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Abstract. This paper is about three classes of objects: Leonard pairs, Leonard triples, and the

modules for a certain algebra A. Let K denote an algebraically closed field of characteristic zero. Let

V denote a vector space over K with finite positive dimension. A Leonard pair on V is an ordered

pair of linear transformations in End(V ) such that, for each of these transformations, there exists a

basis for V with respect to which the matrix representing that transformation is diagonal and the

matrix representing the other transformation is irreducible tridiagonal. There are families of Leonard

pairs said to be totally bipartite and totally almost bipartite. A Leonard pair is said to be totally

B/AB whenever it is totally bipartite or totally almost bipartite. The notion of a Leonard triple and

the corresponding notion of totally B/AB are similarly defined. There are families of Leonard pairs

and Leonard triples said to have Bannai/Ito type. This paper concerns totally B/AB Leonard pairs

and Leonard triples of Bannai/Ito type.

Let A denote the unital associative K-algebra defined by generators x, y, z and relations

xy + yx = 2z, yz + zy = 2x, zx+ xz = 2y.

The algebra A has a presentation involving generators x, y and relations

x2y + 2xyx+ yx2 = 4y, y2x+ 2yxy + xy2 = 4x.

This paper obtains the following results. It classifies up to isomorphism the totally B/AB Leonard

pairs of Bannai/Ito type, the totally B/AB Leonard triples of Bannai/Ito type, and the finite-

dimensional irreducible A-modules. It shows show that these three classes of objects are essentially

in one-to-one correspondence, and describes these correspondences in detail.

Key words. Leonard pair, Leonard triple, Bannai/Ito polynomials, Anticommutator spin

algebra.
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1. Introduction. Throughout this paper, K denotes an algebraically closed field

of characteristic zero.

We now recall the definition of a Leonard pair. To do this, we use the following

terms. A square matrix B is said to be tridiagonal whenever each nonzero entry

lies on either the diagonal, the subdiagonal, or the superdiagonal. Assume B is
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tridiagonal. Then B is said to be irreducible whenever each entry on the subdiagonal

or superdiagonal is nonzero.

Definition 1.1. [9, Definition 1.1] Let V denote a vector space over K with

finite positive dimension. By a Leonard pair on V we mean an ordered pair of linear

transformations A : V → V , A∗ : V → V which satisfy the conditions (i), (ii) below.

(i) There exists a basis for V with respect to which the matrix representing A is

diagonal and the matrix representing A∗ is irreducible tridiagonal.

(ii) There exists a basis for V with respect to which the matrix representing A∗

is diagonal and the matrix representing A is irreducible tridiagonal.

The diameter of the Leonard pair A,A∗ is defined to be one less than the dimension

of V .

If A,A∗ is a Leonard pair on V then so is A∗, A.

We will be considering two families of Leonard pairs said to be totally bipartite

and totally almost bipartite. Before defining these families, we first review a few

concepts. Let V denote a vector space over K with finite positive dimension. By

a decomposition of V we mean a sequence of one-dimensional subspaces of V whose

direct sum is V . For any basis {vi}
d
i=0 for V , the sequence {Kvi}

d
i=0 is a decomposition

of V ; the decomposition {Kvi}
d
i=0 is said to correspond to the basis {vi}

d
i=0. Given a

decomposition {Vi}
d
i=0 of V , for 0 ≤ i ≤ d pick 0 6= vi ∈ Vi. Then {vi}

d
i=0 is a basis

for V which corresponds to {Vi}
d
i=0.

Let A,A∗ denote a Leonard pair on V . A basis for V is called standard whenever

it satisfies Definition 1.1(i). Observe that, given a decomposition {Vi}
d
i=0 of V , the

following (i), (ii) are equivalent.

(i) There exists a standard basis for V which corresponds to {Vi}
d
i=0.

(ii) Every basis for V which corresponds to {Vi}
d
i=0 is standard.

We say that the decomposition {Vi}
d
i=0 is standard whenever (i), (ii) hold. Observe

that if the decomposition {Vi}
d
i=0 is standard, then so is {Vd−i}

d
i=0 and no other

decomposition of V is standard.

For any nonnegative integer d let Matd+1(K) denote the K-algebra consisting of

all d+1 by d+1 matrices that have entries in K. We index the rows and columns by

0, 1, . . . , d.

Let B ∈ Matd+1(K) be tridiagonal. We say that B is bipartite whenever Bii = 0

for 0 ≤ i ≤ d.

Definition 1.2. A Leonard pair A,A∗ is said to be bipartite whenever the

matrix representing A from Definition 1.1(ii) is bipartite. The Leonard pair A,A∗ is
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said to be dual bipartite whenever the Leonard pair A∗, A is bipartite. The Leonard

pair A,A∗ is said to be totally bipartite whenever it is bipartite and dual bipartite.

Let B ∈ Matd+1(K) be tridiagonal. We say that B is almost bipartite whenever

exactly one of B0,0, Bd,d is nonzero and Bii = 0 for 1 ≤ i ≤ d− 1.

Definition 1.3. A Leonard pair A,A∗ is said to be almost bipartite whenever the

matrix representing A from Definition 1.1(ii) is almost bipartite. The Leonard pair

A,A∗ is said to be dual almost bipartite whenever the Leonard pair A∗, A is almost

bipartite. The Leonard pair A,A∗ is said to be totally almost bipartite whenever it is

almost bipartite and dual almost bipartite.

The notion of a Leonard triple was introduced by Brian Curtin in [3]. We recall

the definition.

Definition 1.4. [3, Definition 1.2] Let V denote a vector space over K with

finite positive dimension. By a Leonard triple on V we mean an ordered triple of

linear transformations A : V → V , A∗ : V → V , Aε : V → V which satisfy the

conditions (i)–(iii) below.

(i) There exists a basis for V with respect to which the matrix representing A is

diagonal and the matrices representing A∗ and Aε are irreducible tridiagonal.

(ii) There exists a basis for V with respect to which the matrix representing A∗ is

diagonal and the matrices representing Aε and A are irreducible tridiagonal.

(iii) There exists a basis for V with respect to which the matrix representing Aε is

diagonal and the matrices representing A and A∗ are irreducible tridiagonal.

The diameter of the Leonard triple A,A∗, Aε is defined to be one less than the di-

mension of V .

Definition 1.5. In Definition 1.4, we defined a Leonard triple A,A∗, Aε. In

that definition we mentioned six tridiagonal matrices. The Leonard triple A,A∗, Aε

is said to be totally bipartite (resp., totally almost bipartite) whenever each of the six

tridiagonal matrices is bipartite (resp., almost bipartite).

For notational convenience, we say that a Leonard pair or Leonard triple is totally

B/AB whenever it is either totally bipartite or totally almost bipartite.

For any Leonard triple, any two of the three form a Leonard pair. We say that

these Leonard pairs are associated with the Leonard triple. The Leonard triple is

totally bipartite if and only if all of the associated Leonard pairs are totally bipartite.

The Leonard triple is totally almost bipartite if and only if all of the associated

Leonard pairs are totally almost bipartite.

In [9], Terwilliger classified the Leonard pairs up to isomorphism. By that clas-
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sification, the isomorphism classes of Leonard pairs fall naturally into thirteen fam-

ilies: q-Racah, q-Hahn, dual q-Hahn, q-Krawtchouk, dual q-Krawtchouk, affine q-

Krawtchouk, quantum q-Krawtchouk, Racah, Hahn, dual Hahn, Krawtchouk, Ban-

nai/Ito and orphan. For each integer d ≥ 3 these families partition the isomorphism

classes of Leonard pairs that have diameter d. It remains an open problem to classify

the Leonard triples up to isomorphism. However, in [3], Curtin classified a family of

Leonard triples said to be modular.

We say that a Leonard triple is of Bannai/Ito type whenever all of its associated

Leonard pairs are of Bannai/Ito type. Leonard pairs of Bannai/Ito type arise in con-

junction with the Bannai/Ito polynomials. These polynomials were introduced in [2,

pp. 271–273] by Bannai and Ito. In [12], Tsujimoto, Vinet, and Zhedanov studied the

Bannai/Ito polynomials in conjunction with Dunkl shift operators and representations

of Jordan algebras. Totally B/AB Leonard pairs and Leonard triples also appear in

the literature. In [6], Miklavič studied totally bipartite Leonard triples associated

with some representations of the Lie algebra sl2 constructed using hypercubes. The

Leonard pairs associated with these Leonard triples are of Krawtchouk type. In [5],

Havĺıček, Klimyk, and Pošta displayed representations of the nonstandard q-deformed

cyclically symmetric algebra U ′
q(so3). These representations yield both totally bipar-

tite and totally almost bipartite Leonard triples. The Leonard pairs associated with

these Leonard triples are of q-Racah type.

The Leonard pairs and Leonard triples of interest to us are the ones that are

totally B/AB and of Bannai/Ito type. To describe these Leonard pairs and Leonard

triples, we consider a K-algebra A defined by generators x, y, z and relations

xy + yx = 2z, yz + zy = 2x, zx+ xz = 2y. (1.1)

The algebra A has an alternate presentation using generators x, y and relations

x2y + 2xyx+ yx2 = 4y, y2x+ 2yxy + xy2 = 4x.

The algebra A has appeared previously in the literature [1]. In [1, Section 1], Arik

and Kayserilioglu introduced an algebra involving the relations (1.1). They called

this the anticommutator spin algebra and studied it in conjunction with fermionic

quantum systems and the angular momentum algebra. We say more about Arik and

Kayserilioglu’s results after Theorem 3.20.

The present paper is about how the following are related: (i) Totally B/AB

Leonard pairs of Bannai/Ito type; (ii) Totally B/AB Leonard triples of Bannai/Ito

type; (iii) Finite-dimensional irreducible A-modules. We now summarize our main

results. We classify up to isomorphism the totally B/AB Leonard pairs of Bannai/Ito

type. We classify up to isomorphism the totally B/AB Leonard triples of Bannai/Ito

type. We classify up to isomorphism the finite-dimensional irreducibleA-modules. We

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 26, pp. 258-299, May 2013



ELA

262 G.M.F. Brown

show that these three classes of objects are essentially in one-to-one correspondence.

The correspondence is described as follows. Let V denote a finite-dimensional irre-

ducible A-module. Then the actions of x, y (resp., x, y, z) on V form a totally B/AB

Leonard pair (resp., Leonard triple) of Bannai/Ito type. Conversely, let A,A∗ (resp.,

A,A∗, Aε) denote a totally B/AB Leonard pair (resp., Leonard triple) of Bannai/Ito

type with diameter at least 3 and let V denote the underlying vector space. Then

there exists an irreducible A-module structure on V and nonzero scalars ξ, ξ∗ (resp.,

ξ, ξ∗, ξε) such that A,A∗ (resp., A,A∗, Aε) act on V as ξx, ξ∗y (resp., ξx, ξ∗y, ξεz),

respectively.

We now summarize our results in greater detail. We first describe the algebra A.

As part of this description, we display an action of the symmetric group S4 on A as a

group of automorphisms. We then classify up to isomorphism the finite-dimensional

irreducible A-modules. Let V denote a finite-dimensional irreducible A-module. We

describe how twisting V via an element of S4 affects the isomorphism class of V .

We obtain the eigenvalues and corresponding primitive idempotents for the actions

of x, y, z on V . We use twisting via the S4-action to simplify the calculations. We

display six bases for V . With respect to each of these bases the matrix representing

one of x, y, z is diagonal and the matrices representing the other two are irreducible

tridiagonal. We display the matrices representing the actions of x, y, z on V with

respect to each of the six bases. From this, we show that x, y act on V as a totally

B/AB Leonard pair of Bannai/Ito type and x, y, z act on V as a totally B/AB Leonard

triple of Bannai/Ito type.

Next we classify up to isomorphism the totally B/AB Leonard pairs of Bannai/Ito

type. To avoid trivialities, we assume the diameter is at least 3. To obtain this

classification, we use the Askey-Wilson relations for a Leonard pair A,A∗ described

by Terwilliger and Vidunas [11]. For the case in which A,A∗ is totally B/AB and of

Bannai/Ito type, we show that the Askey-Wilson relations take the form

A2A∗ + 2AA∗A+ A∗A2 = ̺A∗, A∗2A+ 2A∗AA∗ +AA∗2 = ̺∗A,

where ̺, ̺∗ ∈ K are nonzero. Using these relations, we show that for every totally

B/AB Leonard pair A,A∗ on V of Bannai/Ito type with diameter at least 3, there

exist nonzero scalars ξ, ξ∗ ∈ K and an A-module structure on V such that A,A∗ act

as ξx, ξ∗y, respectively. From the preceding paragraphs, we obtain a correspondence

between finite-dimensional irreducible A-modules and totally B/AB Leonard pairs of

Bannai/Ito type. Using this correspondence we obtain our classification of the totally

B/AB Leonard pairs of Bannai/Ito type.

Next we classify up to isomorphism the totally B/AB Leonard triples of Ban-

nai/Ito type. Again we assume the diameter is at least 3. To obtain this classification,

we use some results of Nomura and Terwilliger[7] concerning linear transformations
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that are tridiagonal with respect to both eigenbases of a Leonard pair A,A∗. For

the case in which A,A∗ is associated with a totally B/AB Leonard triple A,A∗, Aε of

Bannai/Ito type, we use these results to show that

ζε(AA∗ +A∗A) = Aε, ζ(A∗Aε +AεA∗) = A, ζ∗(AεA+AAε) = A∗,

where ζ, ζ∗, ζε ∈ K are nonzero. Using these relations, we show that for every totally

B/AB Leonard triple A,A∗, Aε on V of Bannai/Ito type with diameter at least 3,

there exist nonzero scalars ξ, ξ∗, ξε ∈ K and an A-module structure on V such that

A,A∗, Aε act as ξx, ξ∗y, ξεz, respectively. From the preceding paragraphs, we ob-

tain a correspondence between finite-dimensional irreducible A-modules and totally

B/AB Leonard triples of Bannai/Ito type. Using this correspondence we obtain our

classification of the totally B/AB Leonard triples of Bannai/Ito type.

The paper is organized as follows. In Section 2, we define the algebra A and

display an action of S4 on A as a group of automorphisms. In Section 3, we classify the

finite-dimensional irreducible A-modules. In Section 4, we show how twisting a finite-

dimensional irreducibleA-module via an element of S4 affects the isomorphism class of

that module. In Section 5, we work out the primitive idempotents and eigenvalues for

the actions of the A-generators x, y, z on a finite-dimensional irreducible A-module.

In Section 6, we display six bases for each finite-dimensional irreducible A-module. In

Section 7, we display the matrices representing x, y, z with respect to these six bases.

We also show that these actions form a totally B/AB Leonard triple of Bannai/Ito

type. In Section 8, we classify the totally B/AB Leonard pairs of Bannai/Ito type and

show how they correspond to finite-dimensional irreducible A-modules. In Section 9,

we classify the totally B/AB Leonard triples of Bannai/Ito type and show how they

correspond to finite-dimensional irreducible A-modules.

2. The algebra A and its automorphisms. We now define the K-algebra A.

Definition 2.1. [1, Section 1] Let A denote the unital associative algebra over

K with generators x, y, z and relations

xy + yx = 2z, (2.1)

yz + zy = 2x, (2.2)

zx+ xz = 2y. (2.3)

Note thatA is generated by any two of x, y, z. This yields the following two-generator

presentation of A.

Lemma 2.2. The algebra A has a presentation involving generators x, y and

relations

x2y + 2xyx+ yx2 = 4y, (2.4)

y2x+ 2yxy + xy2 = 4x. (2.5)
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Proof. Rewrite relations (2.2), (2.3) by eliminating z using line (2.1).

Lemma 2.3. Any algebra automorphism of A that fixes at least two of x, y, z is

the identity.

Proof. Since any two of x, y, z generate A, any automorphism that fixes at least

two of x, y, z must fix all of A.

Each permutation of x, y, z extends to a unique algebra automorphism of A; this

can be checked using relations (2.1)–(2.3). This gives an action of the symmetric

group S3 on A as a group of automorphisms. There are also algebra automorphisms

of A that change the sign of two of x, y, z while preserving the third; this gives an

action of the Klein-four group K4 on A as a group of automorphisms.

In a moment we will show how the S3 and K4 actions interact, but first it will be

useful to establish that these actions are faithful.

Definition 2.4. Let I denote the set consisting of the symbols 0, x, y, z.

Lemma 2.5. For n ∈ I there exists a unique algebra homomorphism fn : A → K

satisfying

n fn(x) fn(y) fn(z)

0 1 1 1

x 1 −1 −1

y −1 1 −1

z −1 −1 1

Moreover, fn is surjective.

Proof. One verifies that fn exists through routine calculation using Definition 2.1.

Also fn is unique since A is generated by x, y, z. Observe fn is nonzero and hence

surjective.

Lemma 2.6. The elements x, y, z, 1 are linearly independent in the K-vector space

A.

Proof. Let a, b, c, d ∈ K satisfy ax+ by+ cz + d = 0. For each n ∈ I, we apply fn
to this equation and get

a+ b+ c+ d =0,

a− b− c+ d =0,

−a+ b− c+ d =0,

−a− b+ c+ d =0.
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The coefficient matrix of the above system of equations is non-singular, so the unique

solution is a = b = c = d = 0. Therefore, x, y, z, 1 are linearly independent.

Corollary 2.7. ±x,±y,±z are mutually distinct elements of A.

Proof. Immediate from Lemma 2.6.

Recall the S3 and K4 actions from below Definition 2.1.

Corollary 2.8. S3 and K4 act faithfully on A.

Proof. By Corollary 2.7, S3 and K4 act faithfully on the set {±x,±y,±z}, so

they act faithfully on A.

We remark that, in Section 3, we will classify up to isomorphism the finite-

dimensional irreducible A-modules. The solutions to this classification include four

infinite classes, corresponding to almost bipartite Leonard triples. The A-modules in

these classes are indexed by a nonnegative integer called the diameter. The fn from

Lemma 2.5 come from the A-modules of diameter 0 in these classes.

Lemma 2.9. Let σ denote an automorphism of A that fixes each of x, y, z up to

sign. Then σ must change the sign of an even number of x, y, z.

Proof. By Lemma 2.3, if σ fixes any two of x, y, z it must fix all three, so σ cannot

change the sign of exactly one of x, y, z. Also, σ cannot change the sign of all three of

x, y, z because, if it did, we could compose it with a non-identity element of K4 to get

an automorphism that changes the sign of exactly one of x, y, z. The result follows.

Let Aut(A) denote the set consisting of all automorphisms of A and note that

Aut(A) forms a group under composition. Let G denote the subgroup of Aut(A) that

fixes the set {±x,±y,±z}. Let S denote the subgroup of Aut(A) that fixes the set

{x, y, z} and let K denote the subgroup of Aut(A) that fixes each of x, y, z up to sign.

Observe that S and K are both subgroups of G.

Corollary 2.8 gives an injection of groups S3 →֒ Aut(A) and, by construction,

the image of this injection is S. Similarly, Corollary 2.8 gives an injection of groups

K4 →֒ Aut(A). By Lemma 2.9 and the definition of the K4-action, the image of this

injection is K. Since S,K ⊆ G, this gives group injections, S3 →֒ G, K4 →֒ G whose

images are S,K, respectively.

It will turn out that G is isomorphic to S4 and that G is a semi-direct product

K ⋊ S.

Proposition 2.10. G = K ⋊ S.

Proof. By [4, Proposition 11.2], it suffices to show S ∩ K = {1G}, K ⊳ G and

G = KS. By construction, S ∩K = {1G}. By definition the elements of G permute
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±x,±y,±z. We define a binary relation ∼ on the set {±x,±y,±z} such that u ∼ v

if and only if u = ±v. Observe that ∼ is an equivalence relation. Moreover, observe

that the elements of G permute the three equivalence classes of ∼, resulting in a

group homomorphism ϕ : G → S3. The kernel of this homomorphism is K, so K ⊳G.

Furthermore, the composition S →֒ G →
ϕ

S3 is an isomorphism S → S3, so G = KS.

By these comments G = K ⋊ S.

Our next goal is to show that G is isomorphic to S4.

Definition 2.11. For n ∈ I, define hn ∈ A as follows:

h0 = x+ y + z, hx = x− y − z,

hy = −x+ y − z, hz = −x− y + z.

Lemma 2.12. We have

x =
h0 + hx

2
, y =

h0 + hy

2
, z =

h0 + hz

2
.

Moreover, the algebra A is generated by {hn}n∈I.

Proof. Routine.

Let G̃ denote the group of all permutations of I and observe G̃ is isomorphic to

S4.

Proposition 2.13. There exists a group isomorphism G → G̃, σ 7→ σ̃ such that

σ(hn) = hσ̃(n) for all n ∈ I.

Proof. We first show that G fixes the set {hn}n∈I. Since G is generated by S

and K it suffices to show that S and K fix {hn}n∈I. We check that this is the case

for S by the construction below Lemma 2.9. We check that this is the case for K

by the construction below Lemma 2.9 along with Lemma 2.9 itself. Since G fixes

the set {hn}n∈I, there is a unique group homomorphism G → G̃, σ 7→ σ̃ such that

σ(hn) = hσ̃(n) for all n ∈ I. The action of G on {hn}n∈I is faithful in view of Lemma

2.12. The homomorphism is an isomorphism since each of G, G̃ have cardinality 24.

Corollary 2.14. The group G is isomorphic to S4.

Proof. G is isomorphic to G̃ by Proposition 2.13 and G̃ is isomorphic to S4 by

construction.

We just established a group isomorphism G → G̃. We have subgroups S,K ⊆ G.

We now consider what this isomorphism does to the elements of S and K. To this

end, let S̃ denote the subgroup of G̃ consisting of the elements that fix 0. Let K̃
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denote the unique normal subgroup of G̃ of order 4. Note that K̃ consists of

(0x)(yz), (0y)(zx), (0z)(xy),

together with the identity.

Lemma 2.15. With respect to the group isomorphism G → G̃ from Proposition

2.13, the image of S is S̃. Moreover, let σ ∈ S. Recall that σ permutes the elements

x, y, z of A. Then σ̃ permutes the elements x, y, z of I in the corresponding way.

Proof. First we show how σ acts on h0.

σ(h0) = σ(x + y + z)

= σ(x) + σ(y) + σ(z)

= x+ y + z

= h0,

so σ̃ fixes 0. Let a, b, c denote distinct elements of {x, y, z}. Then

σ(ha) = σ(a− b− c)

= σ(a)− σ(b)− σ(c),

so σ̃(a) = σ(a) when a ∈ {x, y, z}. The image of S is S̃ by the definition of S̃.

Lemma 2.16. With respect to the isomorphism G → G̃ from Proposition 2.13,

the image of K is K̃. Given a non-identity element σ ∈ K, recall that σ fixes one of

x, y, z and changes the sign of the other two. Let a, b, c denote distinct elements of

{x, y, z} such that σ fixes a and changes the sign of b and c. Now, viewing a, b, c as

elements of I, then σ̃ is (0, a)(b, c).

Proof. σ, σ̃ are both involutions, so σ̃ is a composition of disjoint 2-cycles. It is

therefore sufficient to show how σ̃ acts on 0 and b.

σ(h0) = σ(a+ b+ c)

= σ(a) + σ(b) + σ(c)

= a− b − c

= ha,

so σ̃ switches 0 and a.

σ(hb) = σ(−a+ b− c)

= −σ(a) + σ(b)− σ(c)

= −a− b+ c

= hc,

so σ̃ switches b and c. The image of K is K̃ by the definition of K̃.
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3. The finite-dimensional irreducible A-modules. In this section, we clas-

sify the finite-dimensional irreducible A-modules up to isomorphism. This classifica-

tion is given in Theorem 3.20.

We adopt the following conventions. Let V denote a vector space over K. By

End(V ) we mean the K-algebra of linear transformations from V to V . Let B ∈

End(V ). By an eigenvalue of B we mean a root of the minimal polynomial of B.

For an eigenvalue θ of B, the eigenspace for B associated with θ is the subspace

{v ∈ V |B.v = θv}. B is diagonalizable whenever V is spanned by its eigenspaces.

Definition 3.1. Let V denote an A-module. For λ ∈ K, we define V (λ) = {v ∈

V |x.v = λv}.

Lemma 3.2. Let V denote an A-module. Then (y + z).V (λ) ⊆ V (2 − λ) and

(y− z).V (λ) ⊆ V (−2− λ). Moreover, y.V (λ) ⊆ V (2− λ) + V (−2− λ) and z.V (λ) ⊆

V (2− λ) + V (−2− λ).

Proof. Let v ∈ V (λ). Using Definition 2.1 we find that (y + z).v ∈ V (2 − λ)

and (y − z).v ∈ V (−2 − λ). The first two assertions follow from this. The last two

assertions follow from the first two and the observation that each of y and z is a linear

combination of y + z, y − z.

We define functions f : K → K and g : K → K such that f(λ) = 2 − λ and

g(λ) = −2− λ for all λ ∈ K. Observe f(f(λ)) = λ and g(g(λ)) = λ for all λ ∈ K, so

f and g are permutations of K. Note that f has a single orbit of size 1, namely {1}

and all other orbits have size 2. Similarly, g has a single orbit of size 1, namely {−1}

and all other orbits have size 2.

We make an observation.

Lemma 3.3. The sum of the elements in an orbit of f is equal to the size of the

orbit. The sum of the elements of an orbit of g is equal to −1 times the size of the

orbit.

Definition 3.4. Given a set L of elements of K, we say that L is closed whenever

f(L) ⊆ L and g(L) ⊆ L.

Lemma 3.5. Let L denote a nonempty closed subset of K. Then L has infinitely

many elements.

Proof. We assume L has finite cardinality n and obtain a contradiction. Because

L is closed, it can be partitioned into orbits of f . By Lemma 3.3, the sum of the

elements in L is n. Similarly, L can be partitioned into orbits of g. By Lemma 3.3,

the sum of the elements in L is −n. This implies n = −n, so n = 0. But L is
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nonempty, a contradiction. The result follows.

Definition 3.6. We say that two distinct elements of K are adjacent whenever

they are in the same f -orbit or the same g-orbit. A set L ⊆ K is said to be connected

whenever the following (i), (ii) hold.

(i) L is nonempty.

(ii) For any partition of L into nonempty subsets M1 and M2 there exist µ ∈ M1

and σ ∈ M2 such that µ and σ are adjacent.

Lemma 3.7. Let V denote a finite-dimensional irreducible A-module. Then the

action of x on V is diagonalizable. Moreover, the set L = {λ ∈ K|V (λ) 6= 0} is

connected.

Proof. Since V is nonzero and finite-dimensional and since the ground field K is

algebraically closed there exists a nonzero vector in V that is an eigenvector for x.

Therefore, V (λ) 6= 0 where λ is the corresponding eigenvalue. So L is nonempty.

Let M1,M2 denote a partition of L such that M1 is nonempty and no element

of M1 is adjacent to any element of M2. Define W =
∑

µ∈M1
V (µ). Then W is

closed under the action of A by Lemma 3.2, and nonzero because M1 is nonempty

and V (λ) 6= 0 for all λ ∈ M1.

Since the A-module V is irreducible, we have V = W . It follows that M1 = L

and M2 is empty, so L is connected. Furthermore, we have V =
∑

µ∈L V (µ), so the

action of x on V is diagonalizable.

We will continue discussing the finite-dimensional irreducible A-modules after a

comment.

Lemma 3.8. Let L denote a finite and connected subset of K with cardinality

d + 1. Then there is an ordering {θi}
d
i=0 of the elements of L such that θi, θi+1 are

adjacent for 0 ≤ i ≤ d− 1.

Proof. We will construct an ordering {θi}
d
i=0 of the elements of L. Assume d ≥ 1;

otherwise, the result is trivial. By definition, L is finite and nonempty. Therefore,

by Lemma 3.5, L is not closed, so there must be an element θ0 ∈ L such that either

f(θ0) /∈ L or g(θ0) /∈ L. Exactly one of f(θ0), g(θ0) is in L or else the sets {θ0} and

L \ {θ0} will violate Definition 3.6(ii). If f(θ0) ∈ L define {θi}
d
i=0 to be the first d+1

elements of the sequence

θ0, f(θ0), g(f(θ0)), f(g(f(θ0))), g(f(g(f(θ0)))), . . .

If g(θ0) ∈ L define {θi}
d
i=0 to be the first d+ 1 elements of the sequence

θ0, g(θ0), f(g(θ0)), g(f(g(θ0))), f(g(f(g(θ0)))), . . .
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We claim that {θi}
d
i=0 is an ordering of the elements of L. Of the integers 0, 1, . . . , d,

let c denote the maximal one such that {θi}
c
i=0 are mutually distinct and in L. We

show that c = d. Let M1 = {θi}
c
i=0 and M2 = L \M1. Then M1,M2 is a partition of

L and no element of M1 is adjacent to an element of M2. By Definition 3.6(ii), one

of M1,M2 is empty. By construction M1 is nonempty so M2 is empty and M1 = L.

Therefore, c = d, thus proving the claim. By construction θi, θi+1 are adjacent for

0 ≤ i ≤ d− 1. The result follows.

Corollary 3.9. Let V denote a finite-dimensional irreducible A-module. Then

there is an ordering {θi}
d
i=0 of the eigenvalues for the action of x on V such that

θi, θi+1 are adjacent for 0 ≤ i ≤ d− 1.

Proof. Immediate from Lemmas 3.7 and 3.8.

Let V denote a finite-dimensional irreducible A-module. An ordering {θi}
d
i=0 of

elements of K will be called standard whenever θi, θi+1 are adjacent for 0 ≤ i ≤ d− 1.

Note that if the ordering {θi}
d
i=0 is standard then so is the ordering {θd−i}

d
i=0. When

we display our Leonard pairs and Leonard triples it will turn out that the eigenvalues

for the action of x on a standard decomposition of V form a standard ordering of the

eigenvalues.

Let {θi}
d
i=0 denote a standard ordering of eigenvalues for the action of x on V .

For d ≥ 1,

θi = (−1)i(θ0 − 2εi) (0 ≤ i ≤ d), (3.1)

where ε = 1 if θ1 = f(θ0) and ε = −1 if θ1 = g(θ0). Note that, for d = 0, equation

(3.1) holds for ε = ±1.

We now consider how an element in {θi}
d
i=0 could be adjacent to an element of

K not among {θi}
d
i=0. Recall that if λ, µ ∈ K are adjacent then either λ = f(µ) or

λ = g(µ). First assume that d = 0. Then θ0 is adjacent to a number other than θ0
because f(θ0) 6= g(θ0). Next assume that d ≥ 1. By construction, θj is adjacent only

to θj−1, θj+1 for 1 ≤ j ≤ d− 1.

Lemma 3.10. With the above notation, assume d ≥ 1. The following table holds.

ε θ0 Values for f and g θ0 is adjacent to

1 −1 f(θ0) = θ1, g(θ0) = θ0 only θ1
1 6= −1 f(θ0) = θ1, g(θ0) /∈ {θi}

d
i=0 θ1 and an element of K \ {θi}

d
i=0

−1 1 f(θ0) = θ0, g(θ0) = θ1 only θ1
−1 6= 1 f(θ0) /∈ {θi}

d
i=0, g(θ0) = θ1 θ1 and an element of K \ {θi}

d
i=0

Define ε′ = (−1)d−1ε and note that ε′ = 1 if θd−1 = f(θd) and ε′ = −1 if θd−1 =

g(θd). Then the following table holds.
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ε′ θd Values for f and g θd is adjacent to

1 −1 f(θd) = θd−1, g(θd) = θd only θd−1

1 6= −1 f(θd) = θd−1, g(θd) /∈ {θi}
d
i=0 θd−1 and an element of K \ {θi}

d
i=0

−1 1 f(θd) = θd, g(θd) = θd−1 only θd−1

−1 6= 1 f(θd) /∈ {θi}
d
i=0, g(θd) = θd−1 θd−1 and an element of K \ {θi}

d
i=0

Proof. We first show the first table holds. Rows 1, 3: Immediate.

Row 2: By construction f(θ0) = θ1. We now show that g(θ0) /∈ {θi}
d
i=0. By

way of contradiction, assume g(θ0) ∈ {θi}
d
i=0. Then there exists an integer i with

0 ≤ i ≤ d such that g(θ0) = θi. By (3.1), the definition of g, and the fact that ε = 1,

we have

− 2− θ0 = (−1)i(θ0 − 2i). (3.2)

First assume i is odd. Then (3.2) reduces to i = −1, a contradiction. Next assume

i is even. Then (3.2) reduces to θ0 = i − 1. We now show that i = 0. Assume

not. Then, by (3.1) with i − 1 we find that θi−1 = θ0 but i − 1 6= 0 since i is even.

This contradicts the fact that {θi}
d
i=0 are distinct. Therefore, i = 0 so θ0 = −1, a

contradiction. We have now shown that g(θ0) /∈ {θi}
d
i=0. It follows that θ0 is adjacent

to θ1 and an element of K \ {θi}
d
i=0.

Row 4: Similar to row 2.

To obtain Table 2, apply Table 1 to the standard ordering {θd−i}
d
i=0 of eigenvalues

for the action of x on V .

We will be discussing five classes of A-modules. The first class will be denoted

B(d) (B for “bipartite”). The other four will be denoted AB(d, n) with n ∈ I (AB

for “almost bipartite”). It will become clear in Section 7 why we use these terms. We

now introduce the first of these classes.

Lemma 3.11. Let d denote a nonnegative even integer. There exists an A-module

V with basis {vi}
d
i=0 on which x, y, z act as follows. For 0 ≤ i ≤ d,

x.vi =(−1)i(d− 2i)vi, (3.3)

y.vi =(d− i + 1)vi−1 + (i+ 1)vi+1, (3.4)

z.vi =(−1)i−1(d− i+ 1)vi−1 + (−1)i(i + 1)vi+1, (3.5)

where v−1 = 0 and vd+1 = 0. The A-module V is irreducible. An A-module isomor-

phic to V is said to have type B(d).

Proof. One can show that V is an A-module by routine calculation using Defini-

tion 2.1. We now show that V is irreducible. Let W denote a nonzero A-submodule

of V . We claim that for 0 ≤ i ≤ d−1, if vi ∈ W then vi+1 ∈ W . Let i be given and as-

sume vi ∈ W . Adding (3.4) to (−1)i times (3.5), we find (y+(−1)iz).vi = 2(i+1)vi+1.
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Because 2(i+ 1) is nonzero, we have vi+1 ∈ W as desired. A similar argument shows

that, for 1 ≤ i ≤ d, if vi ∈ W then vi−1 ∈ W .

We now show that there exists an integer j (0 ≤ j ≤ d) such that vj ∈ W .

For notational convenience define θi = (−1)i(d − 2i) for 0 ≤ i ≤ d and consider the

following elements of A:

ei =
∏

0≤j≤d

j 6=i

x− θj1

θi − θj
(0 ≤ i ≤ d).

Using (3.3), we obtain ei.vj = δijvj for 0 ≤ i, j ≤ d. Here δij denotes the Kronecker

delta. Recall that {vi}
d
i=0 is a basis for V . Let v = c0v0 + c1v1 + · · · + cdvd denote

a nonzero vector in W . Since v is nonzero there exists j (0 ≤ j ≤ d) such that cj is

nonzero. Then ej .v = cjvj is a nonzero scalar multiple of vj , so vj ∈ W . By this and

our preliminary comments we find that W = V .

Remark 3.12. For d odd, an A-module V as in Lemma 3.11 exists, but it is

not irreducible. Indeed, we have a direct sum of A-modules V = V1 + V2 where

V1 = span{vi + vd−i}
d
i=0 and V2 = span{vi − vd−i}

d
i=0.

Lemma 3.13. Let d denote a nonnegative integer. There exists an A-module V

with basis {vi}
d
i=0 on which x, y, z act as follows. For 0 ≤ i ≤ d,

x.vi =(−1)d+i(2d− 2i+ 1)vi, (3.6)

y.vi =(−1)d(2d− i+ 2)vi−1 + (−1)d(i+ 1)vi+1, (3.7)

z.vi =(−1)i−1(2d− i + 2)vi−1 + (−1)i(i+ 1)vi+1, (3.8)

where v−1 = 0 and vd+1 = vd. The A-module V is irreducible. An A-module isomor-

phic to V is said to have type AB(d, 0).

Proof. Similar to the proof of Lemma 3.11.

Lemma 3.14. Let d denote a nonnegative integer. There exists an A-module V

with basis {vi}
d
i=0 on which x, y, z act as follows. For 0 ≤ i ≤ d,

x.vi =(−1)d+i(2d− 2i+ 1)vi, (3.9)

y.vi =(−1)d+1(2d− i+ 2)vi−1 + (−1)d+1(i+ 1)vi+1, (3.10)

z.vi =(−1)i(2d− i+ 2)vi−1 + (−1)i+1(i + 1)vi+1, (3.11)

where v−1 = 0 and vd+1 = vd. The A-module V is irreducible. An A-module isomor-

phic to V is said to have type AB(d, x).

Proof. Similar to the proof of Lemma 3.11.

Lemma 3.15. Let d denote a nonnegative integer. There exists an A-module V
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with basis {vi}
d
i=0 on which x, y, z act as follows. For 0 ≤ i ≤ d,

x.vi =(−1)d+i+1(2d− 2i+ 1)vi, (3.12)

y.vi =(−1)d(2d− i+ 2)vi−1 + (−1)d(i+ 1)vi+1, (3.13)

z.vi =(−1)i(2d− i+ 2)vi−1 + (−1)i+1(i+ 1)vi+1, (3.14)

where v−1 = 0 and vd+1 = vd. The A-module V is irreducible. An A-module isomor-

phic to V is said to have type AB(d, y).

Proof. Similar to the proof of Lemma 3.11.

Lemma 3.16. Let d denote a nonnegative integer. There exists an A-module V

with basis {vi}
d
i=0 on which x, y, z act as follows. For 0 ≤ i ≤ d,

x.vi =(−1)d+i+1(2d− 2i+ 1)vi, (3.15)

y.vi =(−1)d+1(2d− i+ 2)vi−1 + (−1)d+1(i+ 1)vi+1, (3.16)

z.vi =(−1)i−1(2d− i+ 2)vi−1 + (−1)i(i + 1)vi+1, (3.17)

where v−1 = 0 and vd+1 = vd. The A-module V is irreducible. An A-module isomor-

phic to V is said to have type AB(d, z).

Proof. Similar to the proof of Lemma 3.11.

Definition 3.17. Let V denote a finite-dimensional irreducible A-module from

Lemmas 3.11–3.16. We define the diameter of V to be one less than the dimension

of V . Thus, A-modules of types B(d) and AB(d, n) have diameter d.

Definition 3.18. An A-module V is said to have type B when there exists an

even integer d ≥ 0 such that V is of type B(d). The module is said to have type AB

when there exists an integer d ≥ 0 and n ∈ I such that V is of type AB(d, n).

We comment on Definition 3.18. We will explain in Section 7 that on an A-module

of type B, the generators x, y, z act as a totally bipartite Leonard triple and on an

A-module of type AB, the generators x, y, z act as a totally almost bipartite Leonard

triple.

Our goal for the rest of this section is to show that every finite-dimensional

irreducible A-module is isomorphic to exactly one A-module from Lemmas 3.11–3.16.

As the next result shows, we can distinguish between the five families using the traces

of the x, y, z actions.

Theorem 3.19. Let V denote an A-module contained in one of the five families

from Lemmas 3.11–3.16. Then the traces of x, y, z on V are given in the following

table.
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tr(x) tr(y) tr(z)

B(d) 0 0 0

AB(d, 0) (−1)d(d+ 1) (−1)d(d+ 1) (−1)d(d+ 1)

AB(d, x) (−1)d(d+ 1) (−1)d+1(d+ 1) (−1)d+1(d+ 1)

AB(d, y) (−1)d+1(d+ 1) (−1)d(d+ 1) (−1)d+1(d+ 1)

AB(d, z) (−1)d+1(d+ 1) (−1)d+1(d+ 1) (−1)d(d+ 1)

Proof. Routine.

Theorem 3.20. Every finite-dimensional irreducible A-module is isomorphic to

exactly one of the modules from Lemmas 3.11–3.16.

Proof. We first claim that the modules from Lemmas 3.11–3.16 are mutually

non-isomorphic. To do this we refer to the table from Theorem 3.19. If two such

A-modules have different values of d, then they have different dimensions and are

therefore non-isomorphic. If they have the same value of d, but come from different

rows of the table, then they must differ on the traces of at least one of x, y, z and are

therefore non-isomorphic. The claim follows.

Let V denote a finite-dimensional irreducible A-module. We will show that V

is isomorphic to a module from Lemmas 3.11–3.16. Let {θi}
d
i=0 denote a standard

ordering of the eigenvalues for the action of x on V . Recall that the ordering {θd−i}
d
i=0

is also standard.

By Lemma 3.5, there exists an integer r (0 ≤ r ≤ d) such that θr is adjacent to

an element of K not among {θi}
d
i=0. By the observation above Lemma 3.10, r = 0 or

r = d. Replacing {θi}
d
i=0 with {θd−i}

d
i=0 as necessary, we may assume, without loss

of generality, that r = 0.

Now θ0 is adjacent to an element of K not among {θi}
d
i=0. Recall this number is

either 2 − θ0 or −2 − θ0. When d ≥ 1, let ε be as below line (3.1). For notational

convenience we define ε for d = 0. In this case if θ0 = ±1 we define ε = θ0 and if

θ0 6= ±1 we define ε = 1. For all values of d, −2ε−θ0 is not among {θi}
d
i=0. Therefore,

V (−2ε− θ0) = 0. By this and Lemma 3.2 we have (y − εz).V (θ0) = 0.

We have that θi satisfies (3.1) for 0 ≤ i ≤ d. For notational convenience, we

define θi by the equation (3.1) for all integers i ≥ 0.

Let 0 6= w0 ∈ V (θ0). We have (y − εz).w0 = 0. We define vectors {wi}i≥1

recursively by

wi =
ε

2i
(y + (−1)i−1εz).wi−1 (i ≥ 1). (3.18)

By Lemma 3.2, wi ∈ V (θi) for i ≥ 0. In (3.18), we replace i with i+ 1 and rearrange
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the terms to get

(y + (−1)iεz).wi = 2ε(i+ 1)wi+1 (i ≥ 0). (3.19)

We claim that, for i ≥ 0,

(y − (−1)iεz).wi = 2ε(εθ0 − i+ 1)wi−1, (3.20)

where w−1 = 0. We do this using induction on i. First assume i = 0. Then (3.20)

holds since both sides are equal to 0. Now assume i ≥ 1. Using (2.2) we check that

(y + z)2 − (y − z)2 = 4x. This implies (y + εz)2 − (y − εz)2 = ε4x, so

((y + εz)2 − (y − εz)2).wi−1 = ε4x.wi−1. (3.21)

As we evaluate (3.21), we consider two cases:

Case 1 (i is even): By (3.19), we have (y− εz).wi−1 = 2εiwi and (y+ εz).wi−2 =

2ε(i− 1)wi−1. By (3.20) and induction we have (y + εz).wi−1 = 2ε(εθ0 − i+ 2)wi−2.

By (3.1) we have x.wi−1 = (2ε(i − 1) − θ0)wi−1. By these comments and (3.21) we

routinely obtain (3.20).

Case 2 (i is odd): By (3.19), we have (y + εz).wi−1 = 2εiwi and (y − εz).wi−2 =

2ε(i− 1)wi−1. By (3.20) and induction we have (y − εz).wi−1 = 2ε(εθ0 − i+ 2)wi−2.

By (3.1) we have x.wi−1 = (θ0 − 2ε(i − 1))wi−1. By these comments and (3.21) we

routinely obtain (3.20).

We have now verified (3.20). We next claim that, for i ≥ 0,

x.wi =(−1)i(θ0 − 2εi)wi, (3.22)

y.wi =ε(εθ0 − i+ 1)wi−1 + ε(i+ 1)wi+1, (3.23)

z.wi =(−1)i−1(εθ0 − i+ 1)wi−1 + (−1)i(i+ 1)wi+1. (3.24)

Adding (3.19), (3.20) and dividing the result by 2 we get (3.23). Adding (−1)iε

times (3.19) to (−1)i−1ε times (3.20) and dividing the result by 2 we get (3.24).

Combining the fact that wi ∈ V (θi) with (3.1) we obtain (3.22). The claim follows.

By (3.22)–(3.24), span{wi}i≥0 is closed under the actions of x, y, z, and hence all

of A. Because the A-module V is irreducible and w0 6= 0, we have span{wi}i≥0 = V .

We now show there exists a nonnegative integer t such that wt = 0. By construc-

tion, the sequences {θ2i}i≥0 and {θ2i+1}i≥0 are arithmetic progressions, so {θi}i≥0

has an infinite number of distinct elements. Since V is finite-dimensional, there must

be a nonnegative integer i such that θi is not among {θj}
d
j=0. Observe V (θi) = 0 so

wi = 0.
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Assume wt = 0. We now show that t ≥ d + 1. Assume t ≤ d. By (3.19) wi = 0

for all i ≥ t. Therefore, V = span{wi}
t−1
i=0 . By this, and the fact that {θi}

d
i=0 are

distinct, we have that V (θd) = 0, a contradiction. Therefore, t ≥ d+ 1.

Let c denote the smallest integer such that c ≥ d and wc+1 = 0. Then V =

span{wi}
c
i=0. Setting i = c+1 in (3.20) and using wc+1 = 0, we get 2ε(εθ0−c)wc = 0,

but 2ε and wc are nonzero, so εθ0 − c = 0. This means θ0 = εc. In particular θ0 is an

integer, so, by (3.1), θi are integers for all i ≥ 0.

Also by (3.1), {θi}i≥0 are either all even or all odd. We now consider these two

subcases separately.

Case 1 ({θi}i≥0 are even): Since θd is even, it is not equal to ±1. By rows 2 and

4 of the second table from Lemma 3.10, θd is adjacent to an element of K not among

{θi}
d
i=0. Therefore, θd+1 is not among {θi}

d
i=0. This means wd+1 = 0, so c ≤ d. By

this and the fact that c ≥ d, we have c = d.

From this we draw two conclusions. First of all, using θ0 = εc, we find θ0 = εd.

Secondly, we find that the vectors {wi}
d
i=0 form a basis for V . If ε = 1, we define

vi = wi for 0 ≤ i ≤ d. If ε = −1, we define vi = (−1)iwd−i. In both cases {vi}
d
i=0 is

a basis for V . Combining the construction of {vi}
d
i=0, (3.22)–(3.24) and θ0 = εd, we

obtain (3.3)–(3.5).

Case 2 ({θi}i≥0 are odd): Recall θ0 = εc so c is odd. Therefore, there exists an

integer k ≥ 0 such that c = 2k + 1. We show that k = d. By (3.1) and since c is

odd we have θi = θc−i for 0 ≤ i ≤ c. In this equation we set i = k to get θk = θk+1.

Because {θi}
d
i=0 are distinct, k ≥ d.

This implies c ≥ 2d+ 1 > d, so V (θd+1) 6= 0. By Lemma 3.10 rows 5–8, we have

θd = ±1. By (3.1) with i = d, we get θd = (−1)d(εc − 2εd), so c − 2d = ±1. This

means k is either d or d − 1, but k ≥ d. Therefore, k = d and hence c = 2d + 1, so

θi = ε(−1)i(2d− 2i+ 1).

We now have V = span{wi}
2d+1
i=0 . Let V0 = span{wi + wc−i}

d
i=0 and V1 =

span{wi−wc−i}
d
i=0. Observe by construction that V = V0 +V1 and by (3.22)–(3.24),

V0 and V1 are closed under the action of A. By these comments and the fact that the

A-module V is irreducible and the fact that V = V0 + V1, either V0 = 0 and V1 = V ,

or V1 = 0 and V0 = V . In the former case, we define δ = −1 and in the latter case,

we define δ = 1. Then wi = δwc−i for 0 ≤ i ≤ c and the vectors {wi}
d
i=0 form a basis

for V . Let vi = δiwi for 0 ≤ i ≤ c. Then {vi}
d
i=0 is a basis for V and vi = vc−i for

0 ≤ i ≤ c.

Using (3.22)–(3.24) and the definition of {vi}
d
i=0, we determine the actions of

x, y, z on {vi}
d
i=0 for the different values of ε, δ. Comparing these actions with the
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data from Lemmas 3.13–3.16, we find that the A-module V is in the isomorphism

class displayed in the table below.

(−1)dδ = 1 (−1)dδ = −1

(−1)dε = 1 AB(d, 0) AB(d, x)

(−1)dε = −1 AB(d, y) AB(d, z)

The proof is complete.

We comment on Theorem 3.20. In [1], Arik and Kayserilioglu introduced a com-

plex unital associative algebra with generators J1, J2, J3 and relations

{J1, J2} = J3, {J2, J3} = J1, {J3, J1} = J2, (3.25)

where {A,B} = AB + BA. They called their algebra the anticommutator spin al-

gebra, abbreviated ACSA. Comparing equations (2.1)–(2.3) and (3.25), we see that,

when K = C, there is an algebra isomorphism A → ACSA that sends x 7→ 2J3, y 7→

2J1, z 7→ 2J2. Arik and Kayserilioglu claimed to classify up to isomorphism all finite-

dimensional irreducible representations of ACSA. However, their result is incorrect;

they only found three types of representations instead of the five described in Lemmas

3.11–3.16. What Arik and Kayserilioglu actually classified were the possible eigen-

value sequences for the action of J3 in a finite-dimensional irreducible representation.

But the distinct isomorphism classes AB(d, 0) and AB(d, x) yield the same eigenvalue

sequence for the action of J3. Similarly, the distinct isomorphism classes AB(d, y)

and AB(d, z) yield the same eigenvalue sequence for the action of J3.

We include a result for later use.

Lemma 3.21. Let V denote an A-module contained in one of the five families

from Lemmas 3.11–3.16. Then for n ∈ I, the trace of hn on V is given on the following

table.

tr(h0) tr(hx) tr(hy) tr(hz)

B(d) 0 0 0 0

AB(d, 0) 3(−1)d(d+ 1) (−1)d+1(d+ 1) (−1)d+1(d+ 1) (−1)d+1(d+ 1)

AB(d, x) (−1)d+1(d+ 1) 3(−1)d(d+ 1) (−1)d+1(d+ 1) (−1)d+1(d+ 1)

AB(d, y) (−1)d+1(d+ 1) (−1)d+1(d+ 1) 3(−1)d(d+ 1) (−1)d+1(d+ 1)

AB(d, z) (−1)d+1(d+ 1) (−1)d+1(d+ 1) (−1)d+1(d+ 1) 3(−1)d(d+ 1)

Proof. Apply Theorem 3.19 to Definition 2.11.

4. The G-action on the A-modules. Recall the subgroup G ⊆Aut(A) from

below Lemma 2.9. Let V denote a finite-dimensional irreducible A-module. In this
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section we show what happens when we twist V via an element of G.

Definition 4.1. Let V denote an A-module. For σ ∈Aut(A) there exists an

A-module structure on V , called V twisted via σ that behaves as follows: For all

a ∈ A, v ∈ V , the vector a.v computed in V twisted via σ coincides with the vector

σ−1(a).v computed in the original A-module V . Sometimes we abbreviate σV for V

twisted via σ. Observe that Aut(A) acts on the set of A-modules, with σ sending V

to σV for all σ ∈Aut(A) and every A-module V . Observe that V and σV have the

same dimension and that σV is irreducible if and only if V is irreducible.

In Section 3, we described the set of isomorphism classes of finite-dimensional

irreducible A-modules. From Definition 4.1, G acts on this set. We now investigate

this G-action. Recall from Definition 2.4 that I consists of the symbols 0, x, y, z.

Theorem 4.2. Let V denote a finite-dimensional irreducible A-module of diam-

eter d and let σ ∈ G. Then the following (i), (ii) hold.

(i) Assume V is of type B(d). Then σV is of type B(d).

(ii) Assume V is of type AB(d, n) with n ∈ I. Then σV is of type AB(d, σ̃(n)),

where σ̃ is from Proposition 2.13.

Proof. For m ∈ I, the action of hm on σV coincides with the action of σ−1(hm)

on V . Therefore, the trace of hm on σV is equal to the trace of σ−1(hm) on V .

We evaluate the table from Lemma 3.21 using this and Proposition 2.13. The result

follows.

By Theorem 4.2(i) the isomorphism class B(d) is stabilized by everything in G.

For n ∈ I we now determine the stabilizer in G of the isomorphism class of type

AB(d, n). Recall the subgroups K,S ⊆ G from below Lemma 2.9.

Definition 4.3. Recall that the group K consists of the automorphisms of A

that fix each of x, y, z up to sign. Recall that |K| = 4 by Lemma 2.9. We define a

bijection I → K,n 7→ ρn as follows. The automorphism ρ0 is the identity element of

K. For each nonzero n ∈ I, by Lemma 2.9, there exists a unique element of K that

fixes n and changes the sign of the other two elements of {x, y, z}. We denote this

element of K by ρn.

Recall the group G̃ of permutations of I and the isomorphism G → G̃ from

Proposition 2.13. Note that, for nonzero n ∈ I, ρ̃n = (0n)(ml) where m, l are the

remaining nonzero elements of I.

Lemma 4.4. Let n ∈ I and let V denote a finite-dimensional irreducible A-module

of type AB(d, n). Then, for σ ∈ G, the following (i)–(iii) are equivalent.

(i) σV is of type AB(d, n).
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(ii) σ̃ fixes n.

(iii) σ ∈ ρnSρ
−1
n , where ρn is from Definition 4.3.

Proof. (i)⇔(ii): Follows from Proposition 2.13 and Theorem 4.2.

(ii)⇔(iii): First assume that n = 0, so that ρn is the identity. Then ρnSρ
−1
n = S.

By Lemma 2.15, S̃ consists of the permutations of I that fix 0. Now assume n 6= 0.

Then, by Lemma 2.15 and the note after Definition 4.3, we check that ρ̃nS̃ρ̃
−1
n consists

of the permutations of I that fix n. Therefore, σ ∈ ρnSρ
−1
n if and only if σ̃ fixes n.

5. The primitive idempotents. In this section, we determine the eigenvalues

for the actions of x, y, z on a finite-dimensional irreducible A-module, and we define

the corresponding primitive idempotents.

Definition 5.1. Let V denote a vector space over K with positive finite dimen-

sion and let b : V → V denote a diagonalizable linear transformation. Let {Vi}
d
i=0

denote an ordering of the eigenspaces of b. For 0 ≤ i ≤ d let θi denote the eigenvalue

for b associated with Vi and define ei ∈ End(V) such that (ei− I)Vi = 0 and eiVj = 0

for j 6= i (0 ≤ j ≤ d). Here I denotes the identity of End(V ). We call ei the primitive

idempotent of b corresponding to θi. Observe that

(i)
∑d

i=0 ei = I,

(ii) eiej = δijei (0 ≤ i, j ≤ d),

(iii) aei = θiei (0 ≤ i ≤ d),

(iv) eiV = Vi (0 ≤ i ≤ d).

Note that

ei =
∏

0≤j≤d

j 6=i

b − θjI

θi − θj
(0 ≤ i ≤ d). (5.1)

We will now determine the eigenvalues for the actions of x, y, z on a finite-dimensional

irreducible A-module V . To do this, we will first determine the eigenvalues for the

action of x, y, z when V is of type B(d) or AB(d, 0). Then we will determine the

eigenvalues for the actions of x, y, z when V is of type AB(d, n) for nonzero n ∈ I.

Proposition 5.2. Let V denote a finite-dimensional irreducible A-module of

type B(d) or AB(d, 0). For each of x, y, z the action on V is diagonalizable. The

eigenvalues for this action are given in the table below.

B(d) AB(d, 0)

x (−1)i(d− 2i) (−1)d+i(2d− 2i+ 1)

y (−1)i(d− 2i) (−1)d+i(2d− 2i+ 1)

z (−1)i(d− 2i) (−1)d+i(2d− 2i+ 1)
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In the above table, the integer i runs from 0 to d.

Proof. If V is of type B(d), then by Lemma 3.11, the action of x on V is diago-

nalizable with the desired eigenvalues. If V is of type AB(d, 0), then by Lemma 3.13

the action of x on V is diagonalizable with the desired eigenvalues. We have now

verified our assertions for x.

We now verify our assertions for y, z. To that end, let a denote one of y, z. Pick

an element σ ∈ S such that σ(a) = x. By Theorem 4.2 and Lemma 4.4, the twisted

module σV is of the same type as V . By Definition 4.1, the action of x on σV coincides

with the action of σ−1(x) = a on the untwisted module V . Therefore, the actions are

both diagonalizable and have the same eigenvalues.

Proposition 5.3. Fix a nonzero n ∈ I and let V denote a finite-dimensional

irreducible A-module of type AB(d, n). For each of x, y, z the action on V is diago-

nalizable. The eigenvalues for this action are given in the table below.

AB(d, x) AB(d, y) AB(d, z)

x (−1)d+i(2d− 2i+ 1) (−1)d+i+1(2d− 2i+ 1) (−1)d+i+1(2d− 2i+ 1)

y (−1)d+i+1(2d− 2i+ 1) (−1)d+i(2d− 2i+ 1) (−1)d+i+1(2d− 2i+ 1)

z (−1)d+i+1(2d− 2i+ 1) (−1)d+i+1(2d− 2i+ 1) (−1)d+i(2d− 2i+ 1)

In the above table, the integer i runs from 0 to d.

Proof. Recall the automorphism ρ = ρn of A from Definition 4.3. By Theorem

4.2 and the note at the end of Definition 4.3 we find that the twisted module ρV is

of type AB(d, 0). Let a denote one of x, y, z and note that, by Proposition 5.2, the

action of a on ρV is diagonalizable with eigenvalues {(−1)d+i(2d − 2i + 1)}di=0. By

Definition 4.1, the action of ρ(a) on the untwisted module V is diagonalizable with

eigenvalues {(−1)d+i(2d − 2i + 1)}di=0. By Definition 4.3, ρ(a) = a when n = a and

ρ(a) = −a when n 6= a. The result follows.

Definition 5.4. Let V denote a finite-dimensional irreducible A-module of type

B(d) or AB(d, 0). For a among x, y, z and 0 ≤ i ≤ d, let θai denote the ith eigenvalue of

a on V from the table in Proposition 5.2. We define eai to be the primitive idempotent

associated with θai , for the action of a on V .

Definition 5.5. For nonzero n ∈ I, let V denote a finite-dimensional irreducible

A-module of type AB(d, n). For a among x, y, z and 0 ≤ i ≤ d, let θai denote the

ith eigenvalue of a on V from the table in Proposition 5.3. We define eai to be the

primitive idempotent associated with θai , for the action of a on V .

Recall the notion of standard order from below Corollary 3.9.

Lemma 5.6. Let a be among x, y, z. With respect to Definitions 5.4, 5.5, the
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ordering {θai }
d
i=0 is standard.

Proof. Use the tables in Propositions 5.2, 5.3.

We now present two slightly technical results that will be used in later sections.

Lemma 5.7. Let V denote a finite-dimensional irreducible A-module of type B(d).

Pick an element σ ∈ S. Pick a among x, y, z. Then σ(eai ) = e
σ(a)
i for 0 ≤ i ≤ d.

Proof. The idempotents eai , e
σ(a)
i are found using (5.1). By Proposition 5.2,

θai = θ
σ(a)
i . The result follows.

We set some notation for later use. Let 0 6= a ∈ I. We define the function

â : I → K to by â(n) = 1 for n ∈ {0, a} and â(n) = −1 for n ∈ I \ {0, a}.

Lemma 5.8. Let V denote a finite-dimensional irreducible A-module of type

AB(d, n) and let ρn be as in Definition 4.3. Pick an element σ ∈ G and let τ =

ρnσρ
−1
n . Pick a among x, y, z. Then τ(eai ) = e

σ(a)
i for 0 ≤ i ≤ d.

Proof. The idempotents eai , e
σ(a)
i are found using (5.1). By Definition 4.3 we have

τ(a) = â(n)σ̂(a)(n)σ(a) and by Propositions 5.2, 5.3 θai = â(n)σ̂(a)(n)θ
σ(a)
i . The

result follows.

6. Six bases for V . Let V denote a finite-dimensional irreducible A-module.

In this section, we will display six bases for V with respect to which the matrices

representing x, y, z are attractive. To begin, we will look at the basis for V provided

in Lemmas 3.11–3.16.

Lemma 6.1. Let V denote a finite-dimensional irreducible A-module. Let {vi}
d
i=0

denote the basis for V from Lemmas 3.11–3.16. Then the following (i)–(iii) hold.

(i) vi ∈ exi V (0 ≤ i ≤ d).

(ii) Let v =
∑d

i=0 vi. Then v ∈ ey0V .

(iii) vi = exi v (0 ≤ i ≤ d).

Proof. (i) Follows from equations (3.3), (3.9), (3.12), (3.15) and Propositions 5.2,

5.3.

(ii) Follows from equations (3.4), (3.10), (3.13), (3.16) and Propositions 5.2, 5.3.

(iii) By part (ii), eiv =
∑d

j=0 e
x
i vj . Since vj ∈ exjV we have exi vj = δijvi. The

result follows.

Lemma 6.2. Let V denote a finite-dimensional irreducible A-module. Pick a, b

among x, y, z with a 6= b. Then the action of eai e
b
0 on V is nonzero for 0 ≤ i ≤ d.
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Proof. Observe exi e
y
0V is nonzero because it contains the nonzero vector vi from

Lemma 6.1. Now, let σ ∈ S denote the unique automorphism of A such that σ(a) = x

and σ(b) = y. Let ρ ∈ K denote the identity if V is of type B(d) and ρn if V is of type

AB(d, n). Let τ = ρσρ−1. By Lemma 4.4, the A-modules V and τV are isomorphic,

so the action of exi e
y
0 on τV is nonzero. By Lemmas 5.7, 5.8, the action of exi e

y
0 on τV

coincides with the action of eai e
b
0 on V . Therefore, eai e

b
0V 6= 0 as desired.

We now obtain six bases for V .

Theorem 6.3. Let V denote a finite-dimensional irreducible A-module of diam-

eter d. Pick a, b among x, y, z with a 6= b. Then, for 0 6= vb ∈ eb0V and 0 ≤ i ≤ d,

eai v
b is nonzero and therefore a basis for eai V . Moreover, the sequence {eai v

b}di=0 is a

basis for V .

Proof. We have dim(eb0V ) = 1 and 0 6= vb ∈ eb0V , so vb spans eb0V . Therefore,

eai v
b spans eai e

b
0V . Now eai v

b 6= 0 in view of Lemma 6.2.

7. The matrices representing x, y, z with respect to the six bases. Let

V denote a finite-dimensional irreducible A-module. In Theorem 6.3 we displayed

six bases for V . In this section, we will display the matrices representing x, y, z with

respect to these bases.

Lemma 7.1. Let V denote a finite-dimensional irreducible A-module of type B(d).

Let a, b, c denote a permutation of x, y, z. For 0 ≤ i ≤ d, the following equations hold

on V :

aeai e
b
0 =(−1)i(d− 2i)eai e

b
0, (7.1)

beai e
b
0 =(d− i+ 1)eai−1e

b
0 + (i+ 1)eai+1e

b
0, (7.2)

ceai e
b
0 =(−1)i−1(d− i+ 1)eai−1e

b
0 + (−1)i(i + 1)eai+1e

b
0. (7.3)

Here ea−1 = 0 and ead+1 = 0.

Proof. For the case (a, b, c) = (x, y, z) the equations (7.1)–(7.3) are reformations

of (3.3)–(3.5) in light of Lemma 6.1. The remaining cases follow from Lemma 5.7.

Theorem 7.2. Let V denote a finite-dimensional irreducible A-module of type

B(d). Pick a, b among x, y, z with a 6= b and recall the basis {eai v
b}di=0 from Theorem

6.3. With respect to this basis, the matrices representing x, y, z are described below.

Let c denote the element of {x, y, z} other than a, b. The matrices are

a : diag(d, 2 − d, d− 4, . . . , 4− d, d− 2,−d),
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b :




0 d

1 0 d− 1 0

2 0 d− 2

3 . .

. . .

. . 2

0 d− 1 0 1

d 0




,

c :




0 d

1 0 1− d 0

−2 0 d− 2

3 . .

. . .

. . 2

0 d− 1 0 −1

−d 0




.

Proof. The actions for a, b, c on {eai v
b}di=0 are found by applying equations (7.1)–

(7.3) to vb and recalling that eb0v
b = vb.

Lemma 7.3. Let V denote a finite-dimensional irreducible A-module of type

AB(d, n). Let a, b, c denote a permutation of x, y, z. For 0 ≤ i ≤ d, the following

equations hold on V :

aeai e
b
0 =â(n)(−1)d+i(2d− 2i+ 1)eai e

b
0, (7.4)

beai e
b
0 =b̂(n)(−1)d(2d− i+ 2)eai−1e

b
0 + b̂(n)(−1)d(i+ 1)eai+1e

b
0, (7.5)

ceai e
b
0 =ĉ(n)(−1)i−1(2d− i+ 2)eai−1e

b
0 + ĉ(n)(−1)i(i + 1)eai+1e

b
0. (7.6)

Here ea−1 = 0 and ead+1 = ead. We are using the hat notation from above Lemma 5.8.

Proof. For the case (a, b, c) = (x, y, z), the equations (7.4)–(7.6) are reformations

of (3.6)–(3.17) in light of Lemma 6.1. The remaining cases follow from Lemma 5.8.

Theorem 7.4. Let V denote a finite-dimensional irreducible A-module of type

AB(d, n). Pick a, b among x, y, z with a 6= b and recall the basis {eai v
b}di=0 from

Theorem 6.3. With respect to this basis, the matrices representing x, y, z are described

below. Let c denote the element of {x, y, z} other than a, b. The matrices are

a : â(n)diag((−1)d(2d+ 1), . . . , 9,−7, 5,−3, 1),
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b : b̂(n)(−1)d




0 2d+ 1

1 0 2d 0

2 0 2d− 1

3 . .

. . .

. . d+ 3

0 d− 1 0 d+ 2

d d+ 1




,

c : ĉ(n)




0 2d+ 1

1 0 −2d 0

−2 0 2d− 1

3 . .

. . .

. . (−1)d−2(d + 3)

0 (−1)d−2(d − 1) 0 (−1)d−1(d + 2)

(−1)d−1d (−1)d(d + 1)




.

Proof. The actions for a, b, c on {eai v
b}di=0 are found by applying equations (7.4)–

(7.6) to vb and recalling that eb0v
b = vb.

Theorem 7.5. Let V denote a finite-dimensional irreducible A-module. Then

the actions of x, y, z on V form a Leonard triple. If V is of type B, then the Leonard

triple is totally bipartite, and if V is of type AB, then the Leonard triple is totally

almost bipartite.

Proof. Use Definitions 1.4, 1.5 and the data from Theorems 7.2, 7.4.

Corollary 7.6. Let V denote a finite-dimensional irreducible A-module. For

any nonzero scalars ξ, ξ∗, ξε in K, let A = ξx, A∗ = ξ∗y, Aε = ξεz Then the actions

of A,A∗, Aε form a Leonard triple. If V is of type B, then the Leonard triple is totally

bipartite, and if V is of type AB, then the Leonard triple is totally almost bipartite.

Proof. Immediate.

8. Totally B/AB Leonard pairs of Bannai/Ito type. In Theorem 7.5 and

Corollary 7.6, we displayed totally B/AB Leonard triples arising from finite-dimen-

sional irreducible A-modules. In this section, we classify the Leonard pairs associated

with these Leonard triples. We show that they correspond to a family of totally B/AB

Leonard pairs said to have Bannai/Ito type. Using this correspondence we classify
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the totally B/AB Leonard pairs of Bannai/Ito type with diameter at least 3.

Notation 8.1. Let V denote a vector space overK with finite positive dimension.

Let A,A∗ denote a Leonard pair on V . Let {vi}
d
i=0 denote a basis for V with respect

to which A is diagonal and A∗ is irreducible tridiagonal. Let {v∗i }
d
i=0 denote a basis

for V with respect to which A∗ is diagonal and A is irreducible tridiagonal. For

0 ≤ i ≤ d, let θi denote the eigenvalue for A associated with vi and let θ∗i denote the

eigenvalue for A∗ associated with v∗i .

Lemma 8.2. [11, Theorem 1.5] With reference to Notation 8.1, there exists a

sequence of scalars β, γ, γ∗, ̺, ̺∗, ω, η, η∗ taken from K such that both

A2A∗ − βAA∗A+A∗A2 − γ(AA∗ +A∗A)− ̺A∗ = γ∗A2 + ωA+ ηI, (8.1)

A∗2A− βA∗AA∗ +AA∗2 − γ∗(A∗A+AA∗)− ̺∗A = γA∗2 + ωA∗ + η∗I. (8.2)

The sequence is uniquely determined by the pair A,A∗ provided the diameter is at

least 3.

The equations (8.1), (8.2) are known as the Askey-Wilson relations.

Lemma 8.3. [9, Theorem 1.9(v)] With reference to Notation 8.1, the expressions

θi−2 − θi+1

θi−1 − θi
,

θ∗i−2 − θ∗i+1

θ∗i−1 − θ∗i
(8.3)

are equal and independent of i for 2 ≤ i ≤ d− 1.

Definition 8.4. [11, Definition 4.2] Given scalars β, γ, ̺ in K we define a two-

variable polynomial

P (λ, µ) = λ2 − βλµ+ µ2 − γ(λ+ µ)− ̺.

Given scalars β, γ∗, ̺∗ in K we define a two-variable polynomial

P ∗(λ, µ) = λ2 − βλµ+ µ2 − γ∗(λ+ µ)− ̺∗.

We introduce further notation.

Notation 8.5. With reference to Notation 8.1, for 0 ≤ i ≤ d, let ai (resp., a
∗
i )

denote the (i, i)-entries for the matrix representing A (resp., A∗) with respect to the

basis {v∗i }
d
i=0 (resp., {vi}

d
i=0).

We obtain some formulae involving {ai}
d
i=0, {a

∗
i }

d
i=0.

Lemma 8.6. [11, Corollary 5.2] Let β, γ, γ∗, ̺, ̺∗, ω, η, η∗ denote scalars in K.

Then with reference to Notation 8.1, 8.5 and Definition 8.4, the following (i), (ii) are

equivalent.
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(i) The sequence β, γ, γ∗, ̺, ̺∗, ω, η, η∗ satisfies (8.1) and (8.2).

(ii) For 1 ≤ i ≤ d both

P (θi−1, θi) = 0, P ∗(θ∗i−1, θ
∗
i ) = 0, (8.4)

and for 0 ≤ i ≤ d both

a∗iP (θi, θi) =γ∗θ2i + ωθi + η, (8.5)

aiP
∗(θ∗i , θ

∗
i ) =γθ∗2i + ωθ∗i + η∗. (8.6)

Let the Leonard pair A,A∗ be from Notation 8.1. Observe that A,A∗ is bipartite

(resp., dual bipartite) if and only if ai (resp., a
∗
i ) is equal to 0 for 0 ≤ i ≤ d. Similarly,

A,A∗ is almost bipartite (resp., dual almost bipartite) if and only if exactly one of

a0, ad (resp., a∗0, a
∗
d) is nonzero and ai (resp., a

∗
i ) is equal to 0 for 1 ≤ i ≤ d− 1.

Lemma 8.7. With reference to Notation 8.1, the following (i), (ii) hold.

(i) Suppose A,A∗ is bipartite. Then θi = −θd−i for 0 ≤ i ≤ d.

(ii) Suppose A,A∗ is dual bipartite. Then θ∗i = −θ∗d−i for 0 ≤ i ≤ d.

Proof. (i) Recall the bases {vi}
d
i=0 and {v∗i }

d
i=0 for V from Notation 8.1. Let

s∗ ∈ End(V ) be defined by s∗.v∗i = (−1)iv∗i for 0 ≤ i ≤ d. By construction, s∗ is

invertible, so {s∗.vi}
d
i=0 is a basis for V . Because the matrix representing A with

respect to the basis {v∗i }
d
i=0 is bipartite tridiagonal, we have As∗ = −s∗A. Recall

that vi is an eigenvector for A with eigenvalue θi for 0 ≤ i ≤ d. From these facts,

s∗.vi is an eigenvector for A with eigenvalue −θi for 0 ≤ i ≤ d. Therefore, the matrix

representing A with respect to the basis {s∗.vi}
d
i=0 is diagonal. Because the matrix

representing A∗ with respect to the basis {v∗i }
d
i=0 is diagonal, we have A∗s∗ = s∗A∗.

Recall that the matrix representing A∗ with respect to the basis {vi}
d
i=0 is irreducible

tridiagonal. From these facts, the matrix representing A∗ with respect to the basis

{s∗.vi}
d
i=0 is irreducible tridiagonal. Therefore, {s∗.vi}

d
i=0 is a standard basis for

V and {Ks∗.vi}
d
i=0 is a standard decomposition of V . Recall that {Kvi}

d
i=0 and

{Kvd−i}
d
i=0 are the only decompositions of V that are standard with respect to the

Leonard pair A,A∗. Therefore, {Ks∗.vi}
d
i=0 is equal to either {Kvi}

d
i=0 or {Kvd−i}

d
i=0.

By applying A to the bases {vi}
d
i=0, {v

∗
i }

d
i=0 and {s∗.vi}

d
i=0 for V , we routinely find

that the decompositions {Ks∗.vi}
d
i=0, {Kvd−i}

d
i=0 coincide. It follows that θi = −θd−i

for 0 ≤ i ≤ d, as desired.

(ii) Similar.

Recall the Askey-Wilson relations from lines (8.1), (8.2). We now refine these

relations in the case in which A,A∗ is totally B/AB.

Theorem 8.8. With reference to Notation 8.1, assume A,A∗ is totally bipartite.

Then the scalars γ, γ∗, ω, η, η∗ from Lemma 8.2 are all zero provided the diameter

d ≥ 2.
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Proof. By construction, the scalar a∗i from Notation 8.5 is equal to zero for

0 ≤ i ≤ d. By this and Lemma 8.6, the left-hand side of (8.5) is equal to zero. Note

that the right-hand side of (8.5) involves a quadratic polynomial γ∗λ2 + ωλ+ η. For

this polynomial, θi is a root for 0 ≤ i ≤ d. Because d ≥ 2, this polynomial has at

least three distinct roots and is therefore zero. Therefore, γ∗ = ω = η = 0. By a

similar argument using equation (8.6), we find that γ = η∗ = 0.

Theorem 8.9. With reference to Notation 8.1, assume A,A∗ is totally almost

bipartite. Then the scalars γ, γ∗, ω, η, η∗ from Lemma 8.2 are all zero provided the

diameter d ≥ 3.

Proof. By construction, the scalar a∗i from Notation 8.5 is equal to zero for

1 ≤ i ≤ d − 1 and exactly one of a∗0, a
∗
d is nonzero. Replacing {a∗i }

d
i=0 by {a∗d−i}

d
i=0

as necessary, we may assume, without loss of generality, that a∗0 = 0. Then a∗i = 0

for 0 ≤ i ≤ d − 1. By this and Lemma 8.6, the left-hand side of (8.5) is equal to

zero for 0 ≤ i ≤ d − 1. Recall that the right-hand side of (8.5) involves a quadratic

polynomial γ∗λ2 + ωλ + η. For this polynomial, θi is a root for 0 ≤ i ≤ d − 1.

Because d ≥ 3, this polynomial has at least three distinct roots and is therefore zero.

Therefore, γ∗ = ω = η = 0. By a similar argument using equation (8.6), we find that

γ = η∗ = 0.

We will show that, when A,A∗ is totally B/AB, the scalars ̺, ̺∗ are nonzero

provided the diameter is not too small. The following Lemma will be used to show

this.

Lemma 8.10. With reference to Notation 8.1 and Lemma 8.2, the following (i),

(ii) hold.

(i) Suppose the parameters γ, ̺ from Lemma 8.2 are zero. Then {θi}
d
i=0 is a

geometric progression. Let q denote the common value of θi/θi−1. Then

q + q−1 = β, where β is from Lemma 8.2.

(ii) Suppose the parameters γ∗, ̺∗ from Lemma 8.2 are zero. Then {θ∗i }
d
i=0 is

a geometric progression. Let q denote the common value of θ∗i /θ
∗
i−1. Then

q + q−1 = β, where β is from Lemma 8.2.

Proof. (i) Let r ∈ K denote a solution to r+ r−1 = β. Substituting r+ r−1 for β

in the left-hand equation of (8.4), and setting γ = ̺ = 0, we find that, for 1 ≤ i ≤ d,

0 =θ2i−1 − (r + r−1)θi−1θi + θ2i

=(θi − rθi−1)(θi − r−1θi−1),

so θi = rθi−1 or θi = r−1θi−1. Since {θi}
d
i=0 are mutually distinct, either θi = rθi−1

for1 ≤ i ≤ d or θi = r−1θi−1 for 1 ≤ i ≤ d. In the former case, set q = r and in the

latter case set q = r−1. The result follows.
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(ii) Similar.

Lemma 8.11. With reference to Notation 8.1, assume A,A∗ is totally bipartite

and the diameter d ≥ 2. Then the scalars ̺, ̺∗ from Lemma 8.2 are nonzero.

Proof. By way of contradiction, assume that at least one of ̺, ̺∗ is zero. Without

loss of generality, we may assume ̺ = 0. By Lemma 8.7, θ0 = −θd and θ1 = −θd−1. By

Theorem 8.8 and Lemma 8.10(i), there exists a nonzero scalar q such that q = θi/θi−1

for 1 ≤ i ≤ d and q + q−1 = β, where β is from Lemma 8.2. Observe θi = qiθ0 for

0 ≤ i ≤ d. By these comments, θ0 = −qdθ0 and qθ0 = −qd−1θ0. We may now argue

θ2 = q2θ0 = −qdθ0 = θ0 for a contradiction. The result follows.

Lemma 8.12. With reference to Notation 8.1, assume A,A∗ is totally almost

bipartite and d ≥ 3. Then at least one of P (θ0, θ0), P (θd, θd) is zero and at least one

of P ∗(θ∗0 , θ
∗
0), P

∗(θ∗d, θ
∗
d) is zero.

Proof. By Theorem 8.9, the right-hand sides of equations (8.5), (8.6) equal zero

for 0 ≤ i ≤ d. By construction, one of a0, ad is nonzero. If a0 6= 0 then P (θ0, θ0) = 0

and if ad 6= 0 then P (θd, θd) = 0. Similarly, one of a∗0, a
∗
d is nonzero. If a∗0 6= 0 then

P ∗(θ∗0 , θ
∗
0) = 0 and if a∗d 6= 0 then P ∗(θ∗d, θ

∗
d) = 0.

Lemma 8.13. With reference to Notation 8.1, assume A,A∗ is totally almost

bipartite and the diameter d ≥ 3. Then the scalars ̺, ̺∗ from Lemma 8.2 are nonzero.

Proof. By way of contradiction, assume that at least one of ̺, ̺∗ is zero. With-

out loss of generality, we may assume ̺ = 0. By Lemma 8.12, at least one of

P (θ0, θ0), P (θd, θd) is zero. Replacing {θi}
d
i=0 with {θd−i}

d
i=0 as necessary, we may

assume, without loss of generality, that P (θd, θd) = 0. Evaluating using Definition

8.4 and Theorem 8.8, we find (2−β)θ2d = 0. Therefore, either β = 2 or θd = 0. In the

first case, the θi are equal for 0 ≤ i ≤ d, a contradiction. In the second case, Lemma

8.10(i) is contradicted. The result follows.

Theorem 8.14. Let A,A∗ denote a totally B/AB Leonard pair. Then there

exists a sequence of scalars β, ̺, ̺∗ in K with ̺, ̺∗ nonzero such that both

A2A∗ − βAA∗A+A∗A2 = ̺A∗, (8.7)

A∗2A− βA∗AA∗ +AA∗2 = ̺∗A. (8.8)

Proof. Note that equations (8.7), (8.8) are what we get upon setting γ, γ∗, ω, η, η∗

equal to zero in equations (8.1), (8.2). First assume d ≥ 3. Then (8.7), (8.8) hold by

Theorems 8.8, 8.9 and Lemmas 8.11, 8.13. Now assume d ≤ 2. We routinely verify

the assertion using Lemmas 8.6 and 8.12.

In [10, Example 5.14] a Leonard pair is said to be of Bannai/Ito type whenever
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the common value of (8.3) is equal to −1. When this occurs, the parameter β from

Lemma 8.2 is equal to −2 and the relations (8.7), (8.8) become

A2A∗ + 2AA∗A+ A∗A2 = ̺A∗, (8.9)

A∗2A+ 2A∗AA∗ +AA∗2 = ̺∗A. (8.10)

When ̺, ̺∗ are equal to 4, equations (8.9), (8.10) become equations (2.4), (2.5).

Consequently the Leonard pairs associated with the Leonard triple from Theorem 7.5

are of Bannai/Ito type.

Note that, for d ≥ 3, the scalar β from Lemma 8.2 is uniquely determined and

is equal to the scalar β from Theorem 8.14. However, when d ≤ 2, β not unique. In

this case it is conceivable that equations (8.1), (8.2) are satisfied with β = −2 and

equations (8.7), (8.8) are satisfied with β 6= −2, but equations (8.9), (8.10) are not

satisfied. Because of this, some of the following theorems assume d ≥ 3.

Theorem 8.15. Let V denote a finite-dimensional irreducible A-module and

let ξ, ξ∗ denote nonzero scalars in K. Then ξx, ξ∗y act on V as a Leonard pair of

Bannai/Ito type. If V is of type B then the Leonard pair is totally bipartite. If V is

of type AB then the Leonard pair is totally almost bipartite.

Proof. Immediate.

Theorem 8.16. Let V denote a vector space with finite dimension at least 4

and let A,A∗ denote a totally B/AB Leonard pair on V of Bannai/Ito type. Then

there exists an irreducible A-module structure on V and nonzero scalars ξ, ξ∗ such

that x, y act on V as Aξ−1, A∗ξ∗−1, respectively. If A,A∗ is totally bipartite then the

A-module V is of type B and if A,A∗ is totally almost bipartite then the A-module

V is of type AB. The A-module structure of V is uniquely determined by the scalars

ξ, ξ∗ and each of the scalars ξ, ξ∗ is unique up to sign.

Proof. Since K is algebraically closed, there exist scalars ξ, ξ∗ in K such that

4ξ2 = ̺, 4ξ∗2 = ̺∗. Because the scalars ̺, ̺∗ are nonzero, the scalars ξ, ξ∗ are

nonzero. By equations (8.9), (8.10), we find that Aξ−1, A∗ξ∗−1 satisfy equations

(2.4), (2.5). Therefore, there exists an A-module structure such that x, y act on V as

Aξ−1, A∗ξ∗−1, respectively.

The proof that the A-module V is irreducible is similar to the proof of Lemma

3.11. By Theorems 3.19, 3.20, we find that the A-module V is of type B whenever

A,A∗ is totally bipartite and of type AB whenever A,A∗ is totally almost bipartite.

Given scalars ξ, ξ∗ ∈ K, there is at most one A-module structure on V such that

A,A∗ act as ξx, ξ∗y, respectively. Because ̺ = 4ξ2 and ̺∗ = 4ξ∗2 the choices of ξ, ξ∗

are each unique up to sign.
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Theorem 8.16 implies the following result that may be of independent interest.

Corollary 8.17. Let A,A∗ denote a totally bipartite (resp., totally almost

bipartite) Leonard pair of Bannai/Ito type with diameter at least 3. Let V denote the

underlying vector space. Then there exists a linear transformation Aε ∈ End(V ) such

that A,A∗, Aε is a totally bipartite (resp., totally almost bipartite) Leonard triple.

Proof. Let ξ, ξ∗ be as in Theorem 8.16 and let V be given the corresponding

A-module structure. Let ξε ∈ K be nonzero and let Aε denote the action on V of

ξεz. By Corollary 7.6, A,A∗, Aε is a totally bipartite (resp., totally almost bipartite)

Leonard triple as desired.

We now classify the totally B/AB Leonard pairs of Bannai/Ito type with diameter

d ≥ 3. We will be using the notion of isomorphism of Leonard pairs. For a precise

definition, see [8, Definition 3.4].

Theorem 8.18. Let d denote an integer at least 3 and let ̺, ̺∗ denote scalars in

K. Then the following (i), (ii) are equivalent.

(i) There exists a totally bipartite Leonard pair A,A∗ of Bannai/Ito type with

diameter d that satisfies equations (8.9), (8.10).

(ii) The integer d is even and the scalars ̺, ̺∗ are nonzero.

Moreover, assume (i), (ii) hold. Then the Leonard pair A,A∗ is unique up to isomor-

phism.

Proof. (ii)⇒(i): Let V denote a finite-dimensional irreducible A-module of type

B(d). Let ξ, ξ∗ in K satisfy 4ξ2 = ̺ and 4ξ∗2 = ̺∗. Let A,A∗ denote the actions on V

of ξx, ξ∗y, respectively. Then, by Theorem 8.15, A,A∗ is a totally bipartite Leonard

pair of Bannai/Ito type with diameter d that satisfies equations (8.9), (8.10).

(i)⇒(ii): Let V denote the vector space underlying A,A∗. By Theorem 8.16,

there exists an A-module structure on V of type B and nonzero scalars ξ, ξ∗ such

that A,A∗ act as ξx, ξ∗y, respectively. The dimension of V is d + 1, so V is of type

B(d). By this and Theorem 3.20, d is even. We routinely find that ̺ = 4ξ2 and

̺∗ = 4ξ∗2, so ̺, ̺∗ are nonzero.

Now assume (i), (ii) hold. We show the Leonard pair A,A∗ is unique up to

isomorphism. Let B,B∗ denote a totally bipartite Leonard pair of Bannai/Ito type

with diameter d that satisfies equations (8.9), (8.10). We show the Leonard pairs

A,A∗ and B,B∗ are isomorphic. Let V denote the vector space underlying A,A∗

and let W denote the vector space underlying B,B∗. By Theorem 8.16, there exist

scalars ξ, ξ∗ in K and an A-module structure on V such that A,A∗ act on V as ξx, ξ∗y,

respectively. Similarly, there exist scalars ξ′, ξ∗′ in K and an A-module structure on

W such that B,B∗ act on W as ξ′x, ξ∗′y, respectively. The A-modules V,W are both
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of type B(d) and hence isomorphic. By Theorem 8.16 the scalars ξ, ξ∗ are unique

up to sign, as are the scalars ξ′, ξ∗′. Moreover, both 4ξ2, 4ξ′2 are equal to ̺ and

both 4ξ∗2, 4ξ∗′2 are equal to ̺∗. Changing the signs of ξ, ξ∗ as necessary, we may

assume, without loss of generality, that ξ = ξ′ and ξ∗ = ξ∗′. Let φ : V → W denote

an isomorphism of A-modules. Then φ ◦ A = ξ(φ ◦ x) = ξ(x ◦ φ) = B ◦ φ and

φ ◦ A∗ = ξ∗(φ ◦ y) = ξ∗(y ◦ φ) = B∗ ◦ φ on V . These equations show the Leonard

pairs A,A∗ and B,B∗ are isomorphic.

Theorem 8.19. Let d denote an integer at least 3 and let τ, τ∗ denote scalars in

K. Then the following (i), (ii) are equivalent.

(i) There exists a totally almost bipartite Leonard pair A,A∗ of Bannai/Ito type

with diameter d, tr(A) = τ and tr(A∗) = τ∗.

(ii) The scalars τ, τ∗ are nonzero.

Moreover, assume (i), (ii) hold. Then the Leonard pair A,A∗ is unique up to isomor-

phism.

Proof (ii)⇒(i): Let V denote a finite-dimensional irreducible A-module of type

AB(d, 0). Let A,A∗ denote the actions on V of τ(−1)d(d+1)−1x, τ∗(−1)d(d+1)−1y,

respectively. Then, by Theorem 8.15, A,A∗ is a totally almost bipartite Leonard pair

of Bannai/Ito type with diameter d. By Theorem 3.19, tr(A) = τ and tr(A∗) = τ∗.

(i)⇒(ii): Immediate from Definition 1.5.

Now assume (i), (ii) hold. We show the Leonard pair A,A∗ is unique up to

isomorphism. Let B,B∗ denote a totally almost bipartite Leonard pair of Bannai/Ito

type with diameter d such that tr(B) = τ and tr(B∗) = τ∗. We show the Leonard

pairs A,A∗ and B,B∗ are isomorphic. Let V denote the vector space underlying

A,A∗ and let W denote the vector space underlying B,B∗. By Theorem 8.16, there

exist scalars ξ, ξ∗ in K and an A-module structure on V such that A,A∗ act on V

as ξx, ξ∗y, respectively. Similarly, there exist scalars ξ′, ξ∗′ in K and an A-module

structure on W such that B,B∗ act on W as ξ′x, ξ∗′y, respectively. The A-module V

is of type AB(d, n) and the A-module W is of type AB(d, n′) for some n, n′ ∈ I. By

Theorem 3.19 together with tr(A) = tr(B) and tr(A∗) = tr(B∗), we obtain ξ = ±ξ′

and ξ∗ = ±ξ∗′, with equality if and only if n = n′. By Theorem 8.16, our choice of

scalars ξ, ξ∗ was unique up to sign. Changing the signs of ξ, ξ∗ as necessary, we may

assume, without loss of generality, that ξ = ξ′, ξ∗ = ξ∗′, and hence n = n′. Then

the A-modules V and W are isomorphic. Let φ : V → W denote an isomorphism

of A-modules. Then φ ◦ A = ξ(φ ◦ x) = ξ(x ◦ φ) = B ◦ φ and φ ◦ A∗ = ξ∗(φ ◦ y) =

ξ∗(y ◦ φ) = B∗ ◦ φ on V . These equations show the Leonard pairs A,A∗ and B,B∗

are isomorphic.

We comment on why Theorems 8.18 and 8.19 use different parameters. Let A,A∗
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denote a totally almost bipartite Leonard pair of Bannai/Ito type. Let the scalars

τ, τ∗ be from from Theorem 8.19 and let the scalars ̺, ̺∗ be from equations (8.9),

(8.10). Then

̺ =
4τ2

(d+ 1)2
, ̺∗ =

4τ∗2

(d+ 1)2
.

Given an integer d at least 3 and nonzero scalars ̺, ̺∗, the scalars τ, τ∗ that satisfy the

above equation are each unique up to sign. Therefore, there are exactly 4 isomorphism

classes of totally almost bipartite Leonard pairs of Bannai/Ito type with diameter d

that satisfy equations (8.9), (8.10).

In Theorem 9.5 we display a correspondence between totally B/AB Leonard

triples of Bannai/Ito type and A-modules. To do this, we present further results

about Leonard pairs. Let A,A∗ denote a Leonard pair.

Lemma 8.20. With reference to Notation 8.1, let A,A∗ be totally B/AB and of

Bannai/Ito type with diameter d ≥ 3. Then the elements

A2A∗, AA∗A, A∗A2, (8.11)

are linearly independent.

Proof. Let s, t, u be scalars in K satisfying sA2A∗ + tAA∗A + uA∗A2 = 0. We

show that each of s, t, u is zero. With reference to Notation 8.1, let E∗
i denote the

primitive idempotent corresponding to θ∗i for 0 ≤ i ≤ d. Then the following hold:

sE∗
0A

2A∗E∗
0 + tE∗

0AA
∗AE∗

0 + uE∗
0A

∗A2E∗
0 =0, (8.12)

sE∗
0A

2A∗E∗
2 + tE∗

0AA
∗AE∗

2 + uE∗
0A

∗A2E∗
2 =0, (8.13)

sE∗
2A

2A∗E∗
0 + tE∗

2AA
∗AE∗

0 + uE∗
2A

∗A2E∗
0 =0. (8.14)

With respect to the basis {v∗i }
d
i=0 from Notation 8.1, the matrix representing A∗

is diagonal with (i, i)-entry θ∗i for 0 ≤ i ≤ d. For 0 ≤ i ≤ d, the matrix representing

E∗
i has (i, i)-entry 1 and all other entries zero. With respect to Notation 8.5, the

matrix representing A is irreducible tridiagonal with (i, i) entry ai for 0 ≤ i ≤ d. The

matrix representing A is either bipartite or almost bipartite. Therefore, at most one

of a0, ad is nonzero and ai = 0 for 1 ≤ i ≤ d−1. Reversing the order of the eigenvalues

as necessary we may assume, without loss of generality, that a0 = 0. Based on this

information, we routinely find that equations (8.12)–(8.14) reduce to

(sθ∗0 + tθ∗1 + uθ∗0)E
∗
0A

2E∗
0 =0, (8.15)

(sθ∗2 + tθ∗1 + uθ∗0)E
∗
0A

2E∗
2 =0, (8.16)

(sθ∗0 + tθ∗1 + uθ∗2)E
∗
2A

2E∗
0 =0. (8.17)
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Moreover, E∗
0A

2E∗
0 , E

∗
0A

2E∗
2 , E

∗
2A

2E∗
0 are all nonzero, resulting in the following

equations:

sθ∗0 + tθ∗1 + uθ∗0 =0, (8.18)

sθ∗2 + tθ∗1 + uθ∗0 =0, (8.19)

sθ∗0 + tθ∗1 + uθ∗2 =0. (8.20)

We view (8.18)–(8.20) as a system of linear equations in the indeterminates s, t, u.

The determinant of the coefficient matrix is −θ∗1(θ
∗
0 − θ∗2)

2. Because {θ∗i }
d
i=0 are

distinct, we have θ∗0 − θ∗2 6= 0. Combining Theorem 8.16, the eigenvalue data for y

from Propositions 5.2, 5.3 and the fact that d ≥ 3, we find that θ∗1 6= 0. From this, we

routinely find that s = 0, t = 0, u = 0 is the only solution to the system (8.18)–(8.20).

Therefore, (8.11) are linearly independent as desired.

With reference to Notation 8.1, let Ei, E
∗
i denote the primitive idempotents cor-

responding to θi, θ
∗
i , respectively for 0 ≤ i ≤ d. Let X denote the K-subspace of V

consisting of the X ∈ End(V ) such that both

EiXEj =0 if |i− j| > 1, (8.21)

E∗
i XE∗

j =0 if |i− j| > 1, (8.22)

for 0 ≤ i, j ≤ d. Observe that, if the Leonard pair A,A∗ is associated with a Leonard

triple A,A∗, Aε, then Aε ∈ X .

Lemma 8.21. [7, Theorem 1.5] The space X is spanned by

I, A,A∗, AA∗, A∗A. (8.23)

Moreover, (8.23) is a basis for X provided d ≥ 2.

9. Totally B/AB Leonard triples of Bannai/Ito type. In Section 8, we

classified the Leonard pairs arising from finite-dimensional irreducible A-modules. In

this section, we classify the Leonard triples arising from finite-dimensional irreducible

A-modules. We show that they correspond to a family of totally B/AB Leonard

triples said to have Bannai/Ito type. From this correspondence we classify the totally

B/AB Leonard triples of Bannai/Ito type with diameter at least 3.

Notation 9.1. Let V denote a vector space overK with finite positive dimension.

Let A,A∗, Aε denote a Leonard triple on V . Let {vi}
d
i=0 denote a basis for V under

which A is diagonal and A∗, Aε are irreducible tridiagonal. Let {v∗i }
d
i=0 denote a basis

for V under which A∗ is diagonal and Aε, A are irreducible tridiagonal. Let {vεi }
d
i=0

denote a basis for V under which Aε is diagonal and A,A∗ are irreducible tridiagonal.

For 0 ≤ i ≤ d, let θi denote the eigenvalue for A associated with vi, let θ
∗
i denote the
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eigenvalue for A∗ associated with v∗i and let θεi denote the eigenvalue for A
ε associated

with vεi .

Definition 9.2. We say that a Leonard triple A,A∗, Aε is of Bannai/Ito type

whenever all of the associated Leonard pairs are of Bannai/Ito type.

Lemma 9.3. Let A,A∗, Aε denote a Leonard triple. If any of the six Leonard pairs

associated with A,A∗, Aε is of Bannai/Ito type, then the Leonard triple A,A∗, Aε is

of Bannai/Ito type.

Proof. Assume otherwise. If the Leonard pair A,A∗ is of Bannai/Ito type then so

is A∗, A. Therefore, we may assume, without loss of generality, that the Leonard pair

A,A∗ is of Bannai/Ito type and the Leonard pair A,Aε is not of Bannai/Ito type.

With reference to Notation 9.1, consider the common value of (θi−2−θi+1)/(θi−1−θi)

for 2 ≤ i ≤ d−1. Because A,A∗ is of Bannai/Ito type, that common value is equal to

−1. Because A,Aε is not of Bannai/Ito type, that same common value is not equal

to −1. This is a contradiction, and the result follows.

Theorem 9.4. Let V denote a finite-dimensional irreducible A-module and let

A,A∗, Aε denote the Leonard triple from Corollary 7.6. Then A,A∗, Aε is of Ban-

nai/Ito type. If V is of type B then A,A∗, Aε is totally bipartite. If V is of type AB

then A,A∗, Aε is totally almost bipartite.

Proof. Immediate.

Theorem 9.5. Let V denote a vector space with finite dimension at least 4 and let

A,A∗, Aε denote a totally B/AB Leonard triple on V of Bannai/Ito type. Then there

exists an irreducible A-module structure on V and nonzero scalars ξ, ξ∗, ξε in K such

that x, y, z act as Aξ−1, A∗ξ∗−1, Aεξε−1, respectively. If A,A∗, Aε is totally bipartite

then the A-module V is of type B and if A,A∗, Aε is totally almost bipartite then the

A-module V is of type AB. The A-module structure of V is uniquely determined by

the scalars ξ, ξ∗, ξε and the scalars ξ, ξ∗, ξε are unique up to changing the sign of two

of them.

Proof. We first claim there exist scalars ζ1, ζ2, ζ
∗
1 , ζ

∗
2 , ζ

ε
1 , ζ

ε
2 ∈ K such that

ζε1AA
∗ + ζε2A

∗A = Aε, (9.1)

ζ1A
∗Aε + ζ2A

εA∗ = A, (9.2)

ζ∗1A
εA+ ζ∗2AA

ε = A∗. (9.3)

To prove the claim, we first show that line (9.1) holds. By Lemma 8.21 and the

fact that d ≥ 3, there exist unique scalars α1, α2, α3, α4, α5 ∈ K such that

Aε = α1I + α2A+ α3A
∗ + α4AA

∗ + α5A
∗A. (9.4)
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In equation (9.4), set ζε1 = α4 and ζε2 = α5. We show that α1, α2, α3 are equal

to zero. We first show that α1, α2 are equal to zero. Consider the matrix Bε repre-

senting Aε with respect to the basis {vi}
d
i=0 from Notation 9.1. By construction, Bε

is irreducible tridiagonal and either bipartite or almost bipartite. The matrices rep-

resenting A∗, AA∗, A∗A are also tridiagonal and either bipartite or almost bipartite.

Therefore, Bε
i,i = 0 for 1 ≤ i ≤ d− 1. By (9.4), we have that, for 1 ≤ i ≤ d− 1,

Bε
i,i = α1 + α2θi.

Because d ≥ 3 and {θi}
d−1
i=1 are distinct, we have that α1, α2 are both equal to zero.

The proof that α3 = 0 is similar, using the matrix representing Aε with respect to the

basis {v∗i }
d
i=0 from Notation 9.1. Therefore, equation (9.1) holds. Equations (9.2),

(9.3) are similar and the claim follows.

We now refine the relations (9.1)–(9.3). We claim that there exist nonzero scalars

ζ, ζ∗, ζε ∈ K such that

ζε(AA∗ +A∗A) = Aε, (9.5)

ζ(A∗Aε +AεA∗) = A, (9.6)

ζ∗(AεA+AAε) = A∗. (9.7)

Substituting the left-hand side of equation (9.1) for Aε in equation (9.3), we find

that

ζε1ζ
∗
2A

2A∗ + (ζε1ζ
∗
1 + ζε2ζ

∗
2 )AA

∗A+ ζε2ζ
∗
1A

∗A2 = A∗. (9.8)

Equations (8.9) and (9.8) both express A∗ as a linear combination of (8.11). By

Lemma 8.20, we have

̺ζε1ζ
∗
2 = 1, (9.9)

̺(ζε1ζ
∗
1 + ζε2ζ

∗
2 ) = 2, (9.10)

̺ζε2ζ
∗
1 = 1. (9.11)

By equation (9.9), we have ζε1 6= 0, and by equation (9.11), we have ζε2 6= 0. Solv-

ing equations (9.9) and (9.11) for ζ∗2 , ζ
∗
1 , respectively, and substituting into equation

(9.10), we get ζε1(ζ
ε
2)

−1+ ζε2(ζ
ε
1)

−1 = 2. Therefore, ζε1 = ζε2 and both are nonzero. Let

ζε denote the common value of ζε1 , ζ
ε
2 . Then equation (9.5) holds. Equations (9.6),

(9.7) are similar and the second claim follows.

Since K is algebraically closed and ζ, ζ∗, ζε are nonzero, there exist ξ, ξ∗, ξε

such that ξ2 = (4ζ∗ζε)−1, ξ∗2 = (4ζεζ)−1 and ξε2 = (4ζζ∗)−1. The choices for

ξ, ξ∗, ξε are unique up to sign and ξξ∗ξε = ±(8ζζ∗ζε)−1. Choose ξ, ξ∗ξε such that

ξξ∗ξε = (8ζζ∗ζε)−1. We have ξ, ξ∗, ξε 6= 0. By equations (9.5)–(9.7) we have that
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Aξ−1, A∗ξ∗−1, Aεξε−1 satisfy equations (2.1)–(2.3). Therefore, there exists an A-

module structure such that x, y, z act as Aξ−1, A∗ξ∗−1, Aεξε−1, respectively.

The proof that the A-module V is irreducible is similar to the proof of Lemma

3.11. By Theorems 3.19, 3.20, we find that, if A,A∗, Aε is totally bipartite then V is

of type B and if A,A∗, Aε is totally almost bipartite then V is of type AB.

Given scalars ξ, ξ∗, ξε ∈ K, there is at most one A-module structure on V such

that A,A∗, Aε act as ξx, ξ∗y, ξεz, respectively. Because ξ2 = (4ζ∗ζε)−1, ξ∗2 =

(4ζεζ)−1, ξε2 = (4ζζ∗)−1 and ξξ∗ξε = (8ζζ∗ζε)−1, the choices of ξ, ξ∗ are unique

up to sign change and ξε is uniquely determined by ξ, ξ∗.

In Theorem 9.5, we assume that d ≥ 3. To see that this assumption is necessary,

we show that, for d = 2, the Theorem is false. By [6, Theorems 10.1(i), 10.2(ii),

10.4(iii)] with d = 2,

A =



2 0 0

0 0 0

0 0 −2


 , A∗ =



0 2 0

1 0 1

0 2 0


 , Aε =



0 −2i 0

i 0 −i

0 2i 0




is a Leonard triple with diameter 2. Observing [6, Theorems 10.1(ii),(iii), 10.2(i),(iii),

10.4(i), (ii)] we find that the Leonard triple is totally bipartite, and we routinely find

that each Leonard pair obtained from this Leonard triple satisfies equations (8.9),

(8.10) with ̺ = 4 and ̺∗ = 4, and is hence of Bannai/Ito type. However, there are no

scalars ζ, ζ∗, ζε that satisfy equation (9.5). Therefore, there is no A-module structure

as described in Theorem 9.5.

We now classify the totally B/AB Leonard triples of Bannai/Ito type with diam-

eter d ≥ 3. We will be using the notion of isomorphism of Leonard triples. For a

precise definition, see [3, Definition 8.2].

Theorem 9.6. Let d denote an integer at least 3 and let ζ, ζ∗, ζε denote scalars

in K. Then the following (i), (ii) are equivalent.

(i) There exists a totally bipartite Leonard triple A,A∗, Aε of Bannai/Ito type

with diameter d that satisfies equations (9.5)–(9.7).

(ii) The integer d is even and the scalars ζ, ζ∗, ζε are nonzero.

Moreover, assume (i), (ii) hold. Then the Leonard triple A,A∗, Aε is unique up to

isomorphism.

Proof. (ii)⇒(i): Let V denote a finite-dimensional irreducible A-module of type

B(d). Let ξ, ξ∗, ξε in K satisfy ξ2 = (4ζ∗ζε)−1, ξ∗2 = (4ζεζ)−1, ξε2 = (4ζζ∗)−1

and ξξ∗ξε = (8ζζ∗ζε)−1. Let A,A∗, Aε denote the actions on V of ξx, ξ∗y, ξεz, re-

spectively. Then, by Theorem 9.4, A,A∗, Aε is a totally bipartite Leonard triple of

Bannai/Ito type with diameter d that satisfies equations (9.5)–(9.7).
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(i)⇒(ii): By Theorem 9.5, there exists an A-module structure on V of type B

and nonzero scalars ξ, ξ∗, ξε such that A,A∗, Aε act as ξx, ξ∗y, ξεz, respectively. The

dimension of V is d+1, so V is of type B(d). By this and Theorem 3.20, d is even. We

routinely find that ζ = ξ(2ξ∗ξε)−1, ζ∗ = ξ∗(2ξεξ)−1 and ζε = ξε(2ξξ∗)−1 so ζ, ζ∗, ζε

are nonzero.

Now assume (i), (ii) hold. We show the Leonard triple A,A∗, Aε is unique up to

isomorphism. Let B,B∗, Bε denote a totally bipartite Leonard triple of Bannai/Ito

type with diameter d that satisfies equations (9.5)–(9.7). We show the Leonard triples

A,A∗, Aε and B,B∗, Bε are isomorphic. Let V denote the vector space underlying

A,A∗, Aε and let W denote the vector space underlying B,B∗, Bε. By Theorem 9.5,

there exist scalars ξ, ξ∗, ξε in K and an A-module structure on V such that A,A∗, Aε

act on V as ξx, ξ∗y, ξεz, respectively. Similarly, there exist scalars ξ′, ξ∗′, ξε′ in K

and an A-module structure on W such that B,B∗, Bε act on W as ξ′x, ξ∗′y, ξε′z,

respectively. The A-modules V,W are both of type B(d) and hence isomorphic.

By Theorem 8.16 the scalars ξ, ξ∗ are unique up to sign as are the scalars ξ′, ξ∗′.

Moreover, the scalar ξε is uniquely determined by ξ, ξ∗ and the scalar ξε′ is uniquely

determined by ξ′, ξ∗′. Moreover, both ξ2, ξ′2 are equal to (4ζ∗ζε)−1, both ξ∗2, ξ∗′2

are equal to (4ζεζ)−1, both ξε2, ξε′2 are equal to (4ζζ∗)−1 and both ξξ∗ξε, ξ′ξ∗′ξε′

are equal to (8ζζ∗ζε)−1. Changing the signs of ξ, ξ∗, ξε as necessary, we may assume,

without loss of generality, that ξ = ξ′, ξ∗ = ξ∗′ and ξε = ξε′. Let φ : V → W

denote an isomorphism of A-modules. Then φ ◦ A = ξ(φ ◦ x) = ξ(x ◦ φ) = B ◦ φ,

φ◦A∗ = ξ∗(φ◦y) = ξ∗(y◦φ) = B∗ ◦φ and φ◦Aε = ξε(φ◦z) = ξε(z◦φ) = Bε ◦φ on V .

These equations show the Leonard triples A,A∗, Aε and B,B∗, Bε are isomorphic.

Theorem 9.7. Let d denote an integer at least 3 and let τ, τ∗, τε denote scalars

in K. Then the following (i), (ii) are equivalent.

(i) There exists a totally almost bipartite Leonard triple A,A∗, Aε of Bannai/Ito

type with diameter d, tr(A) = τ , tr(A∗) = τ∗ and tr(Aε) = τε.

(ii) The scalars τ, τ∗, τε are nonzero.

Moreover, assume (i), (ii) hold. Then the Leonard triple A,A∗, Aε is unique up to

isomorphism.

Proof. (ii)⇒(i): Let V denote a finite-dimensional irreducible A-module of type

AB(d, 0). Let A,A∗, Aε denote the actions of τ(−1)d(d + 1)−1x, τ∗(−1)d(d + 1)−1y,

τε(−1)d(d + 1)−1z, respectively. Then, by Theorem 8.15, A,A∗, Aε is a totally al-

most bipartite Leonard triple of Bannai/Ito type with diameter d. By Theorem 3.19,

tr(A) = τ , tr(A∗) = τ∗ and tr(Aε) = τε.

(i)⇒(ii): Immediate from Definition 1.5.

Now assume (i), (ii) hold. We show the Leonard triple A,A∗, Aε is unique up
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to isomorphism. Let B,B∗, Bε denote a totally almost bipartite Leonard triple of

Bannai/Ito type with diameter d such that tr(B) = τ , tr(B∗) = τ∗ and tr(Bε) =

τε. We show the Leonard triples A,A∗, Aε and B,B∗, Bε are isomorphic. Let V

denote the vector space underlying A,A∗, Aε and let W denote the vector space

underlying B,B∗, Bε. By Theorem 9.5, there exist scalars ξ, ξ∗, ξε in K and an A-

module structure on V such that A,A∗, Aε act on V as ξx, ξ∗y, ξεz, respectively.

Similarly, there exist scalars ξ′, ξ∗′, ξε′ in K and an A-module structure on W such

that B,B∗, Bε act on W as ξ′x, ξ∗′y, ξε′z, respectively. The A-module V is of type

AB(d, n) and the A-module W is of type AB(d, n′) for some n, n′ ∈ I. By Theorem

3.19 together with tr(A) = tr(B), tr(A∗) = tr(B∗) and tr(Aε) = tr(Bε), we obtain

ξ = ±ξ′, ξ∗ = ±ξ∗′ and ξε = ±ξε′, with equality if and only if n = n′. By Theorem 9.5,

our choice of scalars ξ, ξ∗ was unique up to sign and our choice of ξε was determined

by ξ, ξ∗. Changing the signs of ξ, ξ∗, ξε as necessary, we may assume, without loss of

generality, that ξ = ξ′, ξ∗ = ξ∗′, ξε = ξε′ and hence n = n′. Then the A-modules V

and W are isomorphic. Let φ : V → W denote an isomorphism of A-modules. Then

φ ◦ A = ξ(φ ◦ x) = ξ(x ◦ φ) = B ◦ φ, φ ◦ A∗ = ξ∗(φ ◦ y) = ξ∗(y ◦ φ) = B∗ ◦ φ and

φ ◦ Aε = ξε(φ ◦ z) = ξε(z ◦ φ) = Bε ◦ φ on V . These equations show the Leonard

triples A,A∗, Aε and B,B∗, Bε are isomorphic.

We comment on why Theorems 9.6 and 9.7 use different parameters. Let A,A∗, Aε

denote a totally bipartite Leonard triple of Bannai/Ito type. Let the scalars τ, τ∗, τε

be from Theorem 9.7 and let the scalars ζ, ζ∗, ζε be from equations (9.5)–(9.7). Then

ζ =
(−1)d(d+ 1)τ

2τ∗τε
, ζ∗ =

(−1)d(d+ 1)τ∗

2τετ
, ζε =

(−1)d(d+ 1)τε

2ττ∗
.

Given an integer d at least three and nonzero scalars ζ, ζ∗, ζε, the scalars τ, τ∗, τε that

satisfy the above equation are unique up to changing the sign of an even number of

them. Therefore, there are exactly 4 isomorphism classes of totally almost bipartite

Leonard triples of Bannai/Ito type with diameter d that satisfy equations (9.5)–(9.7).
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