theorem 3.2, ru(G) ≥ 1 since ru(K2) = 1. If

ru(G) = 2, v is not nonzero. If ru(G) = 1, then ru(G1) = 0. Then since M(G1) = 2,

M(G1 − u) = 1. Thus, G− u = Pn−2 ∪K1.

Case 4. Assume v is a simplicial vertex of degree 2, P (G) = 2 and H = K3.

First suppose that v has a neighbor u such that u is also a simplicial vertex of degree

2. Let w be the common neighbor of v and u. If G = K3 we are done. Otherwise,

w must be a cut-vertex. We now consider the possible path covers of G, using the

fact that P (G) = 2. Since u and v are both simplicial, each must be the endpoint
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of a path. If they are covered by the same path, all remaining vertices of G must be

covered by a single path. Then v and u are adjacent degree 2 simplicial vertices such

that G− v−u = Pn−2. If they are covered by different paths, since w is a cut-vertex,

we may assume v is the only vertex covered by its path. Thus, the remaining vertices

of G are covered by a single path, and v is a degree 2 simplicial vertex such that

G− v = Pn−1.

Now suppose that v does not have such a neighbor. Then the two neighbors of

v, call them u and w, must both have degree at least 3. We again consider the path

covers of G. If v is the only vertex covered by its path, as before, v is a degree 2

simplicial vertex such that G− v = Pn−1. Otherwise, we may assume u is covered by

the same path as v. Then the remaining path either has w as an endpoint or passes

through w. In the first case, since H = K3, v is a degree 2 simplicial vertex such

that G − v = Pn−1. In the second case, none of the conditions are met. Thus, we

show that in this case v is not nonzero. Since H = K3, w is a cut-vertex. Write

G = Pi ⊕
w
G2, where v is in G2 and w is of degree 2 in Pi. Since rw(G2) + rw(Pi) ≥ 2,

the decomposition in Theorem 3.5 does occur with a star, and since the degree of w

is 4 and the degree of u is 3, v is nil in the star and neutral in G2 − w. Thus, v is

neutral in G. This completes the proof.

9. Conclusion. In this paper, we investigated conditions under which diagonal

entry restrictions exist on matrices that achieve the minimum rank of a specified

graph, classifying the corresponding vertices as nil or nonzero. We also identified

various conditions which guarantee that no restrictions exist. In Theorem 4.1, we

gave a solution in terms of nil vertices to the question of when the minimum rank of a

graph G equals the minimum rank of the graph obtained by subdividing an edge of G.

In Section 6, we gave a complete classification of these vertices for trees. In Sections 7

and 8, we completed the classification of nil, nonzero and neutral vertices for graphs

of extreme minimum ranks, that is, graphs whose minimum rank is 1, 2, n−1, or n−2.

From the results, it appears that graphs with high or low connectivity tend to have

more restrictions whereas for graphs with middling connectivity fewer restrictions

exist. Example 7.9 illustrates the restrictions on trees, the graphs with the lowest

connectivity excepting disconnected graphs. Complete graphs on at least two vertices

have the highest connectivity, and every diagonal entry is restricted to be nonzero.

However, a large class of 2-connected graphs (see Theorem 8.3) have no restrictions

whatsoever. It remains to quantify these connections and determine if any results

exist with regard to connectivity beyond what has been presented here.
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